
Path Exploration based on Symbolic Output

Dawei Qi, Hoang D.T. Nguyen, Abhik Roychoudhury
School of Computing, National University of Singapore
{dawei,nguyend1,abhik}@comp.nus.edu.sg

ABSTRACT
Efficient program path exploration is important for many software
engineering activities such as testing, debugging and verification.
However, enumerating all paths of a program is prohibitively ex-
pensive. In this paper, we develop a partitioning of program paths
based on the program output. Two program paths are placed in
the same partition if they derive the output similarly, that is, the
symbolic expression connecting the output with the inputs is the
same in both paths. Our grouping of paths is gradually created by
a smart path exploration. Our experiments show the benefits of the
proposed path exploration in test-suite construction.

Our path partitioning produces a semantic signature of a program
— describing all the different symbolic expressions that the output
can assume along different program paths. To reason about changes
between program versions, we can therefore analyze their semantic
signatures. In particular, we demonstrate the applications of our
path partitioning in debugging of software regressions.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools, Symbolic execution

General Terms
Experimentation, Performance, Reliability

Keywords
Path Exploration, Relevant Slice Condition, Symbolic Execution

1. INTRODUCTION
Programs follow paths. Indeed a program path constitutes a

“unit” of program behavior in many software engineering activi-
ties, notably in software testing and debugging. Use of program
paths to capture underlying program behavior is evidenced in tech-
niques such as Directed Automated Random Testing or DART [8]
- which try to achieve path coverage in test-suite construction.

Why do we attempt to cover more paths in software testing? The
implicit assumption here is that by covering more paths, we are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

1 int x,y,z; // input variables
2 int out; // output variable
3 int a;
4 int b = 2;
5 scanf("%d %d %d",&x,&y,&z);
6 if(x - y > 0) //b1
7 a = x;
8 else
9 a = y;
10 if(x + y > 10) //b2
11 b = a;
12 if(z*z > 3) //b3
13 printf("square(z) > 3 \n");
14 else
15 printf("square(z) <= 3 \n");
16 out = b; //slicing criteria

Figure 1: Sample program

likely to cover more of the possible behaviors that can be exhibited
by a program. However, as is well known, path enumeration is ex-
tremely expensive. Hence any method which covers various possi-
ble behaviors of a given program while avoiding path enumeration,
can be extremely useful for software testing.

We note that software testing typically involves checking the pro-
gram output for a given input - whether the observed output is same
as the “expected” output. Hence, instead of enumerating individual
program paths, we could focus on all the different ways in which
the program output is computed from the program inputs. In other
words, we can define an output as a symbolic expression in terms
of the program inputs. Thus, given a program P , we seek to enu-
merate all the different possible symbolic expressions which de-
scribe how the output will be computed in terms of the inputs. Of
course, the symbolic expression defining the output (in terms of the
inputs) will be different along different program paths. However,
we expect that the number of such symbolic expressions to be sub-
stantially lower than the number of program paths. In other words,
a large number of paths can be considered “equivalent” since the
symbolic expressions describing the output are the same.

To illustrate our observation, let us consider the program in Fig-
ure 1. The output variable out can be summarized as follows.

● If x − y > 0 and x + y > 10, then out == x

● If x − y ≤ 0 and x + y > 10, then out == y

● If x + y ≤ 10, then out == 2

The summary given in the preceding forms a “semantic signa-
ture” of the program as far as the output variable out is concerned.
Note that there are only three cases in the semantic signature -

whereas there are eight paths in the program. Thus, such a se-
mantic signature can be much more concise than an enumeration
of all paths.

In this paper, we develop a method to compute such a semantic
signature for a given program. Our semantic signature is computed
via dynamic path exploration. While exploring the paths of a pro-
gram, we establish a natural partitioning of paths on-the-fly based
on program dependencies - such that only one path in a partition
is explored. Thus, for the example program in Figure 1 only three
execution traces corresponding to the three cases will be explored.
For test-suite construction, we can then construct only three tests
corresponding to the three cases in the semantic signature.

How do we partition paths? The answer to this question lies in
the computation of the output variable. We consider two program
paths to be “equivalent” if they have the same relevant slice [9] with
respect to the program output. A relevant slice is the transitive clo-
sure of dynamic data, control and potential dependencies. Data and
control dependencies capture statements which affect the output by
getting executed; on the other hand, potential dependencies capture
statements which affect the program output by not getting executed.
In Figure 1, even if line 11 is not executed, the output statement in
line 16 is potentially dependent on the branch in line 10. This is to
capture the fact that if line 10 is evaluated differently, the assign-
ment in line 11 will be executed leading different values flowing to
the output out. We base our path partitioning on relevant slices to
capture all possible flows into the output variable - whether by the
execution of certain statements or their non-execution.

The contributions of this paper can be summarized as follows.
We present a mechanism to partition program paths based on the
program output. The grouping of paths is done by efficient dynamic
path exploration - where paths sharing the same relevant slice natu-
rally get grouped together. We show that our smart path exploration
is much more time efficient as opposed to full path exploration via
path enumeration. Our efficient path exploration method has im-
mediate benefits in software testing. Since our path exploration
naturally groups several paths together - it is much more efficient
than the full path exploration (as in Directed Automated Random
Testing or DART) as evidenced by experiments. Moreover, since
several paths are grouped as “equivalent” in our method (meaning
that these paths compute the output similarly), the test-suite gener-
ated from our path exploration will also be concise.

Secondly, we show the application of our path partitioning method
in reasoning about program versions, in particular, for debugging
the root-cause of software regressions. While trying to introduce
new features to a program, existing functionality often breaks; this
is commonly called as software regression. Given two program ver-
sions P,P ′ and a test t which passes in P while failing in P ′ — we
seek to find a bug report explaining the root cause of the failure of t
in P ′. In an earlier work [14], we presented the DARWIN approach
for root causing software regressions. The DARWIN approach con-
structs and composes the path conditions of test t in program ver-
sions P,P ′ in trying to come up with a bug report explaining an
observed regression. In this work, we show that computing and
composing the logical condition over a relevant slice (also called
relevant-slice condition throughout the paper) produces more pin-
pointed bug reports in a shorter time — as opposed to computing
and composing path conditions. The reason for obtaining shorter
bug reports in lesser time comes from the path conditions contain-
ing irrelevant information which are filtered out in relevant-slice
conditions. Hence relevant-slice conditions are smaller formulae,
which are constructed and solved (via Satisfiability Modulo Theory
solvers) more efficiently.

2. OVERVIEW
We begin with a few definitions.

DEFINITION 1 (PATH CONDITION). Given a program P and
a test input t, let π be the execution trace of t in P . The path
condition of π, say pcπ is a quantifier free first order logic formula
which is satisfied by exactly the set of inputs executing π in program
P . Clearly, t ⊧ pcπ .

The path condition is computed through symbolic execution. Dur-
ing symbolic execution, we interpret each statement and update the
symbolic state to represent the effects of the statements (such as as-
signments) on program variables. At every conditional branch, we
compute a branch constraint, which is a formula over the program’s
input variables which must be satisfied for the branch to be evalu-
ated in the same direction as the concrete execution. The result of
symbolic execution is a path condition, which is a conjunction of
constraints corresponding to all branches along the path. Any in-
put that satisfies the path condition generated by executing an input
t is guaranteed to follow the same path as t. We take the follow-
ing example to show that the effect of assignments is also consid-
ered in path conditions. The path condition for input ⟨x == 0⟩
is ¬(x − 1 > 0), that is, the effect of the assignment in line 4 is
considered.

