
1

Concurrent Programming in Java

Abhik Roychoudhury and Ju Lei
CS 3211

National University of Singapore

By Abhik & Ju Lei1

Java Threads

Multithreaded execution is an essential feature of the Java platform. Every
application has at least one thread — or several, if you count "system" threads that
do things like memory management and signal handling.

From the application programmer's point of view, you start with just one thread,
called the main thread. This thread has the ability to create additional threads.

By Abhik & Ju Lei2

A

Time

B

C

Parallelism is not
necessary, but
possible.

The threads can
time-share on a
processor.

Threads

Managing Thread objects
Each application thread is an instance of the class Thread.

In the programming style I describe here:

the application directly controls thread creation and management
by instantiating the Thread class whenever necessary.

A li i h i f Th d id h d h ill

By Abhik & Ju Lei3

An application that creates an instance of Thread must provide the code that will
run in that thread. There are two ways to do this:

- use the Runnable interface
- create a subclass of the Thread class.

(see the next two slides for description of these two approaches).

Concurrent Thread Execution
Each thread has a priority

Initial priority: inherited from its parent thread
setPriority(int newPriority)

When multiple threads running on the same processor
Ready thread with highest priority get executed

By Abhik & Ju Lei4

Ready thread with highest priority get executed
“Randomly” select among threads with same priority

Starting a Thread (1)
public class HelloRunnable implements Runnable {

public void run() {
System.out.println("Hello from a thread!");

}

public static void main(String args[]) {
(new Thread(new HelloRunnable())).start();

}

By Abhik & Ju Lei5

}
}

Runnable interface contains a single method run()
--- containing code to be executed.

Re-define the run() method and pass it to the thread constructor.

Starting a Thread (2)

public class HelloThread extends Thread {

public void run() {
System.out.println("Hello from a thread!");

}

public static void main(String args[]) {

By Abhik & Ju Lei6

public static void main(String args[]) {
(new HelloThread()).start();

}
}

2

Common programming mistakes

Thread myThread = new Thread(MyRunnable());
mythread.run();

Calling thread will execute the run() method
• Treated as normal function call
• No new thread is created
• Not desirable in most situations

By Abhik & Ju Lei7

• Not desirable in most situations

Thread myThread = new Thread(MyRunnable());
mythread.start();

A new thread is created (run() is executed
in this new thread)

Stopping Threads
Thread normally terminates by returning from its run()
method
Deprecated methods: stop(), suspend(), destroy() etc.

Unsafe, don’t use
Use (shared) variables to control thread termination if

By Abhik & Ju Lei8

necessary
The join method allows one thread to wait for the completion
of another

t.join();
causes the current thread to pause execution until t's thread
terminates.

A sleeping thread

public class SleepMessages {
public static void main(String args[]) throws InterruptedException {

String importantInfo[] = { "Mares eat oats",
"Does eat oats",
"Little lambs eat ivy",
"A kid will eat ivy too"

};
for (int i = 0; i < importantInfo.length; i++) { //Pause for 4

seconds

By Abhik & Ju Lei9

seconds
Thread.sleep(4000); //Print a message
System.out.println(importantInfo[i]);

}
}

}

Thread.sleep causes the current thread to suspend execution for a specified period.
This is an efficient means of making processor time available to the other threads of an
application or other applications that might be running on a computer system

An Example
public class ThreadExample {

public static void main(String[] args){
System.out.println(Thread.currentThread().getName());
for(int i=0; i<10; i++){

new Thread("" + i){
public void run(){

System.out.println("Thread: " + getName() + " running");
}

}.start();

By Abhik & Ju Lei10

}
}

}

1. What does the above example do?
2. How many threads will be created ?
3. What will be the exact printout?

Thread Communication
Two common modes of thread communication in
parallel / concurrent programming

Shared memory
Message passing

In this course we study the Java shared memory

By Abhik & Ju Lei11

In this course, we study the Java shared memory
communication style where threads read and write
shared objects. This requires synchronization
mechanisms to ensure safe and “correct” accesses to
the objects.
Message passing is also available in Java

Refer to Textbook, Chapter 10

Two problems in Concurrent Programming

Race conditions
Two or more threads access the shared data
simultaneously
Solution: lock the data to ensure mutual exclusion
of critical sections

By Abhik & Ju Lei12

of critical sections
Deadlock

Two threads are waiting for each other to release
a lock, or more than two processes are waiting for
lock in a circular chain.

