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Efficient program path exploration is important for many software engineering activities such as testing,

debugging and verification. However, enumerating all paths of a program is prohibitively expensive. In this
paper, we develop a partitioning of program paths based on the program output. Two program paths are

placed in the same partition if they derive the output similarly, that is, the symbolic expression connecting

the output with the inputs is the same in both paths. Our grouping of paths is gradually created by a
smart path exploration. Our experiments show the benefits of the proposed path exploration in test-suite

construction.

Our path partitioning produces a semantic signature of a program — describing all the different symbolic
expressions that the output can assume along different program paths. To reason about changes between

program versions, we can therefore analyze their semantic signatures. In particular, we demonstrate the

applications of our path partitioning in testing and debugging of software regressions.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—Debugging aids, Symbolic
execution; D.3.4 [Programming Languages]: Processors—Debuggers

General Terms: Experimentation, Reliability

Additional Key Words and Phrases: Software Testing, Symbolic Execution, Software Evolution

1. INTRODUCTION
Programs follow paths. Indeed a program path constitutes a “unit” of program behavior in many
software engineering activities, notably in software testing and debugging. Use of program paths
to capture underlying program behavior is evidenced in techniques such as Directed Automated
Random Testing or DART [Godefroid et al. 2005] - which try to achieve path coverage in test-suite
construction.

Why do we attempt to cover more paths in software testing? The implicit assumption here is that
by covering more paths, we are likely to cover more of the possible behaviors that can be exhibited
by a program. However, as is well known, path enumeration is extremely expensive. Hence any
method which covers various possible behaviors of a given program while avoiding path enumera-
tion, can be extremely useful for software testing.

We note that software testing typically involves checking the program output for a given input -
whether the observed output is same as the “expected” output. Hence, instead of enumerating in-
dividual program paths, we could focus on all the different ways in which the program output is
computed from the program inputs. In other words, we can define an output as a symbolic expres-
sion in terms of the program inputs. Thus, given a program P , we seek to enumerate all the different
possible symbolic expressions which describe how the output will be computed in terms of the in-
puts. Of course, the symbolic expression defining the output (in terms of the inputs) will be different
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1 int foo(int x, int y, int z){//input variables
2 int out; // output variable
3 int a;
4 int b = 2;
5 if(x - y > 0) //b1
6 a = x;
7 else
8 a = y;
9 if(x + y > 10) //b2
10 b = a;
11 if(z*z > 3) //b3
12 System.out.println("square(z) > 3");
13 else
14 System.out.println("square(z) <= 3");
15 out = b;
16 return out; //slicing criteria
17 }

Fig. 1: Sample program

along different program paths. However, we expect that the number of such symbolic expressions
to be substantially lower than the number of program paths. In other words, a large number of paths
can be considered “equivalent” since the symbolic expressions describing the output are the same.

To illustrate our observation, let us consider the program in Figure 1. The output variable out
can be summarized as follows.

— If x− y > 0 and x+ y > 10, then out == x
— If x− y ≤ 0 and x+ y > 10, then out == y
— If x+ y ≤ 10, then out == 2

The summary given in the preceding forms a “semantic signature” of the program as far as the
output variable out is concerned. Note that there are only three cases in the semantic signature -
whereas there are eight paths in the program. Thus, such a semantic signature can be much more
concise than an enumeration of all paths.

In this paper, we develop a method to compute such a semantic signature for a given program.
Our semantic signature is computed via dynamic path exploration. While exploring the paths of a
program, we establish a natural partitioning of paths on-the-fly based on program dependencies -
such that only one path in a partition is explored. Thus, for the example program in Figure 1 only
three execution traces corresponding to the three cases will be explored. For test-suite construction,
we can then construct only three tests corresponding to the three cases in the semantic signature.

How do we partition paths? The answer to this question lies in the computation of the output
variable. We consider two program paths to be “equivalent” if they have the same relevant slice
[Gyimóthy et al. 1999] with respect to the program output. A relevant slice is the transitive clo-
sure of dynamic data, control and potential dependencies. Data and control dependencies capture
statements which affect the output by getting executed; on the other hand, potential dependencies
capture statements which affect the program output by not getting executed. In Figure 1, even if
line 10 is not executed, the assignment to out in line 15 is potentially dependent on the branch
in line 9. This is to capture the fact that if line 9 is evaluated differently, the assignment in line 10
will be executed leading different values flowing to the variable out in line 15. We base our path
partitioning on relevant slices to capture all possible flows into the output variable - whether by the
execution of certain statements or their non-execution.

