
Automated Path Generation for Software Fault Localization

Tao Wang
School of Computing

National University of Singapore

wangtao@comp.nus.edu.sg

Abhik Roychoudhury
School of Computing

National University of Singapore

abhik@comp.nus.edu.sg

ABSTRACT
Localizing the cause(s) of an observable error lies at the heart of
program debugging. Fault localization often proceeds by com-
paring the failing program run with some “successful” run (a run
which does not demonstrate the error). An issue here is to generate
or choose a “suitable” successful run; this task is often left to the
programmer. In this paper, we present an efficient technique where
the construction of the successful run as well its comparison with
the failing run is automated. Our method constructs a successful
program run by toggling the outcomes of some conditional branch
instances in the failing run. If such a successful run exists, pro-
gram statements for these branches are returned as bug report. In
our experiments with the Siemens benchmark suite, we found that
the quality of our bug report compares well with those produced by
existing fault localization approaches where the programmer man-
ually provides or chooses a successful run.

Categories and Subject Descriptors: D.3.4 [Programming Lan-
guages]: Processors–Debuggers; D.2.5 [Software Engineering]:
Testing and Debugging–Debugging aids.

General Terms: Algorithms, Experimentation, Reliability.

Keywords: Automated debugging, Program comprehension.

1. INTRODUCTION
Program debugging is an age-old software engineering activity.

Many programmers still use traditional source-level debuggers to
localize the cause of a program bug. They use these tools to itera-
tively check program behaviors and hypothesize/confirm the error
cause. To improve the state of debugging tools, we need to develop
methods where the error cause can be identified from the observ-
able error with a higher degree of automation. The work done in
this paper contributes to such a research perspective — we seek to
further automate the task of localizing software faults.

One approach to automatic fault localization, which has been
explored in the recent times [3, 6, 8, 10, 11, 12, 15], considers cer-
tain execution traces of the buggy program itself as representative
correct behavior. Fault localization progresses by comparing the
failing execution run, which exhibits the observable error, with one

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’05, November 7–11, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-993-4/05/0011 ...$5.00.

1. v=0;
2. if (x>0)
3. u=5;
4. else
5. u=v;
6. printf(‘‘%d’’,u);

Figure 1: A Simple Example.

that does not. Most of the research in this line of work has focused
on how to compare the successful and failing execution runs. They
exploit the successful run to find out points in the failing run which
may be responsible for the error and for each of those points which
variables may be responsible for the error. However, these works
do not discuss how the successful run is obtained. Usually, they
assume that a large number of successful runs are available and the
programmer chooses one of them.

In this paper, we automate the process of constructing one suc-
cessful run from a program’s failing run. Given a failing execution
run π, our method systematically constructs runs by toggling the
outcomes of some of the conditional branch instances in π, until a
feasible successful run 1 is obtained. This, indeed, is the key idea
of our approach. By evaluating some branch instances in the fail-
ing run differently, certain faulty statements may not be executed,
leading to a successful run. Branch statements whose instances
have been evaluated differently (i.e., toggling of branch condition
evaluation) are submitted to the programmer as bug report.

Consider the program fragment in Figure 1 where a 0 value is
printed in line 6 corresponding to input x=0, deemed by the pro-
grammer as an observable “error”. We can construct a successful
run by altering the outcome of the branch (x>0); such a run corre-
sponds to a positive value of input x. Now, by comparing the suc-
cessful run with the failing run we report the branch if (x>0) to
the programmer; he/she may notice that the bug fix lies in weaken-
ing the branch condition to if (x>=0).

After a run π′ is constructed, we need to check whether π′ is
feasible and successful. Checking whether π′ is feasible can be
done automatically by using a constraint solver. However, check-
ing whether π′ is successful has to be done manually. Otherwise
the programmer has to precisely characterize the properties of a
successful run; this eases the task of fault localization but places an
additional burden on the programmer. It is important to note that
methods which require the programmer to choose a successful run
from available successful runs (such as [3, 11]) will first require
a classification of available program runs as failing or successful.
This will typically require even more manual intervention.