1 int x; //input variable
2 int a = 0;
3 scanf("%d",&x);
4 x = x - 1;
5 if(x > 0)
6 a = 1;
7 out = a;

Figure 2: Example to show path condition and relevant-slice con-
dition computation

We now define slice conditions, which are path conditions com-
puted over slices.

DEFINITION 2 (DYNAMIC SLICE CONDITION). Given a pro-
gram P , a test input t and a slicing criteria C — let π be the exe-
cution trace of t in P . Let π ∣C denote the projection of π w.r.t. the
dynamic slice ofC in π. In other words, a statement instance s in π
is included in the projection π ∣C if and only if s is in the backward
dynamic slice of C on π. The dynamic slice condition of C in π is
the path condition computed over the projected trace π ∣C .

Slice conditions are weaker than path conditions, that is, pcπ ⇒
dsc(π,C) where dsc(π,C) is the dynamic slice condition of any slic-
ing criteria C in π (see our technical report [13] for a simple proof
of this claim). We now refine dynamic slice condition to relevant-
slice condition - the central concept behind our path partitioning.
But first, let us recall the notion of potential dependencies and rel-
evant slices [1, 9].

DEFINITION 3 (POTENTIAL DEPENDENCE [1]). Given an ex-
ecution trace π, let s be a statement instance and br be a branch
instance that is before s in π. We say that s is potentially depen-
dent on br iff. there exists a variable v used in s such that (i) v
is not defined between br and s in trace π but there exists another
path σ from br to s along which v is defined, and (ii) evaluating br
differently may cause this untraversed path σ to be executed.

An example of potential for the program in Figure 1 is shown in
Figure 3.

We now introduce the notion of a relevant slice, and relevant-
slice condition, a logical formula computed over a relevant slice.

10 if(x+y > 10)

11 b=a;

......

16 out = b;

True

False

Potential dependence

Figure 3: Example of potential dependence. The solid arrows de-
note the execution path. According to Definition 3, (i) the variable
b is not defined between line 10 and line 16 but there exists a path
(though line 11) along which b is defined, and (ii) evaluating the
branch at line 10 differently may cause the path through line 11 to
be executed. Therefore, line 16 is potentially dependent on line 10.

DEFINITION 4 (RELEVANT SLICE). Given an execution trace
π and a slicing criteria C in π, the relevant slice in π w.r.t. C con-
tains a statement instance s in π iff. C ↝ s where ↝ denotes the
transitive closure of dynamic data, control and potential depen-
dence.

Note that our definition of relevant slice is slightly different from
the standard definition of relevant slice [1, 9]. In standard relevant
slicing algorithm, if a statement instance A is included only by po-
tential dependence, the statement instances that are only control
dependent by A are not included in the relevant slice. We have re-
moved this restriction to simplify the definition of relevant slice, it
is simply the transitive closure of three kinds of program dependen-
cies — dynamic data dependencies, dynamic control dependencies
and potential dependencies. In the rest of the paper, all appearances
of relevant slice and relevant-slice condition refer to this simplified
definition of relevant slice.

DEFINITION 5 (RELEVANT SLICE CONDITION). Given an ex-
ecution trace π and a slicing criteria C in π, the relevant slice con-
dition in π w.r.t. criterion C is the path condition computed over
the statement instances of π which are included in the relevant slice
of C in π.

We take the example program in Figure 2 to show that the ef-
fect of assignments is also considered in relevant-slice condition
computation (just as assignments are considered in path condition
computation). Let the slicing criteria be the value of out in line
7. The relevant slice for input ⟨x == 0⟩ is {2,3,4,5,7} and the cor-
responding relevant-slice condition is ¬(x − 1 > 0). That is, the
effect of the assignment in line 4 is considered.

We use the simple program in Figure 1 to illustrate the advantage
of using relevant-slice condition in dynamic path exploration. The
slicing criteria is the variable out at line 16. Since each statement
is executed once, we do not distinguish between different execution
instances of the same statement in this example.

We use the executed branch sequence annotated with directions
to represent an execution trace. For example, the trace for input
⟨x == 6, y == 2, z == 2⟩ of the program in Figure 1 is denoted
as [b1t, b2f , b3t]. Let us take the input ⟨x == 6, y == 2, z == 2⟩
to see the differences between path condition, dynamic slice con-
dition and relevant-slice condition. Given the trace [b1t, b2f , b3t]

corresponding to input ⟨x == 6, y == 2, z == 2⟩, the path condition
along this execution is (x − y > 0) ∧ ¬(x + y > 10) ∧ (z ∗ z > 3).

For the execution path of ⟨x == 6, y == 2, z == 2⟩, the dynamic
backward slice result w.r.t. the slicing criteria at line 16 is {4,16}
- it contains no branches. The path condition computed over the
statements in the dynamic slice (or the dynamic slice condition) is
simply the formula true.

Different from dynamic backward slicing, relevant slicing also
includes the statement instances that could potentially affect the
slicing criteria. For example, if evaluating a branch differently
could affect the slicing criteria — such a branch is included in
the relevant slice, even though it is not contained in the dynamic
backward slice. In the example program, the branch at line 10 can
potentially affect the value of out in the slicing criteria. This is
because if the branch in line 10 is evaluated differently (to true),
the variable b is re-defined (in line 11) which affects the output
variable out. Hence the relevant slice contains line 10. The entire
relevant slice is {4,5,10,16}, and the relevant-slice condition on it
is ¬(x + y > 10). Any input t satisfying the relevant-slice condi-
tion ¬(x+y > 10) has the same symbolic expression for the output
out, which in this case turns out be the constant value 2.

As mentioned earlier, program paths can be partitioned based on
the input-output relation. Relevant-slice condition perfectly serves
this purpose. If two paths have the same relevant slice with output
being the slicing criteria, then they have the same input-output re-
lation. The path partitions of the program in Figure 1 are shown
in Figure 4. The grey nodes in Figure 4 are the statements that are
contained in the relevant slice w.r.t. to the unique slicing criteria
at line 16 in Figure 1. As we can see from Figure 4, based on the
relevant slice, we can group the eight program paths into three path
partitions.

Just like the DART approach [8] uses path conditions to dynam-
ically explore paths in a program, relevant-slice condition can be
used to explore the possible symbolic expressions that the program
output can be assigned to. How would such an exploration pro-
ceed? Suppose we simply use relevant-slice condition to replace
path condition in DART’s path exploration. Given a relevant-slice
condition ψ1∧ψ2∧ . . .∧ψk−1∧ψk — we construct k sub-formulae
of the form of ψ1 ∧ψ2 . . .∧ψi−1 ∧¬ψi, where 1 ≤ i ≤ k. The path
exploration is done by solving these formulae to get new inputs
and iteratively applying this process to the new inputs. Note that
each sub-formula shares a common prefix with the relevant-slice
condition. Now, we examine the effectiveness of this simple solu-
tion on the program in Figure 1. Depth-first exploration strategy is
used, and path exploration terminates when no new sub-formulae
are generated. Let the initial input be ⟨x == 6, y == 2, z == 2⟩, the
path for this input is [b1t, b2f , b3t]. The entire path exploration
process is shown in Table 1. The “from” column of Table 1 can be
understood as follows. If the “from” column contains α.β, it means
that the current input is generated by negating the βth branch con-
straint of the relevant-slice condition in the αth row.

