
Angelix: Scalable Multiline Program Patch Synthesis
via Symbolic Analysis

Sergey Mechtaev Jooyong Yi Abhik Roychoudhury
School of Computing, National University of Singapore, Singapore

{mechtaev,jooyong,abhik}@comp.nus.edu.sg

ABSTRACT
Since debugging is a time-consuming activity, automated

program repair tools such as GenProg have garnered in-
terest. A recent study revealed that the majority of Gen-
Prog repairs avoid bugs simply by deleting functionality. We
found that SPR, a state-of-the-art repair tool proposed in
2015, still deletes functionality in their many “plausible” re-
pairs. Unlike generate-and-validate systems such as Gen-
Prog and SPR, semantic analysis based repair techniques
synthesize a repair based on semantic information of the
program. While such semantics-based repair methods show
promise in terms of quality of generated repairs, their scal-
ability has been a concern so far. In this paper, we present
Angelix, a novel semantics-based repair method that scales
up to programs of similar size as are handled by search-based
repair tools such as GenProg and SPR. This shows that An-
gelix is more scalable than previously proposed semantics
based repair methods such as SemFix and DirectFix. Fur-
thermore, our repair method can repair multiple buggy lo-
cations that are dependent on each other. Such repairs are
hard to achieve using SPR and GenProg. In our experi-
ments, Angelix generated repairs from large-scale real-world
software such as wireshark and php, and these generated
repairs include multi-location repairs. We also report our
experience in automatically repairing the well-known Heart-
bleed vulnerability.

1 Introduction
The once-futuristic idea of automated program repair is

gradually becoming a reality. Various automated repair
tools, such as GenProg [14], PAR [21], relifix [39], Sem-
Fix [26], Nopol [8], DirectFix [24] and SPR [23], to name
only a few, have been introduced recently. These auto-
mated repair methods can be classified into the following two
broad methodologies, i.e., search-based methodology (e.g.,
GenProg, PAR, and SPR) and semantics-based methodol-
ogy (e.g., SemFix, Nopol, and DirectFix). Search-based
repair methodology (also known as generate-and-validate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

methodology) searches within a search space to generate a
repair candidate and validate this repair candidate against
the provided test-suite. Meanwhile, the semantics-based re-
pair methodology synthesizes a repair using semantic infor-
mation (via symbolic execution and constraint solving).

Classifying repair methods into search based repair and se-
mantics based repair is somewhat analogous to classification
of software testing into search-based testing and symbolic-
execution-based testing [28]. While such a classification may
be a bit coarse, it helps us understand the current trends in
automated program repair. In [14], GenProg, a prominent
search-based repair tool, is shown to be scale to large-scale
real-world software such as php and wireshark. Meanwhile,
SemFix [26], the first semantics-based repair tool, is shown
to be more efficient than GenProg in terms of repairability
(which is higher as more buggy programs can be repaired)
and running time, although SemFix was applied only to rel-
atively small programs. Afterwards, in both methodologies,
the importance of high-quality repairs began to be consid-
ered, resulting in another search-based repair tool, PAR [21],
and semantics-based repair tool, DirectFix [24]. Finally,
a research effort [25] argued for explicitly defining defect
classes (i.e., which defects will be fixed by a given repair
method) while constructing repair methods.

Currently, research in automated program repair consid-
ers all the three attributes – scalability (should scale to large
real-world programs), repairability (should repair a large
number of defects possibly by covering many defect classes),
and the quality of repairs (should produce repairs which
make less changes to the program, delete less functional-
ity, and are more likely to be accepted by developers). Note
that some of these attributes can be deemed to be somewhat
qualitative in nature — nevertheless, it is very important to
consider them while building a new repair method. As an
example, the latest search-based repair tool, SPR [23], gen-
erates more repairs (as compared to GenProg), and the gen-
erated repairs are more frequently functionally-equivalent
to developer-provided repairs (rather than merely passing
the provided tests), when applied to large-scale real-world
software. Meanwhile, in the case of the semantics-based
methodology, low scalability has been the main source of
criticism, despite its promising results in terms of high re-
pairability (e.g., SemFix [26]) and the high quality of repairs
(e.g., [24] which repairs a buggy program by making prov-
ably minimal changes to the program).

We show in this paper how the semantics-based repair
methodology can also scale up to the same level as the most
advanced search-based repair tools such as SPR and Gen-

Prog. Semantics based repair methods often work by ex-
tracting a repair constraint typically via symbolic execution.
This repair constraint acts as a specification to guide pro-
gram synthesis - so a patch satisfying the repair constraint
can be synthesized. The key enabler for scalable multi-
line bug fix in this paper, is our novel lightweight repair
constraint that we call an angelic forest. This angelic for-
est is automatically extracted via symbolic execution. As
compared to the repair constraints used in the previous
work [24, 26], the angelic forest is simpler, and its size is
independent of the size of the program under repair, thereby
making our repair method scale. Our angelic forest, despite
its simplicity, contains enough semantic information to en-
able multi-location bug fix. Among existing search-based
repair tools, SPR does not support multi-line fixes. While
GenProg [14] can change multiple locations of the program,
a recent study on GenProg repairs [33] shows that seem-
ingly complex repairs generated from GenProg are in the
overwhelming majority of cases in fact functionally equiva-
lent to single line modification.

When evaluated with the largest of the GenProg ICSE2012
subjects, our open-source repair tool Angelix successfully
generated repairs including on wireshark and php subjects.
The number of repairs generated by Angelix (28) is larger
than in GenProg (11), and also generally comparable to SPR
(31). While in one subject (libtiff), Angelix generated more
repairs than SPR, and in another subject (php), SPR gen-
erated more repairs. In the remaining 3 subjects, both tools
produced the same number of repairs.

More importantly, we note that even though a recent
work [33] points to functionality deleting repairs by Gen-
Prog, the SPR tool [23] (which was produced by the same
authors) itself was found to generate many functionality
deleting repairs, because it generates many trivial branch
conditions. Such trivial branch conditions (conditions which
are always true or always false) introduce functionality dele-
tion; e.g., consider the following SPR repair for a libtiff de-
fect where the shaded part is the fix inserted by SPR.

i f (td−>td nstrips > 1
&& td−>td compression ==COMPRESSIONNONE
&& td−>td stripbytecount [0] != td−>td stripbytecount [1]
&& !(1))

We found that in SPR the overall functionality-deleting re-
pair rate across the GenProg benchmark subjects is 45%. In
fact, in the libtiff subject, the percentage of functionality
deleting repairs in the SPR tool [23] goes up to an alarm-
ing 80% !! In contrast, our semantic analysis based repair
tool produced functionality-deleting repairs significantly less
frequently when the same tests were used (21%). For the
aforementioned defect, Angelix synthesizes a patch that is
identical with the developer-provided patch (shown in Fig-
ure 3b), which does not delete functionality. Furthermore,
the repairs generated by Angelix include five multi-location
bugs which have not been fixed by the existing tools. Last
but not the least, we report that the well-known Heartbleed
vulnerability [1] was automatically fixed by our tool, gen-
erating a repair that is smiliar to the developer-provided
patch. To the best of our knowledge, ours is the first work
that reports the automated repair on Heartbleed. Over-
all, we present a semantic analysis based program repair
method which balances the requirements of scalability (re-
pairing large programs), repairability (repairing a large num-
ber of defects) and patch quality (changing the functionality

of the program in a way developers would agree with, instead
of simply deleting functionality). Our tool Angelix and its
experimental data are available at the following web site:
www.comp.nus.edu.sg/~abhik/tools/angelix/

2 Motivating Example
Figure 1 shows code changes made to fix coreutils bug

13627. In the buggy version, the call of xzalloc (line 4), which
allocates a block of memory, causes a segmentation fault. A
fix involves adding an if conditional before the problematic
call to xzalloc (line 5). Only when variable max range endpoint

has a non-zero value, xzalloc can be called in the fixed ver-
sion. In addition to adding an if conditional, the fix requires
removing an existing if statement (lines 1–2). Without this
removal, max range endpoint is overwritten with a non-zero
value of eol range start (line 2), and as a result, the new if
conditional “if (max range endpoint)” cannot successfully pre-
vent the problematic call to xzalloc.