The contributions of this paper can be summarized as follows. We present a mechanism to parti-
tion program paths based on the program output. The grouping of paths is done by efficient dynamic
path exploration - where paths sharing the same relevant slice naturally get grouped together. We
show that our smart path exploration is much more time efficient as opposed to full path exploration
via path enumeration. Our efficient path exploration method has immediate benefits in software test-
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ing. Since our path exploration naturally groups several paths together - it is much more efficient
than the full path exploration (as in Directed Automated Random Testing or DART) as evidenced
by experiments. Moreover, since several paths are grouped as “equivalent” in our method (meaning
that these paths compute the output similarly), the test-suite generated from our path exploration
will also be concise.

Secondly, we show the application of our path partitioning method in reasoning about program
versions, in particular, for debugging the root-cause of software regressions. While trying to in-
troduce new features to a program, existing functionality often breaks; this is commonly called as
software regression. Given two program versions P, P ′ and a test t which passes in P while failing
in P ′ — we seek to find a bug report explaining the root cause of the failure of t in P ′. In an earlier
work [Qi et al. 2009], we presented the DARWIN approach for root causing software regressions.
The DARWIN approach constructs and composes the path conditions of test t in program versions
P, P ′ in trying to come up with a bug report explaining an observed regression. In this work, we
show that computing and composing the logical condition over a relevant slice (also called relevant-
slice condition throughout the paper) produces more pin-pointed bug reports in a shorter time — as
opposed to computing and composing path conditions. The reason for obtaining shorter bug reports
in lesser time comes from the path conditions containing irrelevant information which are filtered
out in relevant-slice conditions. Hence relevant-slice conditions are smaller formulae, which are
constructed and solved (via Satisfiability Modulo Theory solvers) more efficiently.

Finally, we show two applications of the “semantic signature” produced by our path partitioning
method. We first apply the “semantic signature” on test-suite augmentation, which is to augment the
existing test-suite after a program changes. We compare the semantic signatures of the previous and
current program versions. Differences in the signatures lead to test cases that have different outputs
in the two versions. These test cases are used to augment the existing test-suite. The “semantic
signature” can also help uncover Finite State Automata (FSA) from real programs. For programs
implementing FSA, uncovering the implemented FSA provides great help in understanding these
programs. Applying our method, by focusing on the FSA state, the computed “semantic signatures”
concisely represent the transitions of the FSA state, from which we can easily construct the FSA.

2. OVERVIEW
We begin with a few definitions.

DEFINITION 1 (PATH CONDITION). Given a program P and a test input t, let π be the execu-
tion trace of t in P . The path condition of π, say pcπ is a quantifier free first order logic formula
which is satisfied by exactly the set of inputs executing π in program P . Clearly, t |= pcπ .

The path condition is computed through symbolic execution. During symbolic execution, we inter-
pret each statement and update the symbolic state to represent the effects of the statements (such as
assignments) on program variables. At every conditional branch, we compute a branch constraint,
which is a formula over the program’s input variables which must be satisfied for the branch to
be evaluated in the same direction as the concrete execution. The result of symbolic execution is a
path condition, which is a conjunction of constraints corresponding to all branches along the path.
Any input that satisfies the path condition generated by executing an input t is guaranteed to follow
the same path as t. We take the example in Figure 2 to show that the effect of assignments is also
considered in path conditions. The path condition for input 〈x == 0〉 is ¬(x − 1 > 0), that is, the
effect of the assignment in line 3 is considered.

We now define slice conditions, which are path conditions computed over slices.

DEFINITION 2 (DYNAMIC SLICE CONDITION). Given a program P , a test input t and a slic-
ing criteria C — let π be the execution trace of t in P . Let π |C denote the projection of π w.r.t. the
dynamic slice of C in π. In other words, a statement instance s in π is included in the projection
π |C if and only if s is in the backward dynamic slice of C on π. The dynamic slice condition of C
in π is the path condition computed over the projected trace π |C .
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1 int foo(int x){ //input variable
2 int a = 0;
3 x = x - 1;
4 if(x > 0)
5 a = 1;
6 out = a;
7 return out;
8 }

Fig. 2: Example to show path condition and relevant-slice condition computation

9 if(x+y > 10) 

10 b=a; 

...... 