Recall from Section 1 that we expect the following three sym-
bolic expressions for out to be explored.

● x − y > 0 ∧ x + y > 10 : out == x

● ¬(x − y > 0) ∧ x + y > 10: out == y

● ¬(x + y > 10): out == 2

As we can see from Table 1, no path having relevant-slice condition
¬(x − y > 0) ∧ (x + y > 10) is explored. Therefore, this feasible
relevant-slice condition is missed by the exploration process. In
addition, the relevant-slice condition ¬(x + y > 10) is explored

6 if(x-y > 0)

7 a=x;

10 if(x+y > 10)

11 b=a;

12 if(z*z > 3)

13 printf(......); 15 printf(......);

16 out = b;

6 if(x-y > 0)

10 if(x+y > 10)

11 b=a;

12 if(z*z > 3)

13 printf(......); 15 printf(......);

16 out = b;

9 a=y;

6 if(x-y > 0)

7 a=x;

10 if(x+y > 10)

12 if(z*z > 3)

13 printf(......); 15 printf(......);

16 out = b;

9 a=y;

out == x out == y out == 2
Figure 4: Path partitions of the example in Figure 1

several times. Thus, we cannot simply replace path condition with
relevant-slice condition in DART’s path exploration.

Let us examine closely what went wrong in the path exploration
of Table 1. In particular, the input in the third row is generated by
negating the second branch condition of the relevant-slice condi-
tion in second row in Table 1. That is, when we solve (x − y >
0)∧¬(x+y > 10), we get an input ⟨x == 6, y == 2, z == 2⟩ whose
relevant-slice condition is ¬(x + y > 10). The branch condition
(x − y > 0) disappears in the new relevant-slice condition because
the corresponding branch is not contained in the relevant slice any-
more. In contrast, DART follows certain path-prefixing properties
— if ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ψi is the prefix of a path condition (for
some program input), the path condition of any input satisfying
ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ¬ψi will have ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ¬ψi as a
prefix. Such a property does not hold for relevant-slice condition.
Hence, simply replacing path condition with relevant-slice condi-
tion in DART not only causes redundant path exploration but also
makes the exploration incomplete (in terms of possible symbolic
expressions that the output variable may assume).

We have developed a path exploration method which avoids the
aforementioned problems. While exploring (groups of) paths based
on relevant-slice condition, our method re-orders the constraints in
the relevant-slice condition. The path exploration is based on re-
ordered relevant-slice condition. A reordered relevant-slice condi-
tion satisfies the following property (which also holds for path con-
ditions): if ψ1∧ψ2 . . .∧ψi−1∧ψi is a prefix of a reordered relevant-
slice condition, the reordered relevant-slice condition of any input
satisfying ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ¬ψi has ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ¬ψi
as a prefix.

3. OUR APPROACH
In this section, we give our path exploration algorithm based

on relevant-slice condition. We then give theorems on the com-
pleteness of our path exploration algorithm. Throughout the paper,
we assume that the slicing criteria is in a basic block that post-
dominates the entry of the program.

First we introduce the following notations.

Notations. We use C to denote the unique slicing criteria. When
used in a dynamic context, C refers to the last executed instance
of the slicing criteria. Given a test case t, we use π(t) to denote

the execution path of t. We use rs(sc, π) to denote the relevant
slice on path π w.r.t. slicing criteria sc. We use rsc(sc, π) to de-
note the relevant slice condition on path π w.r.t. slicing criteria sc.
We use reordered_rsc(sc, π) to denote the reordered sequence
of rsc(sc, π). We use br(ψ) to denote the branch instance of a
branch condition ψ.

3.1 Path exploration algorithm
We now present our path exploration method which operates on

a given program P . All relevant slices and relevant-slice conditions
are calculated on the same program P with respect to a slicing cri-
teria C (which refers to the program output).

We group paths based on relevant-slice condition. As explained
in the last section, a DART-like search based on relevant-slice con-
ditions is incomplete, that is, not all possible symbolic expressions
that the output may assume will be covered. For this reason, we
reorder the relevant-slice conditions.

Our path exploration algorithm is shown in Algorithm 1. The
core of the algorithm is the reorder procedure, which reorders the
relevant-slice conditions. When we compute the relevant-slice con-
dition, we get a sequence of branch conditions – ordered according
to the sequence in which they are traversed. We use the reorder
function to reorder the branch conditions, after which the path ex-
ploration will be performed based on the reordered sequence of
branch conditions.

The reorder procedure is given in Algorithm 1. The reordering
works in a quick-sort-like fashion. In each call to reorder, we split
the to-be-reordered sequence into two sub-sequences. Suppose the
last branch condition in the sequence is from branch instance bk.
Then bk is used as the “pivot” in the splitting process. If a branch
instance b is in the backward relevant slice of bk, then the branch
condition of b is placed before the branch condition of bk. Other-
wise, the branch condition of b is placed after the branch condition
of bk. Then we recursively call the reorder procedure to reorder the
two sub-sequences.

We show the reorder procedure in action in Figure 5. Note that
our reordering is done on branch conditions in a relevant-slice con-
dition. Since there is a unique branch condition for each branch in-
stance in the execution trace, the example in Figure 5 is on branch
instances for simplicity. On the left of Figure 5, the dependencies
among all the branch instances are provided. If there is an arrow

No. from input path RSC
1 ⟨6,2,2⟩ [b1t, b2f , b3t] ¬(x + y > 10)
2 1.1 ⟨6,5,2⟩ [b1t, b2t, b3t] (x − y > 0) ∧ (x + y > 10)
3 2.2 ⟨6,2,2⟩ [b1t, b2f , b3t] ¬(x + y > 10)
4 2.1 ⟨2,6,2⟩ [b1f , b2f , b3t] ¬(x + y > 10)

Table 1: Path exploration based on relevant-slice conditions for example in Figure 1

No. from input path RSC reordered RSC
1 ⟨6,2,2⟩ [b1t, b2f , b3t] ¬(x + y > 10) ¬(x + y > 10)
2 1.1 ⟨6,5,2⟩ [b1t, b2t, b3t] (x − y > 0) ∧ (x + y > 10) (x + y > 10) ∧ (x − y > 0)
3 2.2 ⟨5,6,2⟩ [b1f , b2t, b3t] ¬(x − y > 0) ∧ (x + y > 10) (x + y > 10) ∧ ¬(x − y > 0)

Table 2: Path exploration with reordered relevant-slice conditions for example in Figure 1

Algorithm 1 Path exploration using relevant-slice condition

1: Input:
2: P : The program to test
3: t : An initial test case for P
4: C : A slicing criterion
5: Output:
6: T : A test-suite for P
7:
8: Stack = null // The stack of partial rsc to be explored
9: Execute(t,0)