This simple example demonstrates the complexity of multi-
line repairs fixing multiple buggy locations. The key diffi-
culty is that a change made in one location can also change
the remaining program execution that should proceed to be
repaired. More conceptually speaking, the fix space of a
given buggy program keeps changing along with the program
change made at each buggy location. The state-of-the-art
search-based repair algorithm such as SPR [23] (also known
as the generate-and-validate methodology) is currently re-
stricted to fixing a single location. It is unclear, as stated in
[23], how a search-based repair algorithm can be extended
to fix multiple-location bugs such as the one shown in Fig-
ure 1a, while maintaining its efficiency. Meanwhile, among
the state of the art of semantics-based repair methodology
such as SemFix [26] and DirectFix [24], DirectFix already
supports multiple-location fix. Essentially, DirectFix main-
tains all semantic information of the program (in the form of
a logical formula), and this makes it possible to keep track
of how the fix space changes. Thus SemFix is more scalable
and applies one line fixes, while DirectFix is less scalable but
can produce multi-line fixes.

In this paper, we discuss how semantics-based repair can
scale, while preserving its ability to repair multiple locations.
Figures 1b–1d show at a high level how our repair algorithm
generates a repair from our running example. The gener-
ated repair shown in Figure 1d is functionally equivalent
to the developer-provided repair, despite its cosmetic differ-
ences. The first piece of a repair, “if (0)” in line 1, makes the
statement in line 2 skipped over, which is functionally equiv-
alent to removing the corresponding statement. The second
piece of a repair, “if (!(max range endpoint == 0))”, is also
functionally equivalent to the developer-provided repair, if

(max range endpoint). Here, the cosmetic difference is merely
due to our current implementation of the component-based
synthesis algorithm we use to synthesize a repair.

Our repair algorithm starts from transforming the original
buggy program into a functionally equivalent one shown in
Figure 1b where we add an if conditional, if (1), before each
unguarded assignment statement (this is heuristics we cur-
rently use). Afterwards, our repair algorithm replaces user-
configured n most suspicious expressions—chosen based on
the result of statistical fault localization—with symbolic vari-
ables, as shown in Figure 1c where conditional expressions
and the right-hand side of an assignment are replaced with
symbolic variables. The user of our repair algorithm can con-

1 − i f (max range endpoint < eol range start)
2 − max range endpoint = eol range start ;
3
4 − pr intab le f ie ld = xzalloc (max range endpoint/CHAR BIT+1);
5 + i f (max range endpoint)
6 + printab le f ie ld = xzalloc (max range endpoint/CHAR BIT+1);

(a) The developer-provided bug patch for coreutils bug 13627
where multiple locations are repaired

1 i f (max range endpoint < eol range start)
2 max range endpoint = eol range start ;
3
4 if (1)
5 pr intab le f ie ld = xzalloc (max range endpoint/CHAR BIT+1);

(b) The buggy version after semantics-preserving transformation
(the shaded part is added)

1 i f (α)
2 max range endpoint = β ;
3
4 i f (γ)
5 pr intab le f ie ld = xzalloc (max range endpoint/CHAR BIT+1);

(c) Suspicious expressions are replaced with symbolic variables

1 i f (0)
2 max range endpoint = eol range start ;
3
4 i f (! (max range endpoint == 0))
5 pr intab le f ie ld = xzalloc (max range endpoint/CHAR BIT+1);

(d) A repair generated from our repair algorithm; expressions in
the shaded areas are synthesized from our repair tool, Angelix.

Figure 1: Motivating example

figure the number and kinds of suspicious expressions that
can be made symbolic; such expressions include conditional
expressions, right-hand sides of assignments, and function
parameters. Our repair algorithm proceeds to run symbolic
execution over the program in Figure 1c with provided tests
to collect the semantic information necessary to repair the
given buggy program. Using this extracted semantic infor-
mation, we synthesize repair expressions. To synthesize a
repair, we use component-based patch synthesis algorithm
based on MaxSMT as in our prior work [24]. This results in
a repair close to the original program, because the structures
of the original buggy expressions are maximally preserved.
The resultant small patches can bring in various benefits
such as improved maintainability of patches (simple patches
are easier to understand than complex patches), and reduced
risk for regression (simple patches are less likely to change
the correct behavior than complex patches).

2.1 Concise Semantic Signature for Repair
In order to synthesize a repair, our repair algorithm col-

lects the following pieces of semantic information of the pro-
gram. First, we need to know whether for each test, there
exists a program path through which a given test passes.
Our repair algorithm detects such test-passing paths via con-
trolled symbolic execution—“controlled” in the sense that we
control which execution paths are explored during symbolic
execution by installing symbolic variables (in our example,
α, β, and γ). In our running example, given a program
of Figure 1c, symbolic execution explores different paths at
the if conditionals in line 1 (if (α)) and line 4 (if (γ)). If a
test-passing path is not detected, we make the next (user-
configured) n suspicious expressions as symbolic, and repeat
the procedure to find test-passing paths. On the other side,
the existence of a test-passing path π that goes through the
installed symbols implies the existence of a concrete value
for each symbol that makes the test pass. As the second
piece of semantic information, we infer these values (called
angelic values) using a constraint solver. Lastly, we need
to know the program state (called angelic state) at each in-
stalled symbol in the test-passing path. For example, in
order to synthesize a repair expression, !(max range endpoint

== 0), at line 4 of Figure 1d, the value of the variable
max range endpoint should be known. Our repair algorithm
collects the values of the visible program variables at each
symbol-installed program location. These variables are used
as synthesis ingredients when synthesizing repair expres-

sions. The following shows the semantic signature of our
running example when two tests (t1 and t2) are provided.

t1 : {π1 : 〈(α, False, σ1), (γ, False, σ2)〉,
π2 : 〈(α, True, σ3), (β, 0, σ4), (γ, False, σ5)〉}

t2 : {π3 : 〈(α, False, σ6), (γ, True, σ7)〉,
π4 : 〈(α, True, σ8), (β, 3, σ9), (γ, True, σ10)〉},

where ti referes to a test, πi denotes a test-passing path,
and σi : V ariables→ V alues denotes an angelic state.