15 out = b; 

True

False

Potential dependence

Fig. 3: Example of potential dependence. The solid arrows denote the execution path. According
to Definition 3, (i) the variable b is not defined between line 9 and line 15 but there exists a path
(though line 10) along which b is defined, and (ii) evaluating the branch at line 9 differently may
cause the path through line 10 to be executed. Therefore, line 15 is potentially dependent on line 9.

Slice conditions are weaker than path conditions, that is, pcπ ⇒ dsc(π,C) where dsc(π,C) is the
dynamic slice condition of any slicing criteria C in π (see our technical report [Qi et al. 2011b]
for a simple proof of this claim). We now refine dynamic slice condition to relevant-slice condition
- the central concept behind our path partitioning. But first, let us recall the notion of potential
dependencies and relevant slices [Agrawal et al. 1993; Gyimóthy et al. 1999].

DEFINITION 3 (POTENTIAL DEPENDENCE [AGRAWAL ET AL. 1993]). Given an execution
trace π, let s be a statement instance and br be a branch instance that is before s in π. We say
that s is potentially dependent on br iff. there exists a variable v used in s such that (i) v is not
defined between br and s in trace π but there exists another path σ from br to s along which v is
defined, and (ii) evaluating br differently may cause this untraversed path σ to be executed.

An example of potential dependence for the program in Figure 1 is shown in Figure 3.
We now introduce the notion of a relevant slice, and relevant-slice condition, a logical formula

computed over a relevant slice.

DEFINITION 4 (RELEVANT SLICE). Given an execution trace π and a slicing criteria C in π,
the relevant slice in π w.r.t. C contains a statement instance s in π iff. C  s where denotes the
transitive closure of dynamic data, control and potential dependence.

Note that our definition of relevant slice is slightly different from the standard definition of rele-
vant slice [Agrawal et al. 1993; Gyimóthy et al. 1999]. In standard relevant slicing algorithm, if a
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statement instance s is included only by potential dependence, the statement instances that are only
control dependent by s are not included in the relevant slice. We have removed this restriction to
simplify the definition of relevant slice, it is simply the transitive closure of three kinds of program
dependencies — dynamic data dependencies, dynamic control dependencies and potential depen-
dencies. In the rest of the paper, all appearances of relevant slice and relevant-slice condition refer
to this simplified definition of relevant slice.

DEFINITION 5 (RELEVANT SLICE CONDITION). Given an execution trace π and a slicing cri-
teria C in π, the relevant slice condition in π w.r.t. criterion C is the path condition computed over
the statement instances of π which are included in the relevant slice of C in π.

We take the example program in Figure 2 to show that the effect of assignments is also considered
in relevant-slice condition computation (just as assignments are considered in path condition com-
putation). Let the slicing criteria be the value of out in line 7. The relevant slice for input 〈x == 0〉
is [2,3,4,6,7] and the corresponding relevant-slice condition is ¬(x − 1 > 0). That is, the effect of
the assignment in line 3 is considered.

We use the simple program in Figure 1 to illustrate the advantage of using relevant-slice condition
in dynamic path exploration. The slicing criteria is the variable out at line 16. Since each statement
is executed once, we do not distinguish between different execution instances of the same statement
in this example.

We use the executed branch sequence annotated with directions to represent an execution trace.
For example, the trace for input 〈x == 6, y == 2, z == 2〉 of the program in Figure 1 is denoted
as [b1t, b2f , b3t]. Let us take the input 〈x == 6, y == 2, z == 2〉 to see the differences between
path condition, dynamic slice condition and relevant-slice condition. Given the trace [b1t, b2f , b3t]
corresponding to input 〈x == 6, y == 2, z == 2〉, the path condition along this execution is
(x− y > 0) ∧ ¬(x+ y > 10) ∧ (z ∗ z > 3).

For the execution path of 〈x == 6, y == 2, z == 2〉, the dynamic backward slice result w.r.t.
the slicing criteria at line 16 is [4,15,16] - it contains no branches. The path condition computed over
the statements in the dynamic slice (or the dynamic slice condition) is simply the formula true.