10: while Stack is not empty do
11: let ⟨f, j⟩ = pop(Stack)
12: if f is satisfiable then
13: let µ be one input that satisfies f
14: put µ into T
15: Execute(µ, j)
16: end if
17: end while
18: return T
19:
20: procedure Execute(t, n)
21: execute t in P and compute relevant-slice condition rsc

w.r.t. C
22: let rsc = ψ1 ∧ ψ2 ∧ . . . ∧ ψm−1 ∧ ψm
23: let rsc′ = reorder(rsc)
24: suppose rsc′ = ψ′1 ∧ ψ′2 ∧ . . . ∧ ψ′m−1 ∧ ψ′m
25: for all i from n+1 to m do
26: let h = (ψ′1 ∧ ψ′2 ∧ . . . ∧ ψ′i−1 ∧ ¬ψ′i)
27: push ⟨h, i⟩ into Stack
28: end for
29: return
30: end procedure
31:
32: procedure reorder(seq)
33: if ∣seq∣ == 0 then
34: return seq
35: end if
36: let seq be ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1 ∧ ψk
37: seq1 = true, seq2 = true
38: for all i from 1 to k-1 do
39: if br(ψi) is in relevant slice of br(ψk) then
40: seq1 = seq1 ∧ ψi
41: else
42: seq2 = seq2 ∧ ψi
43: end if
44: end for
45: return reorder(seq1) ∧ ψk ∧ reorder(seq2)
46: end procedure

b1 b2 b3 b4 b5 b6

b1 b3 b6 b5 b4 b2

b1 b3 b2 b4 b5

b5 b4 b2

b2 b4

b4 b2

b1 b2 b3 b4 b5 b6
b1 b3 b6 b2 b4 b5

b1 b3

b5 b2 b4

Figure 5: Reorder algorithm in action

from bj to bi, then bi is in the relevant slice of bj. The “pivot”
in each reorder step is marked in dark; the other branches are re-
ordered w.r.t to the “pivot”. For example, initially b6 is the pivot
and we reorder b1, . . . b5 depending on whether they are in the
relevant slice of b6.

In Algorithm 1, we use a stack to maintain the to-be-explored
partial relevant-slice conditions. The main algorithm keeps on pro-
cessing the formulae in the stack when it is not empty. In each
iteration, the algorithm pops out one partial relevant-slice condi-
tion from the stack, and checks whether it is satisfiable or not. If
it is satisfiable, we get a new input µ by solving the formula. The
new input µ could lead to some unexplored relevant-slice condi-
tion. The relevant-slice condition for the execution trace of input
µ is then explored, as shown by the procedure Execute in Algo-
rithm 1. Given the execution trace of µ, the relevant-slice condition
over this trace w.r.t. the slicing criteria C is first computed. The
relevant-slice condition is reordered using the reorder procedure,
and the to-be-explored partial relevant-slice conditions are pushed
into the stack.

The second parameter of Execute is used to avoid redundancy
in path search. When Execute is called with parameters t and n,
let the reordered relevant-slice condition reordered_rsc(C,π(t))
beψ′1∧ψ′2∧. . .∧ψ′m−1∧ψ′m. For any partial relevant-slice condition
ϕi = ψ′1 ∧ ψ′2 ∧ . . . ∧ ψ′i−1 ∧ ¬ψ′i, 1 ≤ i ≤ n ≤ m, we know that
ϕi has been pushed into the stack a-priori. So the for-loop in the
Execute procedure starts from n + 1 to avoid these explored partial
relevant-slice conditions.

The path exploration of Algorithm 1 when employed on the pro-
gram in Figure 1 leads to the relevant-slice conditions shown in Ta-
ble 2. If the “from” column of Table 2 contains α.β, it means that
the current input is generated by negating the βth branch constraint
of the reordered relevant-slice condition in the αth row. The path
exploration based the reordered relevant-slice condition explores
all possible relevant-slice conditions of the program.

3.2 Theorems
Due to space limit, the proofs of the theorems are omitted in this

paper. The readers can refer to our technical report [13] for the
proofs.

Assumptions. We also assume that the SMT solver used to solve
relevant-slice conditions is sound and complete. As mentioned ear-
lier, we assume that the slicing criteria is in a basic block that post-
dominates the entry of the program — this is the location of the
program output. If the program contains multiple outputs, the slic-
ing criteria can simply be a set of of primitive criteria of the form

⟨output variable, output location⟩
Note that slicing can be performed on such a criteria (which is a
set) without any change to our method.

THEOREM 3.1. If the relevant-slice conditions of two paths π1

and π2 w.r.t. C are the same, then the variables used in the slicing
criteria C have the same symbolic values in π1 and π2.

In Theorem 3.1, we show that the relevant-slice condition deter-
mines the symbolic values of variables used in the slicing criteria
— if the relevant-slice conditions of two paths are same, the vari-
ables in the slicing criteria have the same symbolic values. Sym-
bolic value can be computed by dynamic symbolic execution. Each
symbolic value is an expression in terms of the program inputs. Let
s be a statement instance in the path of input t, and v be a variable
used in s. The symbolic value of v in s is an expression in terms
of input variables. If the symbolic value of v is concretized with t,
it must be the same as the value of v in s when the program is run
concretely with input t.

THEOREM 3.2. Given a programP and an execution trace π(t)
for input t in P , Algorithm 1 must explore an execution trace π(t′)
for some input t′ such that π(t) and π(t′) share the same relevant-
slice condition (irrespective of the initial test input with which Al-
gorithm 1 is started) — provided the total number of relevant-slice
conditions in P is bounded.

In Theorem 3.2, given any feasible path π, we show that our
path exploration algorithm is guaranteed to explore a path π′ that
shares the same relevant-slice condition with π. This establishes
the completeness of our path search.

4. IMPLEMENTATION
In this section, we discuss our combined infra-structure for sym-

bolic execution and dependency analysis of Java programs.
Our implementation is based on JSlice [17]1. JSlice is an open-

source dynamic slicing tool on Java bytecode. We have extended
JSlice to compute relevant-slice conditions. The architecture of our
extended JSlice is shown in Figure 6.

JSlice keeps the collected trace in a compressed form to achieve
scalability. The compression is online — as the trace is gener-
ated it is simultaneously compressed and then slicing is done on
1
http://jslice.sourceforge.net/

Slicing
Criteria

Input

Relevant Slice
Condition

Customized
Kaffe JVM

Static
Analysis

Relevant
Slicing

Update
OperStack

Update
PathCond Tree

Complete
PathCond Tree

CFG & CDG

Java
Class File

Relevant Slicing

Symbolic Execution Bytecode
Slice

Compressed
Trace

Figure 6: Architecture of relevant-slice condition computation

the compressed trace. The slicing algorithm works directly on the
compressed trace. We design our extension of JSlice to retain this
feature (of analyzing compressed traces without decompression).

In Figure 6, relevant slicing and symbolic execution are sepa-
rated for ease of understanding. However, we do not need the entire
relevant slicing result to start computing relevant-slice condition
in the implementation. The process of constructing the relevant-
slice condition is done along with the backward relevant slicing to
achieve efficiency. Since the relevant slicing process is backward,
we also compute the relevant slice condition via a backward sym-
bolic execution which starts from the slicing criteria and stops at
the beginning of the trace.