3

Interference between threads
class Counter {

private int c = 0;
public void increment() {

c++;
}
public void decrement() {

c--;
}
public int value() {

Different from Promela:
Java statements are not

atomic!!!

By Abhik & Ju Lei13

p
return c;

}
}

Counter c = new Counter();
public class ThreadA extends Thread{

public void run() { c.increment(); }
}

public class ThreadB extends Thread{
public void run() { c.decrement(); }

}

Thread Interference
Shared Memory
Init: c == 0Thread A Thread B

Read c
== 0 Read c ==

0
Incr.,
Get 1

By Abhik & Ju Lei14

Get 1 Decr.,
get -1

Write c = -1

Write c = 1
Executing the
Statement c++;

Executing the
Statement c--;

Avoiding thread interference – (1)
Java programming provides two basic synchronization idioms:
synchronized methods and synchronized statements

public class SynchronizedCounter {
private int c = 0;
public synchronized void increment() {

c++;
}
public synchronized void decrement() {

By Abhik & Ju Lei15

public synchronized void decrement() {
c--;

}
public synchronized int value() {

return c;
}

}

Why synchronized methods?
It is not possible for two invocations of synchronized methods
on the same object to overlap.
When a synchronized method exits, it makes the object state
visible to all threads accessing the object subsequently via
synchronized methods

By Abhik & Ju Lei16

Minor point: Constructors cannot be synchronized, try it ! Why??

Synchronized statements
public void addName(String name) {

synchronized(this) {
lastName = name; nameCount++;

}
nameList.add(name);

}

By Abhik & Ju Lei17

Synchronized statements refer to an object --- this refers to the object
whose method is being executed.

Needed to avoid generating redundant methods – see example above.

Invoking other object’s methods from synch. code can be problematic?

Synchronized Method and Statements
Synchronized methods lock this object
Synchronized statements can lock any objects
(including this)

public synchronized void foo() {

By Abhik & Ju Lei18

public synchronized void foo() {
…

}
is equivalent to

public void foo() {
synchronized(this){ … }

}

4

Finer-grained concurrency

public class not_together {
private long c1 = 0;
private long c2 = 0;
private Object lock1 = new Object();
private Object lock2 = new Object();

public void inc1() {
{

Different from using

synchronized(this)

c1 and c2 are
independent, never

By Abhik & Ju Lei19

{
c1++;

}
}

public void inc2() {
synchronized(lock2) {

c2++;
}

}
}

independent, never
used together.

=>
Updates can be
interleaved.

Fine grained locks
class FineGrainLock {

MyMemberClass x, y;
Object xlock = new Object(),

ylock = new Object();
public void foo() {

synchronized(xlock) { //access x here
}
//do something - but don't use shared resources
synchronized(ylock) { //access y here

By Abhik & Ju Lei20

y y y
}

}
public void bar() {

synchronized(xlock) {
synchronized(ylock) {

//access both x and y here
}

}
//do something - but don't use shared resources

}
}

Re-emphasizing Locks
Consider a bank with 10,000 accounts, each with $1000.
Bank’s asset = $10 million.

Simulate the bank’s activity with two threads.

ATM thread: picks two accounts at random and moves a random
amount of money from one account to another.

By Abhik & Ju Lei21

Audit thread: Periodically wakes up, and adds all the money in
all the accounts.