Different from dynamic backward slicing, relevant slicing also includes the statement instances
that could potentially affect the slicing criteria. For example, if evaluating a branch differently could
affect the slicing criteria — such a branch is included in the relevant slice, even though it is not con-
tained in the dynamic backward slice. In the example program, the branch at line 9 can potentially
affect the value of out in the slicing criteria. This is because if the branch in line 9 is evaluated
differently (to true), the variable b is re-defined (in line 10) which affects the output variable out.
Hence the relevant slice contains line 9. The entire relevant slice is [4,9,15,16], and the relevant-slice
condition on it is ¬(x+ y > 10). Any input t satisfying the relevant-slice condition ¬(x+ y > 10)
has the same symbolic expression for the output out, which in this case turns out be the constant
value 2.

As mentioned earlier, program paths can be partitioned based on the input-output relation.
Relevant-slice condition perfectly serves this purpose. If two paths have the same relevant slice
with output being the slicing criteria, then they have the same input-output relation. The path parti-
tions of the program in Figure 1 are shown in Figure 4. The grey nodes in Figure 4 are the statements
that are contained in the relevant slice w.r.t. to the unique slicing criteria at line 16 in Figure 1. As
we can see from Figure 4, based on the relevant slice, we can group the eight program paths into
three path partitions.

Just like the DART approach [Godefroid et al. 2005] uses path conditions to dynamically explore
paths in a program, relevant-slice condition can be used to explore the possible symbolic expressions
that the program output can be assigned to. How would such an exploration proceed? Suppose we
simply use relevant-slice condition to replace path condition in DART’s path exploration. Given a
relevant-slice condition ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1 ∧ ψk — we construct k sub-formulae of the form of
ψ1∧ψ2 . . .∧ψi−1∧¬ψi, where 1 ≤ i ≤ k. The path exploration is done by solving these formulae
to get new inputs and iteratively applying this process to the new inputs. Note that each sub-formula

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:6

5 if(x-y > 0) 

6 a=x; 

9 if(x+y > 10) 

10 b=a; 

11 if(z*z > 3)

12 ...... 14 ...... 

15 out = b; 

5 if(x-y > 0) 

9 if(x+y > 10) 

10 b=a; 

11 if(z*z > 3)

    12 ...... 14 ...... 

15 out = b; 

8 a=y; 

5 if(x-y > 0) 

6 a=x; 

9 if(x+y > 10) 

11 if(z*z > 3)

12 ...... 14 ......

15 out = b; 

8 a=y; 

out == x out == y out == 2 

4 int b =2;

16 return out; 16 return out; 16 return out;

4 int b =2;4 int b =2;

Fig. 4: Path partitions of the example in Figure 1

shares a common prefix with the relevant-slice condition. Now, we examine the effectiveness of
this simple solution on the program in Figure 1. Depth-first exploration strategy is used, and path
exploration terminates when no new sub-formulae are generated. Let the initial input be 〈x ==
6, y == 2, z == 2〉, the path for this input is [b1t, b2f , b3t]. The entire path exploration process is
shown in Table I. The “from” column of Table I can be understood as follows. If the “from” column
contains α.β, it means that the current input is generated by negating the βth branch constraint of
the relevant-slice condition in the αth row.

Recall from Section 1 that we expect the following three symbolic expressions for out to be
explored.

— x− y > 0 ∧ x+ y > 10 : out == x
—¬(x− y > 0) ∧ x+ y > 10: out == y
—¬(x+ y > 10): out == 2

As we can see from Table I , no path having relevant-slice condition ¬(x− y > 0) ∧ (x+ y > 10)
is explored. Therefore, this feasible relevant-slice condition is missed by the exploration process.
In addition, the relevant-slice condition ¬(x + y > 10) is explored several times. Thus, we cannot
simply replace path condition with relevant-slice condition in DART’s path exploration.

Let us examine closely what went wrong in the path exploration of Table I. In particular, the input
in the third row is generated by negating the second branch condition of the relevant-slice condition
in second row in Table I. That is, when we solve (x − y > 0) ∧ ¬(x + y > 10), we get an input
〈x == 6, y == 2, z == 2〉 whose relevant-slice condition is ¬(x+ y > 10). The branch condition
(x− y > 0) disappears in the new relevant-slice condition because the corresponding branch is not
contained in the relevant slice anymore. In contrast, DART follows certain path-prefixing properties
— if ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ψi is the prefix of a path condition (for some program input), the path
condition of any input satisfying ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ¬ψi will have ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ¬ψi as
a prefix. Such a property does not hold for relevant-slice condition. Hence, simply replacing path
condition with relevant-slice condition in DART not only causes redundant path exploration but
also makes the exploration incomplete (in terms of possible symbolic expressions that the output
variable may assume).