1A feasible successful run is an execution run which is exercised by
some program input and does not exhibit the bug being localized.

In the preceding example, the bug fix gets pinpointed straight-
away from the bug report. In reality, there can be various scenarios
of the bug report matching or not matching the actual source of bug.
If the bug fix involves changing the value assigned to v at line 1 of
Figure 1, our bug report will not be equally helpful. How useful is
our path generation method and the resultant bug report? To eval-
uate our technique, we employed it to localize bugs of the Siemens
benchmark suite [7], an established suite of programs with injected
faults. Experiments show that our approach can automatically gen-
erate successful executions and bug reports within tolerable time.
The quality of our bug report compares well with those by previ-
ous approaches [3, 11], which require the programmer to manually
provide/choose a successful run.

Concretely, the main results of this paper are as follows. We
develop a fault localization method based on comparing a failing
program run with a successful program run. We automatically gen-
erate a feasible successful run according to the failing run. We
return the sequence of branch instances evaluated differently in the
two runs as bug report. We experimentally evaluate the quality of
our bug report, the volume of our bug report and the time overheads
of our fault localization method.

The rest of this paper is organized as follows. The next section
introduces related work on fault localization. Our path generation
algorithm is discussed in Sections 3. Section 4 presents experimen-
tal results. Section 5 concludes the paper.

2. RELATED WORK
Recently, there has been a lot of interest in program error lo-

calization by comparing successful and failing runs of the buggy
program [1, 3, 6, 8, 10, 11, 12, 15]. These techniques often differ
in which characteristic of execution runs is used for comparison.
The characteristic can be acyclic paths [12], potential invariants
[10], executed statements [1, 8], transitions [6], basic block profil-
ing [11] or program states [3, 15]. Jones et al. [8] and Ruthruff et al.
[14] have proposed to mine a set of successful and failing runs, and
color statements according to the likelihood that the statement is
faulty. Liblit et al.’s technique [9] discovers abnormal return value
of methods from many runs. Unlike our method, these works re-
quire that both failing and successful runs are available before de-
fect localization.

Software fault localization via model checking has also been
studied [2, 5]. These works seek to explain the counter-example
produced by model checking by invoking an optimization problem.
The optimization generates a successful run which is “closest” to
the counter-example; this is typically accomplished by an external
constraint solver. Note that for these approaches, either the pro-
gram model needs to closely reflect the behaviors of the actual pro-
gram, or the approaches risk generating a spurious successful run
(not corresponding to any program execution) which necessitates
further refinement of the optimization problem.

Zeller et al. present the delta debugging algorithm to automat-
ically simplify the erroneous input by removing part of this input
[16]. The reduced input (which can be a successful input) usu-
ally corresponds to a shorter execution, which may be easier to
debug. However, the approach is more suitable for debugging lan-
guage/text processing programs like compilers or web-browsers
where we can get program inputs by deleting parts of a program
input.

3. PATH GENERATION ALGORITHM
In this section, we discuss our technique for generating a feasi-

ble successful run from a failing run of a program. Recall that a

“failing” run is an execution trace which exhibits a specific behav-
ior which the programmer deems as a “bug”; a successful run is
an execution trace (for a different program input) which does not
demonstrate this bug. A feasible run of a program is a path in the
program’s control flow graph from start to end which is executed
for some program input.

How do we construct a successful run by evaluating differently
conditional branch instances of a failing run π? Recall that these
branches will be returned as bug report for fault localization. We
seek to construct execution runs by evaluating differently branches
in π which appear close to the end of π (where the error is ob-
served). Furthermore, the number of branches in π that are eval-
uated differently should be small. Consequently, given the failing
run π, we will first try to evaluate differently the last branch oc-
currence (call it blast) in π to construct a run π1. Among all the
branch occurrences in π, clearly blast is nearest to the end of π. If
π1 is a successful and feasible run, we return π1 as the successful
run. Otherwise we successively construct other runs by evaluating
blast as well as other branch occurrences of π differently. If none of
these runs is a feasible successful run, this indicates that the branch
at blast might have little relationship with the error cause. So, there
is no point in evaluating blast differently. Instead, we evaluate the
second last branch occurrence in π differently and carry out the
above steps again. This process goes on until a feasible successful
run is obtained.