The preceding semantic signature—which we call an an-
gelic forest as defined in Definition 3—concisely captures all
three pieces of semantic information we need to synthesize
a repair. First, the fact that there exist two execution paths
(π1 and π2) that make test t1 pass is encoded in t1 : {π1, π2}.
Similarly, test t2 can also pass in two execution paths, π3

and π4. Note that the suggested repair shown in Figure 1d
follows path π1 in test t1, and π3 in t2. Second, the concrete
value of each symbol is denoted at each test-passing path.
For example, in path π1, symbol α and γ should have value
False, as denoted with π1 : 〈(α, False), (γ, False)〉. The con-
crete value of symbol β does not appear because statement
max range endpoint = β of Figure 1c is not executed in path
π1. Meanwhile, in path π2, the values of all three symbols
appear as denoted with π2 : 〈(α, True), (β, 0), (γ, False)〉.
Lastly, angelic state σi informs about the values of variables
to use in repair synthesis. The same variable can have dif-
ferent values along a path, and that is why each instance
of a symbol is associated with its own angelic state. In our
coreutils example, σ2(max range endpoint) is zero, and this is
why the suggested repair expression, !(max range endpoint ==

0), returns the concrete value of γ, False, as specified in π1.

2.2 Reasons for Scalability
As will be shown in the experimental results (Section 5),

our repair method can handle programs as large as wire-
shark (2814 KLoC), while it generates multi-location re-
pairs. There are multiple reasons why our repair method
scales. First, we use a lightweight semantic signature for
program synthesis. Compare our semantic signature with
the one used in DirectFix [24] which can also synthesize
multi-location repairs. The semantic signature used in Di-
rectFix is essentially the semantics of the whole program.
There, the relationship between each and every expression
appearing in the program is maintained, unlike in our new

semantic signature. As a result, the semantic signature of
DirectFix becomes more lengthy and complex, as the size
of the program increases. It it important to note that the
semantic signature is the specification for repair synthesis
in the sense that a synthesized repair should respect the
provided semantic signature, as explained with our running
example. Our lightweight semantic signature reduces the
burden of the repair synthesizer, resulting in more efficient
repair synthesis.

Second, our repair algorithm performs controlled symbolic
execution with a few selected suspicious expressions, instead
of usual symbolic input. Using this controlled symbolic ex-
ecution, we explore only a restricted number of feasible ex-
ecution paths involving only the selected few suspicious ex-
pressions. Also, we initially perform symbolic execution only
with a subset of the provided test-suite to reduce the running
time of symbolic execution. Only when some of remaining
tests fail with the synthesized repair, we perform additional
symbolic execution with these failing tests.

Lastly, our repair algorithm initiates repair synthesis only
when there exists an angelic forest—the semantic signature
for repair. The absence of an angelic forest for a chosen n
suspicious locations implies that it is not possible to repair
the bug by changing these n locations. Symbolic execution
finds an angelic forest (or proves the absence of an angelic
forest) efficiently by exploring only feasible execution paths.
Our repair algorithm does not waste the resources to syn-
thesize a repair if there is no angelic forest.

We note that each of these afore-listed techniques is the
improvement or extension of earlier work by us and oth-
ers. As already mentioned, our novel lightweight program-
size-independent semantic signature is the improvement of
the heavyweight semantic signature used in our prior work
DirectFix [24]. We also mention that the controlled sym-
bolic execution was first introduced in our prior work, Sem-
Fix [26], although there a symbol is installed only at one
location, and as a result, multi-location repair was not pos-
sible. Lastly, our repair strategy to ignore repair-wise in-
feasible suspicious locations has a similarity with Nopol [8]
and SPR [23]. While detailed comparison will be provided
in Section 8, Nopol and SPR currently cannot fix multi-
location bugs. Furthermore, multi-location fix seems fun-
damentally difficult in Nopol and SPR, due to their weaker
semantic signatures that do not capture the dependence be-
tween multiple program locations. The unique combination
of our novel semantic signature with the existing techniques
enables scalable multi-location bug fixing.

3 Background
We use techniques and tools for Partial Maximum Sat-

isfiability Modulo Theories for our repair algorithm. First,
Satisfiability Modulo Theories (SMT) is a problem of finding
a satisfying assignment of a given a logical formula with re-
spect to the provided background theories. Partial MaxSMT
(pMaxSMT) for two sets of SMT clauses (soft and hard) is a
problem of finding an assignment of the variables that sat-
isfy all hard clauses and maximum possible number of the
soft clauses.

To synthesize a patch, we use component-based repair syn-
thesis algorithm (CBRS) [24] which is a generalization of
component-based program synthesis [17] to program repair.
In CBRS, a component is a variable, a constant or a term
over components and operations defined in the given back-

ground theory; e.g., 1, x, (∗1 + ∗2), and (if ∗1 then ∗2 else ∗3)

where ∗i refers to the input to a component. An expression
is formed by connecting multiple components. For exam-
ple, the diagram in Figure 2 shows that expression x > y
is formed by connecting the following three components:
(∗1 > ∗2), x, and y. Each component c has one output cout

and one or more inputs cini . We denote the number of inputs
of a component c with NI (c). To represent the connection
between components, the input and output of components
are associated with distinct variables called location vari-
ables. For example, input cini is associated with its location
variable lcini , and output cout with lcout . Two components
are considered connected if and only if the location variable
of one component has the same value as the location variable
of another component.

To make sure that a synthesized expression is well-formed,
CBRS imposes a well-formedness constraint (φwpf) in which
C denotes the set of all available components:

φwpf
def
= φrange ∧ φcons ∧ φacyc

φrange
def
=

∧
c∈{v}∪C

(
0 ≤ lcout < |C| ∧

∧
k∈[1,NI (c)]

0 ≤ lcin
k < |C|

)
φcons

def
=

∧
(c,s)∈C×C,c 6=s

lcout 6= lsout

φacyc
def
=

∧
c∈C,k∈[1,NI (c)]

lcout > lcin
k

where the range constraint (φrange) places all components
inputs and outputs within a legal range, the consistency
constraint (φcons) ensures that the output of each compo-
nent has a distinct location, and the acyclicity constraint
(φacyc) prohibits cyclic connections. CBRS also imposes the
semantics constraint for each component, and the connec-
tions constraint (φconn) that connects location variables with
their corresponding components.

φconn
def
=

∧
(c,s)∈C×{v}∪C
k∈[1..NI (s)]

lcout = ls in
k ⇒ cout = sink

Lastly, structural constraints capture the structure of the
original buggy program. For example, the structural con-
staints for the expression x+ y are the following:

φstruct
def
= l+in

1 = lx out ∧ l+in
2 = lyout

To synthesize a patch for a buggy program using CBRS,
the structural constraints are passed to a Partial MaxSMT
solver as soft constraints and the rest of the constraints are
passed as hard constraints. Then, the solver finds a new
program that satisfies the synthesis specification and is syn-
tactically closest to the original buggy program.

4 Methodology
Our repair methodology consists of the following 4 steps:

(1) program transformation, (2) fault localization, (3) ex-
tracting a repair constraint, and (4) patch synthesis. In the
first step, we perform semantics-preserving program trans-
formation to expand the defect class our repair algorithm
can fix. For example, we showed in Section 2 that“if (1)”can
be added before each unguarded statement. More generally,
our repair framework is transparent to the addition of more

semantics-preserving program transformation schemes. In
the second step, we perform statistical fault localization. We
use the Jaccard formula [7], considered most effective for au-
tomated program repair according to [32]. Since our repair
algorithm modifies buggy expressions, we apply the Jaccard
formula at the expression level, instead of at the statement
level. The last two steps distinguish semantics-based repair
methods from search-based repair methods such as GenProg
and SPR. Semantics-based methods extract a repair con-
straint from the program under repair typically via symbolic
execution. This repair constraint acts as a specification to
guide program synthesis—so a patch satisfying the repair
constraint can be synthesized.