We have developed a path exploration method which avoids the aforementioned problems. While
exploring (groups of) paths based on relevant-slice condition, our method re-orders the constraints
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Table I: Path exploration based on relevant-slice conditions for example in Figure 1

No. From Input Path RSC Path condition
1 〈6, 2, 2〉 [b1t, b2f , b3t] ¬(x+ y > 10) (x− y > 0) ∧ ¬(x+ y > 10) ∧ (z ∗ z > 3)
2 1.1 〈6, 5, 2〉 [b1t, b2t, b3t] (x− y > 0) ∧ (x+ y > 10) (x− y > 0) ∧ (x+ y > 10) ∧ (z ∗ z > 3)
3 2.2 〈6, 2, 2〉 [b1t, b2f , b3t] ¬(x+ y > 10) (x− y > 0) ∧ ¬(x+ y > 10) ∧ (z ∗ z > 3)
4 2.1 〈2, 6, 2〉 [b1f , b2f , b3t] ¬(x+ y > 10) ¬(x− y > 0) ∧ ¬(x+ y > 10) ∧ (z ∗ z > 3)

Table II: Path exploration with reordered relevant-slice conditions for example in Figure 1

No. From Input Path RSC Reordered RSC
1 〈6, 2, 2〉 [b1t, b2f , b3t] ¬(x+ y > 10) ¬(x+ y > 10)
2 1.1 〈6, 5, 2〉 [b1t, b2t, b3t] (x− y > 0) ∧ (x+ y > 10) (x+ y > 10) ∧ (x− y > 0)
3 2.2 〈5, 6, 2〉 [b1f , b2t, b3t] ¬(x− y > 0) ∧ (x+ y > 10) (x+ y > 10) ∧ ¬(x− y > 0)

in the relevant-slice condition. The path exploration is based on reordered relevant-slice condition.
A reordered relevant-slice condition satisfies the following property (which also holds for path
conditions): if ψ1∧ψ2 . . .∧ψi−1∧ψi is a prefix of a reordered relevant-slice condition, the reordered
relevant-slice condition of any input satisfying ψ1∧ψ2 . . .∧ψi−1∧¬ψi has ψ1∧ψ2 . . .∧ψi−1∧¬ψi
as a prefix.

3. OUR APPROACH
In this section, we give our path exploration algorithm based on relevant-slice condition. We then
give theorems on the completeness of our path exploration algorithm. Throughout the paper, we
assume that the slicing criteria is in a basic block that post-dominates the entry of the program.
More discussion of this assumption is provided at the beginning of Section 3.2.

First we introduce the following notations.

Notations. We use C to denote the unique slicing criteria. When used in a dynamic context, C
refers to the last executed instance of the slicing criteria. Given a test case t, we use π(t) to denote
the execution path of t. We use rs(sc, π) to denote the relevant slice on path π w.r.t. slicing criteria
sc. We use rsc(sc, π) to denote the relevant slice condition on path π w.r.t. slicing criteria sc. We
use reordered rsc(sc, π) to denote the reordered sequence of rsc(sc, π). We use br(ψ) to denote
the branch instance of a branch condition ψ. We use bc(b) to denote the branch condition generated
by b. Given a relevant-slice condition or reordered relevant-slice condition θ and a branch condition
ψ, we use θ\ψ to denote the result of removing ψ from θ. Recall that θ is a conjunction of branch
conditions. If ψ is contained in θ, ψ is deleted from the conjunction to get θ\ψ. Otherwise, θ\ψ is
the same as θ.

3.1. Path exploration algorithm
We now present our path exploration method which operates on a given program P . All relevant
slices and relevant-slice conditions are calculated on the same program P with respect to a slicing
criteria C (which refers to the program output).

We group paths based on relevant-slice condition. As explained in the last section, a DART-like
search based on relevant-slice conditions is incomplete, that is, not all possible symbolic expressions
that the output may assume will be covered. For this reason, we reorder the relevant-slice conditions.