1. if (a)
2. i=i+1;
3. if (b)
4. j=j+1;
5. if (c)
6. if (d)
7. k=k+1;
8. else
9. k=k+2;
10.

Figure 2: A program segment.

Branches evaluated differently Execution run

〈6〉 〈1, 3, 5, 6, 9, 10〉
〈3, 6〉 〈1, 3, 4, 5, 6, 9, 10〉
〈1, 3, 6〉 〈1, 2, 3, 4, 5, 6, 9, 10〉
〈1, 6〉 〈1, 2, 3, 5, 6, 9, 10〉
〈5〉 〈1, 3, 5, 10〉
〈3, 5〉 〈1, 3, 4, 5, 10〉
〈1, 3, 5〉 〈1, 2, 3, 4, 5, 10〉
〈1, 5〉 〈1, 2, 3, 5, 10〉
〈3〉 〈1, 3, 4, 5, 6, 7, 10〉
〈1, 3〉 〈1, 2, 3, 4, 5, 6, 7, 10〉
〈1〉 〈1, 2, 3, 5, 6, 7, 10〉

Table 1: Order in which candidate execution runs are tried out
for the failing run 〈1, 3, 5, 6, 7, 10〉 in Figure 2

Let us take the program segment in Figure 2 as an example. As-
sume that the failing run π = 〈1, 3, 5, 6, 7, 10〉. The branch oc-
currences appearing in this run are at lines 1, 3, 5, 6. Note that the
execution run π does not contain multiple occurrences of any pro-
gram statement; so we do not need to worry about distinguishing
different occurrences of the same statement in a path as far as this
example is concerned. Now, our method tries to evaluate some of

the branches in lines 1, 3, 5, 6 differently from the failing run π,
thereby constructing new execution runs.

Table 1 shows the order in which the branches of failing run π
will be evaluated differently leading to new execution runs. Let us
assume that none of the new execution runs is a feasible successful
run, so that we can elaborate all possible runs constructed by our al-
gorithm. We first evaluate differently the branch at line 6, since this
branch is the last one in the failing run. In the next step, the algo-
rithm intends to evaluate differently a branch before line 6 as well
as the branch at line 6. It appears that we should now choose line
5, the branch which is the closest to line 6. However, the algorithm
cannot choose line 5 at this time, since line 6 is control dependent
on line 5. If line 5 is evaluated differently, line 6 cannot be exe-
cuted. Instead, line 3 is chosen, and the second run is constructed
by evaluating differently branches at line 3 and 6. After this, the
algorithm tries to evaluate differently a branch before line 3 as well
as branches at line 3,6. Thus, line 1 is selected, and branches at
line 1,3,6 are evaluated differently. Now all branches before line 3
and 6 have been considered, and no feasible successful run can be
constructed. This means that line 3 and 6 might not be related to
the error cause at the same time. The algorithm continues trying to
evaluate differently branches before line 6 as well as the branch at
line 6. After branches at lines 1, 6 have been evaluated differently,
all branches before line 6 have been evaluated differently together
with the branch at line 6. Corresponding runs have been shown
in the first segment of the Table 1 (the segments are separated by
horizontal lines). Thus, at this point the algorithm concludes that
the branch at line 6 might have little bearing with the actual error
cause. The algorithm gives up line 6, and evaluates differently the
second last branch at line 5 as well as branches before line 5, as
shown in the second segment of Table 1. After this, our algorithm
considers the third last branch at line 3, and so on.