The key novelty of our repair method is our new lightweight
repair constraint that we call an angelic forest. The size of
this angelic forest is independent of the size of the program
under repair. This is the main reason why our new repair
method can scale. Our angelic forest, despite its simplic-
ity, contains enough semantic information to enable multi-
location bug fix. In the following, we formally define our
angelic forest (Definition 3) based on the definition of an an-
gelic value (Definition 1) and an angelic path (Definition 2).

Definition 1 (Angelic Value [6]). Let P be a pro-
gram, t be a failing test case, e be a program expression and
ek be its k-th appearance in the execution trace of t. Angelic
value α is such that replacing expressions ek with α during
the execution of t in the trace makes P pass test t.

Definition 2 (Angelic Path). Let E be a set of pro-
gram expressions of program P , and t be a test case for P .
An angelic path π(t, E) is a set of triples (ek, v, σ) where ek

is the k-th instance of an expression e ∈ E appearing in the
execution trace of test t, v is an angelic value of ek, and
function, σ : V ariables→ V alues, represents angelic state at
ek which is a mapping from visible variables at the location
of ek to their values. For these triples (ek, v, σ) in an an-
gelic path π(t, E), the following property holds: replacing all
ek in an angelic path with their corresponding angelic val-
ues v makes (1) program P passes the test t and (2) visible
variables x at the location of ek have values σ(x).

Definition 3 (Angelic Forest). Let E be a set of
program expressions of program P , and t be a test case for
P . Angelic forest At for test t is a collection of angelic paths
{π1(t, E), . . . , πn(t, E)}.

4.1 Angelic Forest Extraction
We extract an angelic forest via controlled custom sym-

bolic execution – “controlled” in the sense that instead of
initiating symbolic execution with symbolic input, we in-
stall symbols at a few suspicious program locations—chosen
based on a statistical fault localization result—to control the
execution paths to be explored during symbolic execution.
Algorithm 1 shows how we extract an angelic forest. Per-
forming controlled symbolic execution produces a pair of a
path condition pc and an actual output Oa of the program
(line 3). Given the expected output Oe available in the test,
we find a model of pc∧Oa = Oe (i.e., model M in line 6) via
a constraint solver. This model is used to extract an angelic
path, and thereafter grow the angelic forest (line 7). Recall
that an angelic forest is a set of angelic paths, each of which
is a set of triples consisting of an instance of a suspicious ex-
pression ek, its angelic value (the value ek should return to

Algorithm 1 Angelic forest generation

Input: program P , test case (I,Oe)
Input: a set of suspicious expressions E
Output: angelic forest A
1: while there is an unexplored path ∧ ¬timeout do
2: // perform controlled symbolic execution
3: (pc,Oa)← ControlledSymExe(I, E)
4: R ← pc ∧Oa = Oe
5: if R is satisfiable then
6: M ← GetModel(R) // via a constraint solver
7: A← A ∪ ExtractAngelicPath(M)
8: end if
9: end while

10: return A

Algorithm 2 Our custom symbolic execution

Input: ek is a k-th instance of expression e
Input: a set of suspicious expressions E
Input: σsym : Variables → ConcreteValues ∪ SymbolicValues

Output: the concrete/symbolic value of expression ek

1: function EvaluateExpr(ek, E, σsym)

2: if ek ∈ E then // if ek is suspicious
3: for x ∈ visible variables at the location of ek do
4: AddToPathCondition(xJekK == σsym(x))
5: end for
6: // install a symbol for ek

7: return NewSymbolicVariable(ek)
8: else// if ek is not suspicious
9: // Evaluate ek as usual

10: return EvaluateExprConventionally(ek, σsym)
11: end if
12: end function

pass the test), and angelic state σ at ek, that is, a mapping
from visible variables at the location of ek to their values.

Since the conventional symbolic execution can neither in-
stall symbols for chosen suspicious expressions nor maintain
the angelic states of suspicious expressions, we extend the
conventional symbolic execution, as shown in Algorithm 2.
In our custom symbolic execution, symbols are installed dur-
ing symbolic execution by replacing the value of each in-
stance of a suspicious expression with a fresh symbol (line 7).
If a given ek is not a suspicious expression, our custom sym-
bolic execution evaluates ek in the same way as in the con-
ventional symbolic execution (line 10). In addition, we main-
tain the angelic states of suspicious expressions by augment-
ing the path condition (line 4). For each visible variable x at
the location of ek (the k-th instance of suspicious expression
e), we extend the path condition with xJekK == σsym(x),
where xJekK represents the variable x in the context of ek,
and σsym(x) the concrete/symbolic value of x evaluated dur-
ing symbolic execution. Solving the resultant augmented
path conditions via a constraint solver produces an angelic
forest. We implement our custom symbolic execution on top
of KLEE [4].

4.2 Patch Synthesis
Once an angelic forest is obtained, we feed it to our repair

synthesizer as a synthesis specification. More specifically, a
synthesized repair, when executed, follows one of the angelic
paths for each test, thereby all tests pass. In these angelic
paths, each repaired expression returns its corresponding an-
gelic value specified in the corresponding angelic path.

Our repair synthesizer is an implementation of component-
based repair synthesis (CBRS) described in Section 3. CBRS

yout

x y >

>in
2 >out

•

>in
1

≥
xout

Input
Output

x y

2 1 True

2 2 False

1 2 False

Figure 2: The circuit diagram on the left represents expres-
sion x > y which satisfies the specification shown on the right
as a table. Unconnected components are ignored.

Table 1: The example of an angelic forest

Path k xJekK yJekK Angelic

1
1 2 1 True

2 2 2 False

2 1 1 2 False

views a program as a circuit of primitive components such
as variables and operators. For example, the circuit dia-
gram of Figure 2 shows the circuit for a program expression
x > y. The boxes and lines represent components and con-
nections, respectively. The goal of CBRS, given an original
buggy program, components, and a specification of the pro-
gram to be synthesized, is to search for connections between
components that (1) satisfy the given specification and (2)
minimally differ from the connections of the original buggy
program. As an example, consider a buggy expression x ≥ y.
The table of Figure 2 shows the desired specification for the
expression, and CBRS modifies the connection of the vari-
ables x and y from the component ‘≥’ to the component ‘>’,
because x > y satisfies the given specification.

The specification of CBRS is provided in the form of an
angelic forest extracted by Algorithm 1. Table 1 shows an
example of an angelic forest. For simplicity, only one expres-
sion e is considered suspicious in this example (the extension
to multiple expressions is straightforward). The first two
columns of the table show a path ID and the instance ID of
e, respectively. In this example, Path 1 executes expression
e twice (that is, k is either 1 or 2), while Path 2 executes e
only once. The angelic forest includes two visible program
variables, x and y, as the program state at the suspicious lo-
cation. The values of these variables are shown in the xJekK
and yJekK columns. Notation xJekK represents the variable x
in the context of ek, the k-th instance of e. The last column,
Angelic, shows the angelic value of ek.

CBRS performs the search for connections using a con-
straint solver. Given our example angelic forest, we generate
the following constraint:(

xJe1K = 2 ∧ yJe1K = 1 ∧ e1 = True ∧

xJe2K = 2 ∧ yJe2K = 2 ∧ e2 = False
)

∨
(
xJe1K = 1 ∧ yJe1K = 2 ∧ e1 = False

)
More generally, we generate the following constraint, given

an angelic forest {πi(t, E)} (recall that each angelic path
πi(t, E) in an angelic forest is a set of triples (ek, v, σ)):

∨
πi(t,E)

∧
(ek,v,σ)

((∧
x∈dom(σ)

xJek K = σ(x)
)
∧ ek = v

)
,

where v is the angelic value of ek, and dom(σ) refers to the
domain of σ, the mapping from the visible variables at the
location of ek to their values.