For backward symbolic execution, we keep a set of symbolic
values which need to be explained. The symbolic value of a vari-
able v is explained by either an assignment to v or by program
input to v. Let us take the sample program in Figure 1 to show
our backward symbolic execution on a relevant slice. Note that
although we show this example at the source code level, our im-
plementation is at the Java bytecode level. Suppose the input is
⟨x == 6, y == 5, z == 2⟩. The relevant slice for the execution trace
of this input is [5,6,7,10,11,16]. Backward symbolic execution
along this trace is shown in Table 3.

To construct the relevant-slice conditions, we need to precisely
represent the semantics of each bytecode type in the generated for-
mula. There are more than 200 different bytecode types in the Java
Virtual Machine instruction set, and all of them are handled in our
implementation. Our implementation also handles native method
calls (more details in the next paragraph). However, due to the
JSlice version that our implementation is based on, currently we
cannot handle programs with multi-threading and reflection.

In the original implementation of JSlice, the concrete operand
values of most executed instructions are not stored in the com-
pressed trace as they are not needed in the slicing process. How-

http://jslice.sourceforge.net/

Relevant slice Symbolic To be explained Relevant slice condition
values variables

16 out = b; { out→ b } { b } true
11 b = a; {out→ a, b→ a } { a } true
10 if(x+y > 10) {out→ a, b→ a } { x, y } x + y > 10
7 a = x; {out→ x, b→ x, a→ x } { x, y } x + y > 10
6 if(x-y >0) {out→ x, b→ x, a→ x } { x, y } x − y > 0 ∧ x + y > 10
5 scanf("%d %d %d",&x,&y,&z); {out→ x, b→ x, a→ x } { x, y } x − y > 0 ∧ x + y > 10

Table 3: Backward symbolic execution example

ever, these values are needed when the semantics of some oper-
ations cannot be precisely modelled. In such cases, we have to
under-approximate the generated path condition/relevant-slice con-
dition by concretizing certain symbolic values in the relevant-slice
condition. For example, Java allows a program to use libraries writ-
ten in other languages through native method call. Since the native
calls cannot be traced in Java Virtual Machine, the symbolic return
values from native calls cannot be precisely modelled. In this case,
we simply concretize the symbolic return value from a native call
using the concrete return value of the native call (therefore, the con-
crete return value of native calls are traced in our implementation).

In our implementation, we use the concept of execution index
[20] to uniquely identify a statement instance across different paths.
Two statement instances in different paths are the same iff. they
have exactly the same “execution index". In its simplest form, we
can use the path from root to a statement instance s in the Dy-
namic Control Dependence Graph of path π as the execution index
of statement instance s in path π.

As mentioned in Section 3, we need to reorder the branch condi-
tions in a relevant-slice condition in our path exploration process.
Let rs(C,π) be the relevant slice on trace π w.r.t. the slicing cri-
teria C. Let rsc(C,π) be the relevant-slice condition computed
on rs(C,π). To reorder the branch conditions in rsc(C,π) using
the reorder procedure shown in Algorithm 1, we need to compute
a relevant slice using each branch instance in rs(C,π) as the slic-
ing criteria. Suppose there are m branch instances in rs(C,π),
our implementation traverses the trace π for m times to compute
the m relevant slices. In future, we plan to speed up this process,
by computing all m relevant slices at the same time of computing
rs(C,π). We also observe that there are a lot similarities among
the slices w.r.t. different branch instances (used as slicing criteria)
in the same trace. For example, if a branch instance bi is in the
relevant slice of branch instance bj , then the relevant slice w.r.t. bi
is a subset of the relevant slice w.r.t. bj . In future, we could exploit
the similarities among these slices to further reduce the cost of our
reorder procedure.

Our execution engine is a combined infra-structure for dynamic
dependency analysis and dynamic symbolic execution. Thus, apart
from computing relevant-slice conditions, we can simply disable
the dependency analysis in our engine to compute path conditions.
The path conditions and relevant-slice conditions generated from
our tool are in the format of SMT22, which can be solved by var-
ious Satisfiability Modulo Theory or SMT solvers. In our imple-
mentation, we choose Z3 [4]3 as the SMT solver for our tool.

5. EXPERIMENTS
In the following, we first compare our relevant-slice condition

2
http://combination.cs.uiowa.edu/smtlib/

3
http://research.microsoft.com/en-us/um/redmond/

projects/z3/

based path exploration method with Directed Automated Random
Testing (DART). We then present an application of relevant-slice
conditions in the debugging of evolving programs.

5.1 Path exploration
We compare our path exploration algorithm with DART. The

subject programs shown in Table 4 are from SIR [5] repository.
The lines of code (LOC) in each program are also shown.

Recall that our path search is complete as supported by Theorem
3.2. However, the completeness is difficult to achieve in practice for
several reasons. Two of the main reasons are the limited power of
current SMT solvers and imprecise modelling of program seman-
tics. Because of these reasons, our technique may miss a certain
relevant-slice condition rsci when DART can explore a path whose
relevant-slice condition is rsci. The example below explains how
imprecise modelling of array can causes our implementation to be
not as complete as DART in terms of relevant-slice condition cov-
erage.

1 int x, y; //input
2 int out; //output
3 int a[2] = {0,1};
4 scanf("%d %d", &x, &y);
5 if(x > 0)
6 printf("x is greater than zero\n");
7 if(a[x]>0){
8 if(y > 0)
9 out = 1;
10 else
11 out = -1;
12 }else{
13 out = 0;
14 }
15 printf("%d\n", out);//slicing criteria

In our current implementation, we concretize symbolic array index
using the value observed at execution time. Suppose the initial in-
put for our method and DART are both ⟨x == 0, y == 0⟩. Due to the
concretization of symbolic array index, the branch at line 7 cannot
contribute a branch condition to either path condition or relevant-
slice condition. The path condition and relevant-slice condition for
⟨x == 0, y == 0⟩ are ¬(x > 0) and true respectively. Since the
relevant-slice condition for the initial input ⟨x == 0, y == 0⟩ is
true (containing no branch condition), our technique terminates.
However, some relevant-slice conditions are missed by our tech-
nique. In particular, the relevant-slice conditions of paths that eval-
uate branch at line 7 to false are missed. In contrast, DART could
explore all feasible paths (hence all relevant-slice conditions) of the
above program. Although the branch at line 5 cannot directly affect
the computation of out, it can help DART to negate the branch at
line 7 due to the correlation between the two branches. If arrays are
modelled precisely, this problem will disappear.

http://combination.cs.uiowa.edu/smtlib/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/

Subject prog. Size (LOC) Completeness Time #Testcases Avg. formula size #Solver calls
RSC DART RSC DART RSC DART RSC DART

Tcas 113 100% 6.3s 13.1s 29 88 5744 64810 412 939
BinarySearchTree 175 75% 6.1s 58.6s 64 453 3836 49266 163 3188

OrdSet 211 79% 2.1s 7.4s 12 59 6444 55461 96 293
Schedule 257 100% 0.3s 15.4s 3 75 1808 13728 13 932