Incremental Path Generation: So far, we have clarified the or-
der in which the execution runs will be generated in our search for
a successful run. In Table 1 we have shown the order of the gener-
ated execution runs for a given failing run and branches evaluated
differently from the failing run. Indeed, our algorithm generates
these execution runs in a incremental fashion for efficiency. Let us
consider the first two execution runs tried out in Table 1. They are

Execution run branches evaluated differently
π1 = 〈1, 3, 5, 6, 9, 10〉 〈6〉

π2 = 〈1, 3, 4, 5, 6, 9, 10〉 〈3, 6〉
Recall that the failing run is π = 〈1, 3, 5, 6, 7, 10〉 and the buggy
program is shown in Figure 2. The run π2 shares a common suf-
fix with run π1 (the subpath 〈5, 6, 9, 10〉); the runs also share a
common prefix (the subpath 〈1, 3〉). Run π2 can be obtained by
evaluating the branch at line 3 differently over and above π1. Thus,
run π1 is constructed by modifying failing run π at line 6 (the last
branch occurrence of π). Run π2 is then constructed by incremen-
tally modifying run π1 in the branch at line 3, that is, we do not
construct run π2 from scratch by modifying the failing run π at
lines 3 and 6. This incremental path construction is crucial for con-
structing our bug report efficiently.

Complications due to Nested Branch Statements: Note that
when a branch in the failing run is evaluated differently, several ex-
ecution runs may be obtained due to nested branch statements. For
example, if the failing run is 〈1, 2, 3, 4, 5, 10〉 for the program in
Figure 2, our algorithm will first try to evaluate branch 5 differently
since it is the last branch in the failing run. However, this produces
two execution runs 〈1, 2, 3, 4, 5, 6, 7, 10〉 and 〈1, 2, 3, 4, 5, 6, 9, 10〉
due to the nested branch statement at line 6. Our algorithm will
check whether either of these two runs is feasible and successful

Global Variable: sop, the program’s initial statement instance
eop, the program’s statement instance after which

the erroneous state is observable
πf , the program’s failing run to debug

generatePaths (paths, last, diff)
Input: paths, a set of execution runs

last, a branch instance
diff , branch instances which have been evaluated differently

Output: a feasible successful run, or Null

1. br= branch instance just prior to last in πf ;
2. while (br is defined)
3. if (no branch instance in diff is dynamically

control dependent on br)
4. newpaths= {}; /* empty set */
5. for each π in paths do
6. de = pde(br, π);
7. subpaths = get all(br, de, π);
8. π1 = sub-path of π from sop to br;
9. π2 = sub-path of π from de to eop;
10. for each π′ in subpaths do
11. if (π′ o π2 is infeasible)
12. continue;
13. πw = π1 o π′ o π2;
14. if (πw is feasible and successful)
15. return πw;
16. else
17. insert πw into newpaths;
18. if (newpaths is not empty set)
19. diff ′= 〈br〉 ◦ diff ;
20. πr = generatePaths(newpaths, br,

diff ′);
21. if (πr != Null)
22. return πr ;
23. else
24. for each π in paths do
25. π3 = sub-path of π from br to eop;
26. if (π3 is infeasible)
27. remove π from paths;
28. if (paths is empty set)
29. return Null;
30. br= branch instance just prior to br in πf ;
31. return Null;

Figure 3: Algorithm to generate a successful run from the fail-
ing run

before proceeding to construct any other runs, since these two runs
will lead to the same bug reports. We now explain our path gener-
ation algorithm in details.

Algorithm Description: Our path generation algorithm is pre-
sented in Figure 3. Some of the variables used in the algorithm are
pictorially explained in Figure 4. The algorithm proceeds by em-
ploying a recursive procedure generatePaths. This procedure
is invoked at the top level with the parameters {πf}, elast and 〈〉,
where πf refers to the failing run, elast refers to the last statement
instance in the πf , and 〈〉 stands for the empty sequence.