There can be multiple patches satisfying a given repair
constraint. In such cases, CBRS finds a patch requiring
minimal changes by using MaxSMT solver. The ability to
maximally preserve the original source code is important for
two reasons. First, our hypothesis is that such a minimal
patch would be preferred by developers. Minimal patches
are easier to validate and they are less likely to change the
correct behavior of the original program than more complex
patches as demonstrated in [24]. Second, when synthesizing
a repair for multiple suspicious expression, MaxSMT-based
repair serves as fault localization, that is the repair algo-
rithm simultaneously identifies which expressions to modify
and how to modify them. Without this property, synthesizer
would always modify all the suspicious expressions making
milti-location repair not practical due to the complexity of
patches. As will be shown in Section 5, this way of synthesis
provides higher-quality repairs than SPR.

4.3 Optimization
To control the number of symbolic execution sessions, we

use the following iterative approach. First, we start from a
small subset of the test suite that provides the highest cover-
age of the suspicious locations. Then, we infer angelic forest
for this reduced test suite and synthesize a patch. If the
generated patch causes a regression in the whole test suite,
we add the counter-example test to the test suite. We re-
peat these steps until all test cases become passing. Regard-
ing running time, there is one more advantage of semantics-
based methods. Contrasting to search-based methods where
the software under repair is rebuilt and retested frequently
due to a high number of repair trails, our semantics-based
method finds a repair in one or a small number of trials, and
the cost for rebuilding and retesting is significantly smaller.

Because of type coercion and the absence of a separate
boolean type in C programming language, it is difficult to
distinguish between types of program expressions. On the
other side, knowing precise types increases the probability
of synthesizing correct repair as well improves the synthe-
sis performance. For this reason, we analyze the usage of
suspicious expression and visible variables to collect type
constraints. Then, these type constraints are used to infer
more precise types for program expressions and variables.
As an example, we assign a boolean type to the expressions
used as if conditions.

4.4 Soundness and Completeness
While the size of an angelic forest independent of the size

of the program, it also under-approximates the fix space—
that is, it cannot capture whole (possibly infinite) set of
values for the suspicious expressions that make the test pass.
Our repair method based on an angelic forest is sound in the
sense that the repair obtained by our repair method indeed
passes all the provided tests. However, our repair method
is incomplete in the sense that it may not produce some
repairs, due to the under-approximation of angelic values
used in an angelic forest, that can otherwise be synthesized.

5 Experimental Results
We evaluate our repair method to answer the following

two research questions.

RQ1. Can our repair method generate repairs from large-
scale real-world software?

RQ2. Can our repair method fix multi-location bugs?

5.1 Experimental Subjects
The first 4 columns of Table 2 show our subject programs,

the size of each program in LoC, and the number of tests and
buggy versions of each subject (in the Tests and Versions
columns, respectively). Our subjects are taken from the
GenProg ICSE2012 benchmark [13]. These subjects have
been also used in the literature to evaluate other repair tools
such as GenProg [14] and SPR [23]. In particular, wireshark
and php are among the largest subjects in the benchmark.
We use these large subjects to evaluate the scalability of our
repair method. We omit three subjects of the benchmark
(python, lighttpd, and fbc) because we could not run these
subjects on KLEE [4]. KLEE currently cannot support all
library functions. Note that this limitation of KLEE is or-
thogonal to our repair approach.

We use the same subjects to evaluate our second research
question, i.e., multi-location repairability. Furthermore, in
addition to these subjects in the GenProg benchmark, we
add 3 multi-location bugs extracted from CoREBench [3] to
our subject list. The reason we added multi-location bugs
additionally is that the GenProg benchmark does not have
many multi-location bugs in the fix space of our tool. We
describe the defect class of our repair tool in Section 5.4.

5.2 Tests and the Correctness of Patches
The “Tests” column of Table 2 shows the number of tests

of each subject in the GenProg benchmark. We rectified the
original test scripts delivered in the GenProg benchmark to
address the problems pointed out in [33] such as the weak
proxy problem. Meanwhile, each coreutils version available
in CoREBench contains a failing test that can reproduce
the defect. We use these failing tests and the existing tests
available in the subject. All the repairs generated from our
tool are manually inspected for its correctness. We consider
a repair correct only if the generated patch is functionally
equivalent to the developer-provided patch.

5.3 Experimental Configurations
Our repair tool allows to control the following parameters

of our repair algorithm — the maximum number of suspi-
cious locations that can be repaired at the same time, the
kinds of suspicious expressions, and the kinds of (semantics-
preserving) program transformation.

First, for the maximum number of suspicious locations, we
used the value between 1 and 10 (inclusive). Second, for the
kinds of suspicious expressions, we used the following three
levels. A higher level is more inclusive. At the lowest level,
we allow only conditional expressions to be considered suspi-
cious. At the next level, we also consider the right-hand side
expressions of assignment statements. At the highest level,
we also consider function parameters. At all levels, only side-
effect/function-call free expressions are considered. Lastly,
for the semantics-preserving program transformation, we al-
low to add“if (1)”before each unguarded statement. We also
allow to add“if (0) break;” at the end of a loop body to be able
to produce a repair requiring to break a loop. We provided
our tool with the names of buggy source code files (which are
known through developer-provided fixes), as in the previous
studies [14, 23, 40]. All our experiments were performed on
Intel Xeon E5-2660 2.20GHz CPU with Ubuntu 14.04 64-bit

operating system. We used 12 hours as the timeout of each
repair session.

5.4 Defect Class
As pointed out in [25], defining defect classes supported

by a repair algorithm helps evaluate the efficacy of a repair
algorithm (how effectively bugs in the target defect class
can be repaired), and compare multiple repair algorithms
one another (which repair algorithm generates repairs more
effectively for the target defect class). The defect class of
our repair algorithm can easily be defined in terms of the fix
that can be synthesized. Our repair tool can synthesize side-
effect/function-call free expressions that can be composed
of boolean/arithmetic/relational operators, variables avail-
able, and constants. Also, by using semantics-preserving
program transformation (i.e., adding if (1) before unguarded
statements), fixes requiring statement deletion is effectively
included in our defect class, as shown with the motivating
example in Section 2. However, our repair tool currently
cannot add a new statement/variable. The “W/I Our De-
fect Class” column of Table 2 shows the number of defects
of each subject that are in our defect class. We manually
inspected each developer-provided fix to check whether the
corresponding defect is in our defect class or not. Although
there can be other possible fixes different from a developer-
provided fix, it is infeasible to consider all unknown possible
fixes. Thus, we additionally only inspected fixes from other
repair tools (SPR, GenProg, and AE [40]) and ours. The
number of defects within our defect class is less than the
number of buggy versions (shown in the “Versions” column),
because some bug fixes in the benchmark require adding new
statements/variables.

5.5 Results from the GenProg Benchmark
Table 2 shows our results from the GenProg benchmark.

The first five columns are already explained earlier, and
self-explanatory. We only mention that subjects of the ta-
ble are sorted by their sizes. The “Fixed Defects” column
shows the number of fixed defects by our tool, Angelix,
and other tools—SPR, GenProg, and AE. Similarly, the
“Equiv. to Developer Fixes” column shows the number of
fixes functionally-equivalent to the developer-provided fixes
out of the fixed defects. The results from other tools (SPR,
GenProg and AE) are taken from [23]. Lastly, “Time” col-
umn shows the average running time of our tool for each sub-
ject, when repairs were found. The running time of the other
tools are available in their respective papers [14, 23, 40],
although each tool is experimented on a different type of
machine.