DisjointSet 102 100% 20.8s 64.8s 69 278 7643 170533 1192 3855

Table 4: Experiments in full program exploration

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 0 2 4 6 8 10 12 14 16

Time (seconds)

Algorithm 1
DART

(a) Tcas

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 0 10 20 30 40 50 60 70

Time (seconds)

Algorithm 1
DART

(b) BinarySearchTree

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 0 1 2 3 4 5 6 7 8

Time (seconds)

Algorithm 1
DART

(c) OrdSet

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 0 2 4 6 8 10

Time (seconds)

Algorithm 1
DART

(d) Schedule

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 0 10 20 30 40 50 60 70

Time (seconds)

Algorithm 1
DART

(e) DisjointSet
Figure 7: Relevant-slice condition coverage comparison

The “Completeness” column in Table 4 measures how much
incompleteness in relevant-slice condition coverage is introduced
by the imprecise modelling of program semantics in our imple-
mentation. The numbers in the “Completeness” column are com-
puted as follows. Let the program being explored be P . We em-
ploy DART on P to explore program paths and construct a test-
suite TDART−ALL which contains the set of all paths in P cov-
ered by DART. For each test case t in TDART−ALL, we compute
the relevant-slice condition on the execution trace of t and put this
relevant-slice condition into a set SDART−ALL. Similarly, we gen-
erate a test-suite TRSC for program P using our path exploration
method. For each test case t in TRSC , we compute the relevant-
slice condition on the execution trace of t and put this relevant-
slice condition into a set SRSC . Then the “Completeness” column
in Table 4 is ∣SRSC ∣

∣SDART−ALL ∣ . As shown in Table 4, our method can-
not always achieve 100 percent relevant slice coverage as compared
to DART due to the imprecise modelling of program semantics in
our implementation. Note that this does affect the validity of the
completeness claim in Theorem 3.2, the incompleteness is only in
the implementation.

In columns 4-11 of Table 4, we compare the time, number of
generated test cases, formula size and number of solver calls be-
tween our method and DART. The formula size is measured by
the number of bytes in the SMT2 formula file. For getting these
numbers, both our method (RSC) and the DART method are run to

completion, and the running time is recorded. Note that the time
reported in Table 4 includes the time taken in every steps of our
method and DART. For example, the time taken by our method
includes the time for program execution, relevant slicing, relevant-
slice condition computation, branch condition reordering, formula
solving, etc. As shown in Table 4, our technique takes much less
time than DART. The efficiency comes from several sources. First,
since we use relevant-slice condition instead of path condition, the
formula size of our approach is much smaller than that of DART.
This reduces the time taken by the solver. Second, the number of
different relevant-slice conditions is considerably smaller than the
number of path conditions. This reduces both the number of exe-
cutions and the number of solver calls.

Figure 7 compares the relevant-slice condition coverage of our
Algorithm 1 with Directed Automated Random Testing (DART)
under the same time limit. Note that DART intends to achieve path
coverage. However, as we have observed - several paths may have
the same input-output relationship, and testing is always done by
checking outputs. We check the number of relevant-slice condi-
tions that are covered by the paths explored in DART search. As
shown in Figure 7, our technique gets higher relevant-slice condi-
tion coverage then DART when the given time is short.

5.2 Debugging of evolving programs
The obvious application of relevant-slice conditions is in soft-

ware testing - it groups program paths and can be used to efficiently

Subject prog. Stable version Buggy version Diff Time Debugging results
PC RSC PC RSC

JLex 1.2.1 (7290 LOC) 1.1.1 (6984 LOC) 518 LOC 543 min 15 min 50 LOC 3 LOC
JTopas 0.8 (4514 LOC) 0.7 (5754 LOC) 2489 LOC 81 min 5 min 4 LOC 4 LOC

Table 5: DARWIN debugging results (LOC stands for Lines of Code)

generate a concise test-suite. We now show another application of
relevant-slice conditions namely in the debugging of evolving pro-
grams. As a program evolves, functionality which worked earlier
breaks. This is commonly known as software regressions. For any
large scale software development, debugging the root-case of re-
gressions is an extremely time consuming activity.

We applied our relevant-slice conditions on the DARWIN method
for debugging evolving programs [14]. Given two program ver-
sions P and P ′, and a test case t which passes in P but fails in
P ′, the work in [14] tries to find the root cause of the failure of t
in P ′. The debugging proceeds by computing and composing the
path conditions of t in P and P ′, as follows.

First, the path conditions f and f ′ of t in P and P ′ are computed.
We then compute the formula f ∧ ¬f ′ as follows. Suppose f ′ is
f ′ = (ψ1 ∧ψ2 ∧ . . .∧ψm) where ψi are primitive constraints. The
following m formulae {ϕi ∣ 0 ≤ i < m} are then solved where

ϕi
def= f ∧ ψ1 ∧ . . . ψi ∧ ¬ψi+1. We invoke a Satisfiability Modulo

Theory or SMT solver to solve the m formulae {ϕi ∣ 0 ≤ i < m}.
Finally, for every ϕi which is satisfiable, we can find a single line in
the source code which is a potential error root cause — the branch
corresponding to ψi+1 (which is negated in ϕi).

We observe that the path conditions f and f ′ in the above method
can be replaced by relevant-slice conditions. Path conditions are
calculated by a forward computation along an execution trace. Thus,
a path condition is not “goal-directed” — it contains the constraints
of branches which are not “related” to the observable error. In
particular, a path condition will typically contain constraints for
branches which are not in the dynamic or relevant slice of the ob-
servable error. Consider the following example program

1 ... // input inp1, inp2
2 if (inp1 > 0)
3 x = inp1 + 1;
4 else
5 x = inp1 - 1;
6 if (inp2 > 0)
7 y = inp2 + 1
8 else
9 y = inp2 - 1;
10 ... // output x, y

Suppose the observed value of x is unexpected for inp1 ==
inp2 == 0 because of a “bug” in line 2 (say, the condition should
be inp1 >= 0). The path condition is ¬(inp1 > 0) ∧ ¬(inp2 >
0). Clearly, the constraint ¬(inp2 > 0) corresponding the the
branch in line 6 is unrelated to the observable error (unexpected
value of x). Indeed, line 6 is not in the dynamic slice or relevant
slice of the slicing criterion corresponding to the output value of x
in line 10.

Thus, due to the inherent parallelism in sequential programs,
path conditions contain constraints for branches which are not in
the slice of the observed error. Composing these path conditions
for debugging then allows for such “unrelated” branches to be in-
corporated into the bug report (which is output by the debugging
method). Indeed including these “unrelated” branch constraints in-
creases the burden on the SMT solvers invoked by the DARWIN
method, both in terms of the size of the formulae and the num-
ber of the formulae to solve. In addition, these “unrelated” branch

constraints also introduce some false positives into the bug report
produced by the DARWIN method.

Replacing path condition with relevant-slice condition in the DAR-
WIN method resolves these issues. Thus, given a test case t that
passes in the old version program P but fails in the new version
program P ′ — we now compute g and g′, the relevant-slice con-
dition of t in P and P ′ respectively. We then solve g ∧ ¬g′ in a
manner similar to the solving of f ∧ ¬f ′ in DARWIN (where f, f ′

were the path conditions of t in programs P,P ′).
We compare the debugging result of DARWIN using relevant-

slice conditions with the original DARWIN method (which uses
path conditions) in Table 5.