As shown in Figure 3, the three parameters of generatePaths
are paths, last and diff. The generatePaths procedure con-
structs new execution runs from the runs captured in paths by
evaluating branch instances before the instance last differently.
All runs in paths have been constructed by evaluating differently
branch instances in diff w.r.t. the failing run πf . Let us re-visit
the example in Table 1 which shows the order of path genera-
tion for the program in Figure 2 corresponding to the failing run
πf = 〈1, 3, 5, 6, 7, 10〉. The left column shows the diff for all
invocations of generatePaths except the first (where diff is

2π

3π

eop

de

br

sop

π

subpaths

2π

1π

wπ

1π

’π

Figure 4: Explanation of algorithm in Figure 3. Solid line refers
to subpath of the run π, and broken line refers to the subpaths
constructed by evaluating the branch br differently from π.

the empty sequence). The right column shows the value of paths
for each invocation of generatePaths except the first (where
paths only contains the failing run). In this example, for every
invocation of generatePaths, paths contains a single run.

The while loop in the generatePaths procedure iteratively
retrieves a branch instance prior to the instance last in failing run
πf and assigns it to br (at line 30 of the algorithm). If there are
no more branch instances, br is undefined, and generatePaths
returns Null (i.e. we cannot find a successful run). Each loop iter-
ation of generatePaths tries to evaluate branch br differently
along with other branch occurrences prior to br in failing run πf .

In each iteration of the while loop of generatePaths, we
first check whether any branch instance in diff is dynamically
control dependent on br. If it is so, the branches in br as well
as the branches in diff cannot all be evaluated differently from
the failing run πf . To illustrate this point, let us look at the path
generation example presented in Table 1; this table shows the or-
der of path generation for the program in Figure 2 corresponding
to the failing run πf = 〈1, 3, 5, 6, 7, 10〉. Lines 5 and 6 of Figure 2
cannot be evaluated differently together w.r.t. the failing run.

If no branch instance in diff is dynamically control dependent
on br, the algorithm generates new runs by evaluating differently
the br instance over and above the branches captured by diff .
Thus, diff is updated to diff ′ by adding br to diff . Recall that
the path-set paths captures the set of paths obtained by evaluat-
ing branches in diff differently w.r.t. failing run πf . Thus, to
find the set of paths obtained by evaluating branches in diff ′ dif-
ferently w.r.t. failing run πf , we exploit the relationship diff ′ =
〈br〉 ◦ diff to simply evaluate br differently for all runs in paths.
The resultant set of paths is captured in newpaths. Thus, our al-
gorithm constructs newpaths by incrementally modifying paths
instead of directly constructing it from the failing run πf .

We now explain the functions used in the generatePaths
procedure (lines 6,7 of Figure 3). The function pde(br, π) called
at line 6 returns de, the first statement instance which is not (tran-
sitively) dynamically control dependent on br in the execution run
π. The function get all(br, de, π) called at line 7 of Figure 3 re-
trieves all acyclic paths where: (1) each acyclic path starts from
loc(br) (the control location of the branch instance br) and ends at
loc(de) (the control location of the statement instance de), (2) br
is evaluated differently from π in each acyclic path. We choose to
consider acyclic paths to avoid enumerating too many paths. How-
ever, this may cause us to miss a feasible successful run since all
possible program paths are not constructed by our algorithm.

Subject Pgm. Description # Buggy versions
schedule priority scheduler 9
schedule2 priority scheduler 10

replace pattern replacement 32
print tokens lexical analyzer 7

print tokens2 lexical analyzer 10
tcas altitude separation 41

Table 2: Description of the Siemens suite

Our path generation algorithm requires checking whether an ex-
ecution run is feasible and successful (line 14 of Figure 3). We
have used the automated theorem prover Simplify [4] to check for
feasibility. This feasibility check returns the possible inputs under
which the execution run is executed. We then check whether the ex-
ecution run is successful (i.e. absence of the fault being localized)
by checking the execution run for any one of these feasible inputs.2

Checking whether the execution run for a specific input is success-
ful, however, requires user intervention; otherwise the programmer
has to precisely characterize properties of successful runs, possibly
as assertions.

4. EXPERIMENTS
In order to validate our method experimentally, we developed

a prototype implementation of our path generation algorithm. We
employed the prototype on the Siemens test suite [7] and used the
evaluation framework of [11] to quantitatively measure the quality
of generated bug reports. We have chosen the Siemens test suite
and the evaluation framework of [11] because previous approaches
[3, 11] have also conducted experiments with the same subject pro-
grams and evaluation framework. Thus, we can compare our ap-
proach with these works. In this section, we first introduce the
subject programs (Section 4.1) and the evaluation framework (Sec-
tion 4.2). Section 4.3 elaborates results from our experiments, and
compares them with results reported for existing fault localization
approaches [3, 11]. We also report time overheads of our approach.