In all subjects with different sizes between 77 KLoC and
28214 KLoC, our tool successfully generated repairs for some
defects. Our tool generated repairs for most defects in our
defect class (28 out of 32), and more than third of these re-
pairs (10 out of 28) are functionally equivalent to developer-
provided repairs. Three defects in our defect class were
not fixed due to imprecise statistical fault localization (e.g.,
buggy initialization of a global variable was not ranked high).
One remaining defect requires modifying a string value (a
character sequence) in a way that cannot be handled by our
current solver (the length of the string should change in a
fix). As shown in the Time column, the average running
time of our repair tool is about half an hour, when a repair
is found.

Table 2: Experimental results

Subject LoC Tests Versions
W/I Our

Defect Class
Fixed Defects Equiv. to Developer Fixes Time

(min)Angelix SPR GenProg AE Angelix SPR GenProg AE

wireshark 2814K 63 7 4 4 4 1 4 0 0 0 0 23

php 1046K 8471 44 12 10 18 5 7 4 8 1 2 62

gzip 491K 12 5 2 2 2 1 2 1 1 0 0 4

gmp 145K 146 2 2 2 2 1 1 2 1 0 0 14

libtiff 77K 78 24 12 10 5 3 5 3 1 0 0 14

Overall 82 32 28 31 11 19 10 11 1 2 32

Table 3: The number of defects exclusively repaired by each
repair tool across the subjects

Subject Angelix SPR GenProg AE

wireshark 0 0 0 0

php 0 4 0 0

gzip 1 0 0 0

gmp 0 0 0 0

libtiff 5 0 0 0

Overall 6 4 0 0

Angelix, an implementation of our new semantics-based
repair algorithm, successfully generates repairs from 5
real-world software as large as 77–28214 KLoC in 32 min-
utes on average. This result shows that a semantics-based
repair can scale.

Angelix fixed 2 multi-location bugs of the GenProg bench-
mark. We show these results along with the results from the
multi-location bugs of coreutils in Section 5.6.

5.5.1 Comparison with Other Repair Tools

Repairability. When compared with the state-of-the-art
repair tool, SPR, our tool shows higher repairability (more
defects are repaired in our tool) in libtiff (10 vs 5), and lower
repairability in php (10 vs 18). In the remaining 3 sub-
jects, both tools shows the same repairability. This varying
repairability across the subjects is related to the different
defect classes of Angelix and SPR. For example, the de-
fect class of SPR contains inserting a function call such as
memset, and 5 php defects are included in this defect class.
Meanwhile, Angelix can fix multiple buggy locations, and
two libtiff multi-location defects are exclusively fixed by our
tool. More generally, Table 3 shows the number of defects
exclusively repaired by each repair tool across the subjects.
Our tool produced the most number of unique repairs, as
compared to SPR, GenProg and AE.

Repair Quality. We also qualitatively compare the re-
pairs from Angelix and SPR. Figure 3 shows a buggy loca-
tion of libtiff-d13be72c-ccadf48a in (a), the repair generated
by our tool in (b), and the repair generated by SPR in (c).
The difference between the original code and each repair
is shaded. The SPR repair looks problematic, because it
simply deletes functionality by disabling the block of code

1 i f (td−>td nstr ips > 1
2 && td−>td compression ==COMPRESSIONNONE
3 && td−>td stripbytecount [0] != td−>td stripbytecount [1])

(a) The buggy location of libtiff-d13be72c-ccadf48a

1 i f (td−>td nstr ips > 2
2 && td−>td compression ==COMPRESSIONNONE
3 && td−>td stripbytecount [0] != td−>td stripbytecount [1])

(b) The repair generated by our tool, Angelix

1 i f (td−>td nstr ips > 1
2 && td−>td compression ==COMPRESSIONNONE
3 && td−>td stripbytecount [0] != td−>td stripbytecount [1]
4 && !(1))

(c) The repair generated by SPR

Figure 3: Comparison between repairs from Angelix and
SPR

Table 4: The number of functionality-deleting repairs

Subject
Angelix SPR

Fixes Del Per Fixes Del Per

wireshark 4 1 25% 4 1 25%

php 10 3 30% 18 7 39%

gzip 2 0 0% 2 1 50%

gmp 2 0 0% 2 0 0%

libtiff 10 2 20% 5 4 80%

Overall 28 6 21% 31 13 42%

in the then branch. Indeed, this patch is not functionally
equivalent to the developer-provided patch. Still, such an
overfitting repair [38] (an incorrect repair that merely passes
the provided tests) can be helpful in debugging, because the
user can at least see that the (incorrectly) repaired if condi-
tional may be buggy. However, compare this SPR repair to
the repair generated by our tool shown in Figure 3b. Our
repair spots the buggy location more precisely down to “td-
>td nstrips > 1”. This is because our repair tool generates a
repair that is close to the original buggy expression by using
a MaxSMT solver. As a result, a problematic buggy loca-
tion can be pinned down more precisely. In fact, our repair
is identical with the developer-provided repair in this case.

Incorrect repairs that merely delete functionality are com-
mon in SPR repairs. Table 4 compares the number of repairs

Table 5: Experimental results for multi-location defects.

Defect
Fixed

Expressions

libtiff-4a24508-cc79c2b 2

libtiff-829d8c4-036d7bb 2

coreutils-00743a1f-ec48bead 3

coreutils-1dd8a331-d461bfd2 2

coreutils-c5ccf29b-a04ddb8d 3

that delete functionality between our tool and SPR. In each
tool (the “Angelix” and “SPR” column, respectively), we list
the number of fixes generated in each tool (the Fixes col-
umn), the number of functionality-deleting fixes (the Del col-
umn), and the percentage of functionality-deleting fixes out
of generated fixes (the Per column). In five subjects used in
our experiments, 42% of SPR-generated repairs delete func-
tionality, and in the libtiff subject, the percentage goes up to
80%. Even if the three omitted subjects (python, lighttpd,
and fbc) are also considered, the percentage of functionality
deleting repairs stays even at a high rate of 45%. Gen-
Prog and AE also often generate functionality-deleting re-
pairs, as reported in [33]. In comparison, Angelix generates
functionality-deleting repairs less frequently (21%).

Angelix is not only scalable but also less frequently gener-
ates functionality-deleting repairs than the existing tools
such as SPR and GenProg.

5.6 Results from Multi-Location Bugs
Table 5 shows the experimental results for multi-location

defects of the GenProg benchmark and coreutils. The“Fixed
Expressions” column shows the number of expressions fixed
by our tool. Angelix produced a repair functionally equiv-
alent to the developer-provided one for coreutils-00743a1f-
ec48bead. Meanwhile, in coreutils-1dd8a331-d461bfd2, while
two conditional expressions are repaired in a functionally
similar way to the developer patches, the output message is
not corrected in our repair, because this message is not part
of the the oracle in the tests used for repair. In coreutils-
c5ccf29b-a04ddb8d, the developer-provided repair uses func-
tion calls that are not used in our repair.

We note that the number of defects covered by our multi-
location defect class is limited at least in the two benchmarks
we investigated (the GenProg benchmark and CoREBench).
Many developer-provided fixes for multi-line defects involve
adding new variables, statements, and functions. We believe
that the research in automatic patching should be developed
into such more sophisticated patches, and our multi-location
defect class is on the pathway toward such a direction. To
the best of our knowledge, only our repair tool can currently
generate (non-functionality-deleting) fixes for multi-location
bugs in large-scale real-world software.