Both methods are fully automated. We did not use the same SIR
programs as used in Section 5.1 because debugging regression er-
rors for SIR programs are usually trivial. This is because the differ-
ence between two SIR program versions is usually small. The first
subject program being used is JLex4. JLex is a lexical analyzer
generator written in Java. We use version 1.2.1 of JLex as the sta-
ble version, and version 1.1.1 as the buggy version. There are 6984
and 7290 lines of code in version 1.1.1 and version 1.2.2 respec-
tively. The changes across version 1.1.1 and version 1.2.1 consist
of 518 lines of code. In particular, the version 1.1.1 of JLex can-
not recognize ‘\r’ as the newline symbol, while in version 1.2.1 this
bug is fixed. We use an input file manifesting this bug.

The experimental results from DARWIN using relevant-slice con-
ditions vs. the original DARWIN method appears in Table 5. The
original DARWIN method, which uses path conditions, takes 543
minutes (or 9 hours) to perform the debugging. The result of DAR-
WIN is a bug report containing 50 lines of code, which are high-
lighted to the programmer as potential root-causes of the observ-
able error. In contrast, DARWIN using relevant-slice condition
takes only 15 minutes. The result is a bug report containing only
3 lines of code — potential root causes of the observed error. In-
deed, the actual error root-cause lies in one of these three lines of
code. Thus, by using relevant-slice conditions inside our DARWIN
debugging method - we could avoid 47 false positives among the
potential error causes which are reported to the programmer. More-
over, there is a huge savings in the debugging time (15 minutes vs 9
hours) which comes from the relevant-slice conditions being much
smaller than path conditions.

We also conducted experiments using JTopas 5as the subject
program. JTopas is a Java library for parsing arbitrary text data.
We use version 0.8 of JTopas as the stable version, and ver-
sion 0.7 as the buggy version. There are 5754 and 4514 lines of
code in version 0.7 and version 0.8 respectively. JTopas allows
users to customize whitespace characters (i.e. characters that are
considered as whitespace characters) by using function setWhites-
paces. JTopas also uses a boolean field _defaultWhitespaces to
control whether the default whitespace characters are used or the
user-customized whitespace characters are used. To use the cus-
tomized whitespace characters, _defaultWhitespaces has to be set
to false. Unfortunately, the buggy JTopas-0.7 does not reset
the member _defaultWhitespaces leading to the default whitespace

4
http://www.cs.princeton.edu/~appel/modern/java/JLex/

5
http://jtopas.sourceforge.net/jtopas/index.html

http://www.cs.princeton.edu/~appel/modern/java/JLex/
http://jtopas.sourceforge.net/jtopas/index.html

characters still being used instead of the customized ones although
the user has specified the custom whitespace characters. In our
experiment, we customize whitespace characters to {‘ ’, ‘\r’,‘\t’}
({‘ ’, ‘\n’, ‘\r’,‘\t’} by default) and use an input file manifesting
the aforementioned bug. The debugging results of DARWIN us-
ing path condition and DARWIN using relevant-slice condition are
shown in Table 5. The results from the original DARWIN method
(using path condition) and DARWIN using relevant-slice condi-
tion are both four lines of code. They both contain the location
where ‘\n’ is treated differently between the two versions. The pin-
pointed location shows that the stable version does not consider
‘\n’ as a whitespace. In contrast, the buggy version still treats ‘\n’
as a whitespace because _defaultWhitespaces is true (even though
whitespace characters have already been customized). From this
clue, the programmer could easily infer that the member _default-
Whitespaces was not assigned to the correct value. Although using
relevant-slice condition does not eliminate any false positives in the
debugging result, it does reduce the time taken by DARWIN from
81 minutes to 5 minutes.

6. THREATS TO VALIDITY
Our path exploration does not try to cover all paths. Instead, we

try to group paths based on symbolic outputs. This is done with
the goal of test-suite construction, where testing will expose pos-
sible failures in the program. However, failure of a test case does
not only come from unexpected outputs - it can also come from
program crashes. Thus, for the paths which we do not explore if
they contain program crashes - these will not be exposed by the
test-suite computed by our technique. Realistically, our test-suite
construction could be supplemented by techniques to statically de-
tect possible program crashes, such as memory error detection [19].

Due to the conservative nature of static analysis used in com-
puting relevant slice, our technique may under-approximate some-
times. In that case, we may explore more than one paths that have
the same relevant-slice condition. Consider the following program

101 if(x > 0){
102 p.num = 0;
103 }
104 out = q.num;

Suppose p and q never alias to each other. If the static analysis can-
not determine the non-alias between p and q, line 104 is potential
dependent on line 101 when the branch at line 101 is evaluated to
false. Therefore, the branch at line 101 is included in relevant slice
and our technique will try to explore both directions of the branch at
line 101, which is unnecessary. Note that this under-approximation
of relevant-slice condition only causes duplicated exploration of
some relevant-slice conditions, it does not affect the completeness
claim of our technique.

Although our technique considerably improves the efficiency of
the path exploration, the path explosion problem still exist. In the
worst case, the number of relevant-slice conditions grows exponen-
tially with the size of the program.

7. RELATED WORK
The technique proposed in this paper is based on dynamic path

exploration [8, 16] and relevant slicing [1, 9, 17]. Our technique
improves existing dynamic path exploration techniques by group-
ing several paths together using relevant-slice condition. Existing
dynamic path exploration tries to achieve path coverage. In con-
trast, our technique only selects one path from each relevant-slice
condition to explore.

There are several works which focus on improving the efficiency
of dynamic path exploration. In [6], function summaries are gen-
erated and exploited. In [7], the grammar of the input is used to
avoid generating large percentage of invalid inputs. Our approach
is orthogonal to these approaches, therefore, our approach can be
combined together with any of these approaches to further improve
the efficiency of the path search.

In [15], a program is statically decomposed into several path
families, where each path family contains several paths that share
similar behavior. Instead of analyzing each path individually, a
program can be analyzed at the granularity of path family. The
authors of [15] also compute a “path family condition” for each
path family, which could characterize that path family. The path
partition based on relevant-slice condition is different from the no-
tion of “path family” in [15] in the sense that “path family” is
more general. For example, all program paths in Figure 1 can be
grouped into one path family, but they are grouped into three parti-
tions by our technique. At the same time, “path family condition”
does not the same input-output relationship, whereas relevant-slice
condition does. The main difference between our work and [15]
lies in the static vs. dynamic nature of the two techniques. The
work in [15] statically computes their path family conditions, while
we dynamically explore the relevant-slice conditions. Because of
the dynamic nature of our method, we can under-approximate the
relevant-slice conditions , while [15] over-approximates their “path
family conditions" if needed. Clearly, the dynamic nature of our
method makes it more suitable for test generation. Note that the
effect of program statements written in real-life programming lan-
guages are hard to precisely model as symbolic formulae. In such
a situation, under-approximation is a practical simplification, since
it amounts to concretizing parts of the formula.