4.1 Subject programs
The subject programs used in our experiments are 109 buggy C

programs from the Siemens test suite [7], as modified by Rothermel
and Harrold [13]. We excluded the floating point calculation pro-
gram tot info in the Siemens suite from our experiments. Our
prototype implementation uses the Simplify theorem-prover [4] to
check the feasibility of an execution run, and Simplify does not
work well with floating-point variables.

Each of the 109 buggy programs has been created from one of
six programs by manually injecting one defect. The six programs
range in size from 170 to 560 lines, including comments. Table 2
shows descriptions of these programs. The third column in Table 2
shows the number of buggy programs created from each of the six
programs. The injected defects include code omissions, relaxing or
tightening conditions of branch statements, superfluous code and
wrong values for assignment statements; some defects span multi-
ple lines or even functions. Although the benchmarks are simple,
and cannot reflect all possible errors in real life, they help us gain
valuable experience in debugging.

4.2 Evaluation framework
Renieris and Reiss have proposed an evaluation framework to

evaluate the quality of a defect localizer [11]. Every error report
2Clearly, for the same execution run, some inputs may lead to suc-
cessful executions, while others lead to failing executions.

is assigned a score to show the quality of this report. The score
indicates the amount of code that an programmer can ignore for
debugging, assuming that the programmer can find the error when
he reads the erroneous statements, and he performs a breadth-first
search for defect localization starting from statements in the error
report. Details about the score computation can be found in [11].

4.3 Experimental results
Recently, Renieris and Reiss have proposed the nearest neigh-

bor query method (“NN/Perm”) for fault localization in [11]. The
NN/Perm method compares code coverage between a failing run
and its nearest successful run. Also, Cleve and Zeller have pro-
posed the methods “CT/relevance” and “CT/infected” [3]. Both
CT/relevance and CT/infected methods analyze cause transitions in
the failing run to generate a bug report. They differ in usage of the
bug report for fault localization – CT/relevance uses the knowledge
of control/data dependencies, while CT/infected uses the knowl-
edge of which program states are infected. We compare our method
with NN/Perm, CT/relevance and CT/infected. We employed the
prototype implementation of our method to 107 buggy programs
from the Siemens suite. Two out of the 109 programs had to be
ruled out because these two programs are syntactically different
from, but semantically the same as the original “correct” program.

Quality of Bug Report: Table 3 shows the distribution of scores
for four methods. The data for NN/Perm is taken from [11], and
the data for CT/relevance and CT/infected are taken from [3]. Our
method is shown as APG, an abbreviation for Automated Path Gen-
eration. From this table, we can see that our method is comparable
with the cause transition methods, and a little better than the near-
est neighbor method. Bug reports returned by APG, CT/relevance
and CT/infected methods all achieved a score of 80% or better for
more than 41% of all the buggy programs, while the NN method
achieved at least 80% score for about 26% of the programs. Note
that our method achieved these scores with automatic generation of
successful run, while the NN, CT/relevance and CT/infected meth-
ods all required the programmer to provide/choose a successful run.
In other words, by automating the successful run construction, we
have not compromised on the bug report quality.

Score NN/Perm CT/relevance CT/infected APG
100% 0.00 5.43 4.55 0.93

90-99% 16.51 30.23 26.36 34.58
80-89% 9.17 6.20 10.91 8.41
70-79% 11.93 6.20 13.64 8.41
60-69% 13.76 9.30 4.55 5.61
50-59% 19.27 10.08 6.36 4.67
40-49% 3.67 3.88 1.82 7.48
30-39% 6.42 10.08 3.64 4.67
20-29% 1.83 3.10 7.27 9.35
10-19% 0.00 10.85 0.00 1.87

0-9% 17.43 4.65 20.91 14.02

Table 3: Distribution of scores for four methods.