6 Experience with the Heartbleed Bug
We applied our repair tool to a buggy version of OpenSSL

(OpenSSL-1.0.1-beta1) that has the infamous Heartbleed
bug. Heartbleed is considered one of the most dangerous in
the annals of security vulnerabilities, because attackers can

1 i f (hbtype == TLS1 HB REQUEST) {
2 . . .
3 memcpy (bp, pl , payload) ;
4 . . .
5 }

(a) The buggy part of the Heartbleed-vulnerable OpenSSL

1 i f (hbtype == TLS1 HB REQUEST
2 && payload + 18 < s->s3->rrec.length) {
3 /∗ receiver side : rep l i es with TLS1 HB RESPONSE ∗/
4 }

(b) A fix generated by our tool, Angelix

1 if (1 + 2 + payload + 16 > s->s3->rrec.length)
2 return 0;
3 . . .
4 i f (hbtype == TLS1 HB REQUEST) {
5 /∗ receiver side : rep l i es with TLS1 HB RESPONSE ∗/
6 }
7 else i f (hbtype == TLS1 HB RESPONSE) {
8 /∗ sender side ∗/
9 }

10 return 0;

(c) The developer-provided repair

Figure 4: The Heartbleed bug and their fixes

exploit Heartbleed to steal important confidential data, in-
cluding login cookies, passwords, and private cryptographic
keys, without leaving a trace from numerous servers depend-
ing on OpenSSL to run their services. We report that we
could automatically fix the Heartbleed bug using our repair
tool. To the best of our knowledge, this is the first work
that reports the automated repair on Heartbleed.

The Heartbleed bug is an instance of a buffer over-read
(CWE-126), one of common weakness of C/C++ programs.
Exploiting this weakness, attackers can read beyond the re-
gion of a buffer that is originally intended by the program-
mers. Figure 4a shows where this weakness exists in the
Heartbleed-vulnerable OpenSSL. The main culprit is mem-

cpy(bp, pl, payload) (line 3) where attackers can assign pay-

load (the third parameter of memcpy that sets the number of
bytes to copy from the target memory region) a larger value
than the size of buffer pl, the target memory region. The
programmer of OpenSSL made a (common) mistake of not
putting a bounds check before this problematic memcpy.

We applied Angelix to OpenSSL for repairing the Heart-
bleed bug. We obtained tests from [2], and added four more
tests to cover missing corner cases. Figure 4b shows the
fix generated by our tool in the shaded area. With this
fix, memcpy cannot be invoked if payload is larger than is al-
lowed by the TLS/DTLS network protocol (the buggy code
of OpenSSL is the implementation of these protocols). Our
repair synthesizer could compose this repair with payload and
s->s3->rrec.length, both of which are in the scope at the fixed
if conditional (they appear in the other parts of the buggy
function). In comparison, the developer-provided repair is
shown in the shaded area of Figure 4c. In both repairs, the
failure of the bounds check, which is performed by the added
conditional, makes the receiver simply return zero, instead
of replying with a response packet. Based on our experience
with Heartbleed, we make the following assessment.

Automated repair techniques, such as Angelix, are power-
ful enough to fix some of well-known and serious software
vulnerabilities like Heartbleed.

7 Threats to Validity
Since we used for our experiments the subject programs

in the existing benchmark previously used to evaluate Gen-
Prog, AE, and SPR, the validity of our experimental results
are limited in the same way as for the results of the other
tools obtained using the same benchmark. That is, our re-
sults may not generalize to other subjects, although our re-
pair tool successfully generated repairs for a small number of
defects of Coreutils and OpenSSL. However, we note that the
GenProg benchmark we used for our experiments is one of
the most extensive one available in the literature (the Many-
Bugs benchmark [15] has also been released very recently as
an extension of the GenProg benchmark). Meanwhile, our
results can be affected by the configuration of our tool (e.g.,
the maximum number of suspicious locations). However,
given the pervasiveness of cloud computing environments
such as Amazon EC2, this threat related to tool configura-
tion does not seem as severe as traditionally believed, since
our tool can be run in parallel in the cloud, with each node
being assigned a different tool configuration.

8 Related Work
GenProg [14] performs search based repair through ge-

netic programming algorithm. It is the first general-purpose
program repair tool that showed the defects of large-scale
real-world software can be automatically fixed. Subsequently,
RSRepair [31] and AE [40] replace the genetic program-
ming algorithm of GenProg with random search and adap-
tive repair search strategies, respectively. While these repair
methods scale well, a recent study [33] revealed that the
quality of the repairs generated from these tools are quite
poor—the majority of these repairs simply delete function-
ality. While PAR [21], another search-based repair tool, uses
human patch templates to improve the repair quality, and
validates its improved repair quality through a user study.
However, as argued by [25], the results of the user study
on PAR in fact only shows that PAR repairs more resem-
ble human patches than GenProg repairs (because repairs
are generated through human patch templates). The latest
search-based repair tool, SPR [23], more often generates re-
pairs that are functionally equivalent to developer-provided
repairs than its preceding search-based repair tools, by tak-
ing into account the (partial) semantics of conditionals, that
is, the branches that should be taken to pass the tests. How-
ever, we found that SPR still generates many functionality-
deleting repairs, because it often generates trivial branch
conditions such as if (... && !(1)). As reported earlier, about
half of the reported SPR repairs (45%) delete functionality.

Meanwhile, semantics based repair methodology has shown
its promise in its high quality of repairs. The first ap-
proach towards semantics based program repair was Sem-
Fix [26] where a combination of symbolic analysis and con-
straint solving was proposed to produce one line fixes. Di-
rectFix [24] used a MaxSMT solver to synthesize minimal
changes to the program which make the program pass all
tests. DirectFix removed the one-line-fix restriction of Sem-
Fix, and yet gave an approach which is substantially less
scalable than SemFix. Our new repair tool addresses this
scalability problem, while retaining the ability to produce
multi-line fixes. While the key enabler for scalability is our
novel repair constraint representation (i.e, angelic forest),
we also capitalize on the techniques successfully used in our
previous work SemFix [26], such as controlled symbolic ex-

ecution. This makes the Angelix repair tool very scalable,
while generating high quality multi-line repairs.

Nopol [8] uses an angelic value to synthesize a repair, sim-
ilar to Angelix. However, the expressiveness of our angelic
forest is substantially larger than the one of an angelic value.
Consequently, Angelix can repair more bugs than Nopol.
For example, Nopol cannot repair if-conditionals whose fix
should take different directions at different times during
execution, because a single angelic value is not expressive
enough to capture such a repair requirement. Meanwhile,
SPR [23] maintains a sequence of angelic values of a con-
ditional expression, instead of a single angelic value. As
a result, SPR can handle a broader class of defects than
Nopol. However, it cannot fix multi-location bugs whose fix
often requires information about dependence between multi-
ple suspicious locations, which cannot be captured only with
sequences of angelic values. Even for single-location bugs,
SPR often generates functionality-deleting repairs. Further-
more, even when functionality is not deleted, SPR often gen-
erates templated repairs such as if (... || regex len == 42),
which may work only for a specific test, and break for fresh
input not covered by the existing tests. On the contrary, our
MaxSMT-based repair synthesizer often synthesizes a repair
close to the original buggy expression.