Other researches have also used the notion of “path equivalence”
to alleviate the path explosion problem. However, what paths are
considered equivalent are different between our work and earlier
works. The difference in the definition of path equivalence origi-
nates from the different goals of our work and earlier works. In [2],
the goal is to explore all possible program states. Based on this
goal, two paths are equivalent if the symbolic states of all live vari-
ables are the same. In contrast, we only consider the variables that
can affect the output – two paths are equivalent if they have the
same symbolic expression for the output. In [11], the goal is to
reach some critical locations in a program. Therefore, two paths
are equivalent if they cannot reach any critical locations for the
same reason (blocked by the same condition).

Apart from the application of relevant-slice condition in debug-
ging mentioned in Section 5, there are many other path condition
based techniques that could benefit from relevant-slice condition.

Our relevant-slice condition can be used to minimize an existing
test-suite [10, 18]. If a test-suite contains two test cases that have
the same relevant-slice condition, these two test cases compute the
output in the same way. Therefore, we can choose to eliminate one
of them to make the test-suite smaller.

The work in [3] explores paths to generate program invariants.
For each path explored, the path condition serves as a pre-condition
and the symbolic program output is treated as a post-condition.
Thus, each explored path produces a program invariant which is
defined as such a (pre-condition, post-condition) pair. Similar ap-
proaches are used in [6, 12] to generate method summaries. In-
stead of using path condition, we can generate such program in-
variants using relevant-slice conditions — the relevant-slice condi-
tion is the pre-condition and for each relevant-slice condition ex-
plored, there is a unique symbolic output which serves as the post-
condition. Moreover, the invariants generated using relevant-slice

conditions will be simpler (as relevant-slice conditions are smaller
than path conditions) and fewer (since a single relevant-slice con-
dition groups more paths).

8. DISCUSSION
In this paper, we have presented a novel path exploration method

based on symbolic program outputs. Our path exploration dynam-
ically groups paths on-the-fly, where two paths that have the same
symbolic output are grouped together. Given such a path partition-
ing, we can generate a test case from each partition. This enables us
to efficiently obtain a concise test-suite which stresses all possible
input-output relationships in the program.

Our path exploration method is complete, that is, it covers all
possible symbolic outputs in a given program. We also experimen-
tally compare the efficiency and coverage of our method with re-
spect to Directed Automated Random Testing, another path search
method based on symbolic execution.

Apart from testing, the path partitioning computed by our method
can be exploited in other software engineering activities. We have
shown its use in the debugging of errors introduced by program
changes, that is, in root-causing observable software regressions.
By comparing the path partitioning in two program versions, we
infer the semantic differences across the versions, leading to pre-
cise root cause identification.

Acknowledgements. This work was partially supported by a
Ministry of Education research grant MOE2010-T2-2-073 (R-252-
000-456-112 and R-252-100-456-112).

9. REFERENCES
[1] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. London.

Incremental regression testing. In Proceedings of the
Conference on Software Maintenance, ICSM ’93, pages
348–357, Washington, DC, USA, 1993. IEEE Computer
Society.

[2] P. Boonstoppel, C. Cadar, and D. Engler. Rwset: Attacking
path explosion in constraint-based test generation. Tools and
Algorithms for the Construction and Analysis of Systems,
pages 351–366, 2008.

[3] C. Csallner, N. Tillmann, and Y. Smaragdakis. Dysy:
dynamic symbolic execution for invariant inference. In
Proceedings of the 30th international conference on
Software engineering, ICSE ’08, pages 281–290, New York,
NY, USA, 2008. ACM.

[4] L. De Moura and N. Bjørner. Z3: An efficient smt solver.
Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340, 2008.

[5] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact. Empirical Software Engineering,
10(4), 2005.

[6] P. Godefroid. Compositional dynamic test generation. In
Proceedings of the 34th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL
’07, pages 47–54, New York, NY, USA, 2007. ACM.

[7] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based
whitebox fuzzing. In Proceedings of the 2008 ACM
SIGPLAN conference on Programming language design and
implementation, PLDI ’08, pages 206–215, New York, NY,
USA, 2008. ACM.

[8] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In Proceedings of the 2005 ACM

SIGPLAN conference on Programming language design and
implementation, PLDI ’05, pages 213–223, New York, NY,
USA, 2005. ACM.

[9] T. Gyimóthy, A. Beszédes, and I. Forgács. An efficient
relevant slicing method for debugging. In Proceedings of the
7th European software engineering conference held jointly
with the 7th ACM SIGSOFT international symposium on
Foundations of software engineering, ESEC/FSE-7, pages
303–321, London, UK, 1999. Springer-Verlag.

[10] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for
controlling the size of a test suite. ACM Trans. Softw. Eng.
Methodol., 2:270–285, July 1993.

[11] K. McMillan. Lazy annotation for program testing and
verification. In Computer Aided Verification, pages 104–118.
Springer, 2010.

[12] S. Person, M. Dwyer, S. Elbaum, and C. Pasareanu.
Differential symbolic execution. In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of
software engineering, pages 226–237. ACM, 2008.

[13] D. Qi, H. D. T. Nguyen, and A. Roychoudhury. Path
exploration based on soymbolic output. Technical report,
http://dl.comp.nus.edu.sg/dspace/handle/
1900.100/3347, March 2011.

[14] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani.
DARWIN: an approach for debugging evolving programs. In
Proceedings of the the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering,
ESEC/FSE ’09, pages 33–42, New York, NY, USA, 2009.
ACM.

[15] R. Santelices and M. J. Harrold. Exploiting program
dependencies for scalable multiple-path symbolic execution.
In Proceedings of the 19th international symposium on
Software testing and analysis, ISSTA ’10, pages 195–206,
New York, NY, USA, 2010. ACM.

[16] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit
testing engine for c. In Proceedings of the 10th European
software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of
software engineering, ESEC/FSE-13, pages 263–272, New
York, NY, USA, 2005. ACM.

[17] T. Wang and A. Roychoudhury. Dynamic slicing on Java
bytecode traces. ACM Trans. Program. Lang. Syst.,
30:10:1–10:49, March 2008.

[18] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur.
Effect of test set minimization on fault detection
effectiveness. In Proceedings of the 17th international
conference on Software engineering, ICSE ’95, pages 41–50,
New York, NY, USA, 1995. ACM.

[19] Y. Xie, A. Chou, and D. Engler. Archer: using symbolic,
path-sensitive analysis to detect memory access errors. In
Proceedings of the 9th European software engineering
conference held jointly with 11th ACM SIGSOFT
international symposium on Foundations of software
engineering, ESEC/FSE-11, pages 327–336, New York, NY,
USA, 2003. ACM.

[20] B. Xin, W. N. Sumner, and X. Zhang. Efficient program
execution indexing. In Proceedings of the 2008 ACM
SIGPLAN conference on Programming language design and
implementation, PLDI ’08, pages 238–248, New York, NY,
USA, 2008. ACM.

http://dl.comp.nus.edu.sg/dspace/handle/1900.100/3347
http://dl.comp.nus.edu.sg/dspace/handle/1900.100/3347

	Introduction
	Overview
	Our Approach
	Path exploration algorithm
	Theorems

	Implementation
	Experiments
	Path exploration
	Debugging of evolving programs

	Threats to validity
	Related Work
	Discussion
	References