Size of Bug Report: Apart from using the scores to describe the
quality of bug reports,the size of a bug report (i.e. the number of
statements in a bug report) can be of practical importance. If a
bug report contains too many statements, the programmer can be
overwhelmed with the bug report. In the experiments, we observed
that 71% of our 107 bug reports contained at most seven branch
statements. This indicates that the bug reports produced by our
method are not voluminous and overwhelming.

Time Overheads: In the experiments, our method found the suc-
cessful run within 10 minutes for 75% of all 107 buggy programs,

and for 83% of 47 buggy programs which had high quality bug re-
ports (i.e., score of 80% or above). Most of the time overheads
for our method is due to the feasibility check by the external the-
orem prover Simplify. The feasibility check enables the check to
find whether a run is successful (since we cannot even observe the
behavior of infeasible runs). Still the overall time overheads are
tolerable for most programs in the Siemens suite.

5. DISCUSSION
In this paper, we have investigated the problem of software fault

localization, that is, localizing the error cause(s) from an observable
program error (as seen in a failing program run). We automatically
generate a successful execution close to the failing execution, and
then compare the two execution runs to discover the likely defects
in the buggy program. Through this comparison, we highlight the
sequence of branches in the failing run which are evaluated differ-
ently in the successful run. Our approach does not require the user
to provide successful executions for debugging as in previous ap-
proaches. Using the Siemens benchmark suite, we have conducted
experiments to evaluate the quality/volume of our bug reports as
well as the time required to construct the bug reports.

Acknowledgments
This work was partially supported by a Public Sector research grant
from A*STAR, Singapore.

6. REFERENCES
[1] T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause: localizing

errors in counterexample traces. In ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL), pages 97–105, 2003.

[2] S. Chaki, A. Groce, and O. Strichman. Explaining abstract counterexamples.
In ACM Symposium on the Foundations of Software Engineering (FSE), 2004.

[3] H. Cleve and A. Zeller. Locating causes of program failures. In ACM/IEEE
International Conference on Software Engineering (ICSE), 2005.

[4] D. Detlefs, G. Nelson, and J. Saxe. Simplify: A theorem prover for program
checking. Technical report, HP Labs, Palo Alto, CA, 2003.
http://research.compaq.com/SRC/esc/Simplify.html.

[5] A. Groce. Error explanation with distance metrics. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), pages 108–122, 2004.

[6] A. Groce and W. Visser. What went wrong: Explaining counterexamples. In
SPIN Workshop on Model Checking of Software, pages 121–135, 2003.

[7] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the
effectiveness of dataflow- and controlflow-based test adequacy criteria. In
ACM/IEEE International Conference on Software Engineering (ICSE), 1994.

[8] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to
assist fault localization. In ACM/IEEE International Conference on Software
Engineering (ICSE), pages 467–477, 2002.

[9] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote
program sampling. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2003.

[10] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. P. Reiss. Automated fault
localization using potential invariants. CoRR, cs.SE/0310040, Oct, 2003.

[11] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor queries.
In Automated Software Engineering (ASE), pages 30–39, 2003.

[12] T. W. Reps, T. Ball, M. Das, and J. R. Larus. The use of program profiling for
software maintenance with applications to the year 2000 problem. In ACM
Symposium on the Foundations of Software Engineering (FSE), 1997.

[13] G. Rothermel and M. J. Harrold. Empirical studies of a safe regression test
selection technique. IEEE Transactions on Software Engineering, 24, 1998.

[14] J. Ruthruff, E. Creswick, M. Burnett, C. Cook, S. Prabhakararao, M. F. II, and
M. Main. End-user software visualizations for fault localization. In ACM
Symposium on Software Visualization, pages 123–132, 2003.

[15] A. Zeller. Isolating cause-effect chains from computer programs. In ACM
Symposium on the Foundations of Software Engineering (FSE), 2002.

[16] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input.
IEEE Transactions on Software Engineering, 28, 2002.