We should always have $10 million in the bank (Invariant)

ATM Class

class ATM extends Bank implements Runnable{
public void run(){

int fromAcc, toAcc, amount;
while (true){

fromAcc = (int) random(numAcc);

toAcc = (int) random(numAcc);
amt = 1+ (int)random(savings[fromAcc].balance);
savings[fromAcc].balance -= amt;
savings[toAcc].balance += amt;

}
}

}

By Abhik & Ju Lei22

Auditor Class
class Auditor extends Bank implements Runnable{

public void run(){
int total;
while (true){

nap(1000); total = 0;

f (i i 0 i < A i++)for (int i =0; i < numAcc; i++)
total += savings[i].balance;

… // print the total
}

}

By Abhik & Ju Lei23

Total is 10000000
Total is 10001090
Total is 9994800

Printout

Fixing the ATM
class ATM{

…
synchronized (lock) {

savings[fromAcc]-=amt; savings[toAcc] += amt;
}

}}

class Auditor{
…
synchronized (lock) {

for (i=0; i < numAcc; i++) total += savings[i];

}
}

By Abhik & Ju Lei24

5

Thread safety without Synchronization
Local Variables – stored in each thread’s local stack.
Accessed only by one thread, no synchronization needed.

public void someMethod(){

long threadSafeInt = 0;

By Abhik & Ju Lei25

threadSafeInt++;
}

Volatile Variables
Consider any simple Java stmt, e.g., x=0

Translates to a sequence of bytecodes, not atomically executed.
One way of ensuring atomic execution in Java –

Mark variables as volatile
reads/writes (including get-and-set after Java 5) of volatile
variables are atomic (directly update global mem.)

By Abhik & Ju Lei26

S
T
A
C
K

Thread
A

Heap (Global
Memory)

Thread
B

S
T
A
C
K

Normal var.
accesses

Volatile Variables

S
T
A
C
K

Heap (Global
Memory)

S
T
A
C
K

By Abhik & Ju Lei27

Thread
A

Thread
B

Conceptual view of volatile variable accesses – atomic reads/writes.
Ensures state visibility, not mutual exclusion.

Marking a variable as volatile tells the compiler to load/store the variable
on each use, rather than optimizing away the loads and stores.

An example with volatile variables
public class StoppableTask extends Thread {

private volatile boolean pleaseStop =false;

public void run() {
while (!pleaseStop) {

// do some stuff...
}

}

By Abhik & Ju Lei28

public void tellMeToStop() {
pleaseStop = true;

}
}

A common bug with volatile
class Counter {

private volatile int c = 0;
public void increment() {

c++;
}
public void decrement() {

c--;
}

By Abhik & Ju Lei29

}
public int value() {

return c;
}

}

A common bug with volatile

volatile int c;
...

c ++;

int temp;

synchronized (c) {

temp = c;
}

temp++;

By Abhik & Ju Lei30

synchronized (c) {

c = temp;
}

6

Volatile Vs. Synchronized
Summarize on volatile variables

Value of volatile variable will never be cached
Access (read/write/get-and-set) to the variable is atomic

Pros
Light-weight synchronization mechanism

By Abhik & Ju Lei31

A primitive variable may be declared volatile
Access to a volatile variable never block (deadlock)

Cons
Correct use of volatile relies on the understanding of Java
memory model (e.g., get-update-set of a volatile variable is
not atomic).

Deadlock
Example
threadA: threadB:
synchronized(lock1) { synchronized(lock2) {

synchronized(lock2) { synchronized(lock1) {
…. ….

} }} }
} }
The Java programming language does not prevent deadlock
conditions

Programmer has to take care of possible deadlock situation (use
conventional techniques/programming patterns for deadlock
avoidance)
Formal verification (e.g., Promela&Spin)

3232 By Abhik & Ju Lei

Transfer of Thread Control
Sometimes, a thread needs certain conditions (on shared
objects) to hold before it can proceed
Method 1: polling/spinning

repeatedly locking and unlocking an object to see whether
some internal state has changed
Inefficient, possible cause of deadlock

Method 2: wait/notify
a thread can suspend itself using wait until such time as
another thread awakens it using notify

33 By Abhik & Ju Lei

Wait and notify

wait()
Waits for a condition to occur. This is a method of the Object class and must be

called from within a synchronized method or block.

notify()
Notifies a thread that is waiting for a condition that the condition has

occurred. This a method of the Object class and must be called from within a

By Abhik & Ju Lei34

synchronized method or block.

Every object inherits from the Object class, hence support wait /notify.