Apart from general-purpose repair tools like ours, there
are also other repair approaches targeted for specific types
of defects (e.g., buffer overflow) or specific application do-
mains (e.g., web applications) [5, 9, 11, 18, 27, 30, 35–37].
Also, many previous works assume the existence of formal
specification or contracts [10, 12, 16, 19, 22, 29, 34] unlike
test-driven approaches such as ours. Lastly, MintHint [20]
suggests a repair hint instead of a patch by allowing some
tests to remain failing and thereby performing statistical
analysis for a class of semi-repairs satisfying this relaxed re-
quirement.

9 Conclusion
In this paper, we have described how a semantics-based re-

pair method can scale to large-scale real-world software. The
key enabler for this scalability is our novel lightweight repair
constraint called ‘angelic forest’. We have shown through ex-
periments that our repair method successfully generate re-
pairs from various real-world software, including wireshark
and php, which are the largest programs to which automated
repair tools have been applied. Furthermore, on top of pro-
viding scalability, our repair method also produces higher
quality repairs than the existing scalable repair tools such
as SPR and GenProg; as compared to these existing tools,
our repair tool produced functionality-deleting repairs less
frequently in our experiments. We also have shown that
our repair tool successfully fixed multi-location bugs in real-
world software, which was not possible in the existing repair
tools. Last but not least, we have reported the successful
patching of the well-known Heartbleed bug, using our repair
tool.

ACKNOWLEDGEMENTS
We thank Shin Hwei Tan, Dipanjan Das and G Sri Shaila

for assisting in experiments. This research is supported in
part by the National Research Foundation, Prime Minister’s
Office, Singapore under its National Cybersecurity R&D
Program (Award No. NRF2014NCR-NCR001-21) and ad-
ministered by the National Cybersecurity R&D Directorate.

References
[1] The heartbleed bug. http://heartbleed.com, 2014.

[2] M. Bland. https://code.google.com/p/mike-bland/
source/browse/heartbleed/, 2015.

[3] M. Böhme and A. Roychoudhury. Corebench: Studying
complexity of regression errors. In ISSTA, pages 105–115,
2014.

[4] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for
complex systems programs. In OSDI, pages 209–224, 2008.

[5] M. Carbin, S. Misailovic, M. Kling, and M. C. Rinard.
Detecting and escaping infinite loops with Jolt. In ECOOP,
pages 609–633, 2011.

[6] S. Chandra, E. Torlak, S. Barman, and R. Bodik. Angelic
debugging. In ICSE, pages 121–130, 2011.

[7] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and
E. Brewer. Pinpoint: Problem determination in large,
dynamic internet services. In DSN, pages 595–604, 2002.

[8] F. Demarco, J. Xuan, D. L. Berre, and M. Monperrus.
Automatic repair of buggy if conditions and missing
preconditions with SMT. In CSTVA, pages 30–39, 2014.

[9] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H.
Perkins, and M. Rinard. Inference and enforcement of data
structure consistency specifications. In ISSTA, pages
233–244, 2006.

[10] B. Elkarablieh and S. Khurshid. Juzi: a tool for repairing
complex data structures. In ICSE, pages 855–858, 2008.

[11] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, and
H. Mei. Fixing recurring crash bugs via analyzing Q&A
sites. In ASE, pages 307–318, 2015.

[12] D. Gopinath, M. Z. Malik, and S. Khurshid.
Specification-based program repair using SAT. In TACAS,
pages 173–188, 2011.

[13] C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer.
GenProg ICSE2012 benchmark.
http://dijkstra.cs.virginia.edu/genprog/resources/
genprog-icse2012-benchmarks/, 2012.

[14] C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer.
A systematic study of automated program repair: Fixing
55 out of 105 bugs for $8 each. In ICSE, pages 3–13, 2012.

[15] C. L. Goues, N. Holtschulte, E. K. Smith, Y. Brun,
P. Devanbu, S. Forrest, and W. Weimer. The ManyBugs
and IntroClass benchmarks for automated repair of C
programs. IEEE TSE, 2015.

[16] H. He and N. Gupta. Automated debugging using
path-based weakest preconditions. In FASE, pages
267–280, 2004.

[17] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari.
Oracle-guided component-based program synthesis. In
ICSE, pages 215–224, 2010.

[18] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated
atomicity-violation fixing. In PLDI, pages 389–400, 2011.

[19] B. Jobstmann, A. Griesmayer, and R. Bloem. Program
repair as a game. In CAV, pages 226–238, 2005.

[20] S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso.
Minthint: Automated synthesis of repair hints. In ICSE,
pages 266–276, 2014.

[21] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch
generation learned from human-written patches. In ICSE,
pages 802–811, 2013.

[22] R. Könighofer and R. Bloem. Automated error localization
and correction for imperative programs. In FMCAD, pages
91–100, 2011.

[23] F. Long and M. Rinard. Staged program repair with
condition synthesis. In ESEC-FSE, 2015.

[24] S. Mechtaev, J. Yi, and A. Roychoudhury. Directfix:
Looking for simple program repairs. In ICSE, 2015.

[25] M. Monperrus. A critical review of “Automatic Patch
Generation Learned from Human-written Patches”: Essay
on the problem statement and the evaluation of automatic
software repair. In ICSE, pages 234–242, 2014.

[26] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and
S. Chandra. Semfix: Program repair via semantic analysis.
In ICSE, pages 772–781. IEEE Press, 2013.

[27] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator:
Automatically correcting memory errors with high
probability. Commun. ACM, 51(12):87–95, 2008.

[28] A. Orso and G. Rothermel. Software testing: A research
travelogue (2000–2014). In FOSE, pages 117–132, 2014.

[29] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and
A. Zeller. Automated fixing of programs with contracts.
IEEE Trans. Software Eng., 40(5):427–449, 2014.

[30] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe,
J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood,
S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin, M. D.
Ernst, and M. Rinard. Automatically patching errors in
deployed software. In SOSP, pages 87–102, 2009.

[31] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength
of random search on automated program repair. In ICSE,
pages 254–265, 2014.

[32] Y. Qi, X. Mao, Y. Lei, and C. Wang. Using automated
program repair for evaluating the effectiveness of fault
localization techniques. In ISSTA, pages 191–201, 2013.

[33] Z. Qi, F. Long, S. Achour, and M. Rinard. An analysis of
patch plausibility and correctness for generate-and-validate
patch generation systems. In ISSTA, pages 24–36. ACM,
2015.

[34] H. Samimi, E. D. Aung, and T. Millstein. Falling back on
executable specifications. In ECOOP, pages 552–576, 2010.

[35] H. Samimi, M. Schäfer, S. Artzi, T. Millstein, F. Tip, and
L. Hendren. Automated repair of HTML generation errors
in PHP applications using string constraint solving. In
ICSE, pages 277–287, 2012.

[36] S. Sidiroglou and A. D. Keromytis. Countering network
worms through automatic patch generation. IEEE Security
and Privacy, 3(6):41–49, 2005.

[37] A. Smirnov and T. cker Chiueh. Dira: Automatic
detection, identification and repair of control-hijacking
attacks. In NDSS, 2005.

[38] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun. Is the
cure worse than the disease? Overfitting in automated
program repair. In FSE, 2015.

[39] S. H. Tan and A. Roychoudhury. relifix: Automated repair
of software regressions. In ICSE, 2015.

[40] W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program
equivalence for adaptive program repair: Models and first
results. In ASE, pages 356–366, 2013.