Acquiring and releasing locks
wait() releases lock prior to waiting.
Lock is re-acquired prior to returning from wait().

Producer and Consumer Example (1)

class Q { //queue of size 1
int n;
synchronized int get() {

System.out.println("Got: " + n);
return n;

}
synchronized void put(int n) {

this.n = n;
System.out.println("Put: " + n);

}
}

35 By Abhik & Ju Lei

Producer and Consumer Example (1)
class Producer implements Runnable {

Q q;
Producer(Q q) {

this.q = q;
new Thread(this, "Producer").start();

}}
public void run() {

int i = 0;
while(true) {

q.put(i++);
}

}
}

36 By Abhik & Ju Lei

7

Producer and Consumer Example (1)
class Consumer implements Runnable {

Q q;
Consumer(Q q) {

this.q = q;
new Thread(this, "Consumer").start();

}}
public void run() {

while(true) {
q.get();

}
}

}

37 By Abhik & Ju Lei

Producer and Consumer Example (1)
Possible output:

Put: 1
Got: 1
Got: 1
Got: 1
G 1 Got: 1
Put: 2
Put: 3
Put: 4
Got: 4

38 By Abhik & Ju Lei

Producer and Consumer Example (2)
class Q {

int n;
boolean valueSet = false;
synchronized int get() {
while(!valueSet) {

try {
wait();wait();

} catch(InterruptedException e) {
}

}
System.out.println("Got: " + n);
valueSet = false;
notify(); //notify the producer
return n;

}

39 By Abhik & Ju Lei

Producer and Consumer Example (2)
synchronized void put(int n) {
while(valueSet) {

try {
wait();

} catch(InterruptedException e) {
}

}}
this.n = n;
valueSet = true;
System.out.println("Put: " + n);
notify();

}
}

40 By Abhik & Ju Lei

notifyall()
Notifies all waiting threads on a condition that the condition has occurred.

All threads wake up, but they must still re-acquire the lock.

Thus, one of the awakened threads executes immediately after waking up.

By Abhik & Ju Lei41

public class ResourceThrottle {
private int resourcecount = 0;
private int resourcemax = 1;

public ResourceThrottle (int max) {
resourcecount = 0;
resourcemax = max;

}

notifyAll()
public synchronized void getResource (int number) {

while (1) {
if (resourcecount + number < =

resourcemax){
resourcecount += number; break;

}
try { wait();
} catch (Exception e) {}

By Abhik & Ju Lei42

} catch (Exception e) {}
}

}

public synchronized void freeResource (int number) {
resourcecount == number; notifyAll();

}

What purpose does notifyAll() serve here?

8

Beyond Locks
Locks ensure mutually exclusive access.

If there are n resources to be picked up by m > n
contenders.

We need a semaphore with a count

43

We need a semaphore with a count
initialize count to n (# of resources)
as each resource is acquired, decrement count
as each resource is released, increment count.

Semaphores are not directly supported by Java. But, they can
be easily implemented on top of Java’s synchronization.

43 By Abhik & Ju Lei

Counting Semaphores

class Semaphore {
private int count;
public Semaphore(int n) {this.count = n; }
public synchronized void acquire(){ … }
public synchronized void release(){ … }

44

public synchronized void acquire(){
while(count == 0) {
try { wait(); }
catch (InterruptedException e){

//keep trying
}

}
count--;

}

public synchronized void release(){
count++;
notify(); //alert a thread

//that's blocking on
// this semaphore

}

44 By Abhik & Ju Lei

Using counting semaphores
import java.util.concurrent.Semaphore;
class Count extends Thread{

static volatile int n = 0;
static Semaphore s = new Semaphore(1);
public void run(){

int tmp;p;
for (i =0; i < 10; i++){

s.acquire();
tmp = n; n = tmp +1;
s.release();

}
}

}

4545 By Abhik & Ju Lei

References

Online Tutorials:

http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html

Optional Reading:

Java Threads by Oaks and Wong, O’Reilly.

By Abhik & Ju Lei46

Concurrent Programming: The Java Programming Language by Hartley.

Java Concurrency in Practice by Goetz, Addison Wesley. (advanced)