Our path exploration algorithm RSCExplore is shown in Algorithm 1. The core of the algorithm is
the reorder procedure, which reorders the relevant-slice conditions. When we compute the relevant-
slice condition, we get a sequence of branch conditions – ordered according to the sequence in which
they are traversed. We use the reorder function to reorder the branch conditions, after which the
path exploration will be performed based on the reordered sequence of branch conditions.
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Algorithm 1 RSCExplore:path exploration using relevant-slice condition
1: Input:
2: P : The program to test
3: t : An initial test case for P
4: C : A slicing criterion
5: Output:
6: T : A test-suite for P
7:
8: Stack = null // The stack of partial rsc to be explored
9: Execute(t, 0)

10: while Stack is not empty do
11: let 〈f, j〉 = pop(Stack)
12: if f is satisfiable then
13: let µ be one input that satisfies f
14: put µ into T
15: Execute(µ, j)
16: end if
17: end while
18: return T
19:
20: procedure Execute(t, n)
21: execute t in P and compute relevant-slice condition rsc w.r.t. C
22: let rsc = ψ1 ∧ ψ2 ∧ . . . ∧ ψm−1 ∧ ψm

23: let rsc′ = reorder(rsc)
24: suppose rsc′ = ψ′1 ∧ ψ′2 ∧ . . . ∧ ψ′m−1 ∧ ψ′m
25: for all i from n+1 to m do
26: let h = (ψ′1 ∧ ψ′2 ∧ . . . ∧ ψ′i−1 ∧ ¬ψ′i)
27: push 〈h, i〉 into Stack
28: end for
29: return
30: end procedure
31:
32: procedure reorder(seq)
33: if |seq| ≤ 1 then
34: return seq
35: end if
36: let seq be ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1 ∧ ψk

37: seq1 = true, seq2 = true
38: for all i from 1 to k-1 do
39: if br(ψi) is in relevant slice of br(ψk) then
40: seq1 = seq1 ∧ ψi

41: else
42: seq2 = seq2 ∧ ψi

43: end if
44: end for
45: return reorder(seq1) ∧ ψk ∧ reorder(seq2)

46: end procedure

The reorder procedure is given in Algorithm 1. The reordering works in a quick-sort-like fashion.
In each call to reorder, we split the to-be-reordered sequence into two sub-sequences. Suppose the
last branch condition in the sequence is from branch instance bk. Then bk is used as the “pivot” in
the splitting process. If a branch instance b is in the backward relevant slice of bk, then the branch
condition of b is placed before the branch condition of bk. Otherwise, the branch condition of b is
placed after the branch condition of bk. Then we recursively call the reorder procedure to reorder
the two sub-sequences.

We show the reorder procedure in action in Figure 5. Note that our reordering is done on branch
conditions in a relevant-slice condition. Since there is a unique branch condition for each branch
instance in the execution trace, the example in Figure 5 is on branch instances for simplicity. On the
left of Figure 5, the dependencies among all the branch instances are provided. If there is an arrow
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Algorithm 2 Augmented reorder
1: procedure reorder(seq, p)
2: let seq be ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1 ∧ ψk

3: if |seq| == 1 then
4: assign the priority of b(ψ1) as p@[b(ψ1)]
5: end if
6: if |seq| ≤ 1 then
7: return seq
8: end if
9: seq1 = true, seq2 = true

10: for all i from 1 to k-1 do
11: if b(ψi) is in relevant slice of b(ψk) then
12: seq1 = seq1 ∧ ψi

13: else
14: seq2 = seq2 ∧ ψi

15: end if
16: end for
17: assign the priority of b(ψk) as p@[b(ψk)]
18: seq′1 = reorder(seq1, p@[b(ψk)])
19: seq′2 = reorder(seq2, p)
20: return seq′1 ∧ ψk ∧ seq′2
21: end procedure

b1 b2 b3 b4 b5 b6

(a) Dependencies among branch instances
(Arrows denote both direct and indirect de-
pendencies).

b1 b2 b3 b4 b5 b6

b1 b3 b6 b5 b4 b2

b1 b3 b2 b4 b5

b5 b4 b2

b2 b4

b4 b2

b1 b3 b6 b2 b4 b5

b1 b3

b5 b2 b4

(b) Reorder process. Each arrow represents one single reorder
step. The “pivot” nodes are highlighted in grey.

Fig. 5: Reorder process for relevant slice condition from relevant slice [b1,b2,b3,b4,b5,b6]
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from bj to bi, then bi is in the relevant slice of bj. The “pivot” in each reorder step is marked in
dark; the other branches are reordered w.r.t. to the “pivot”. For example, initially b6 is the pivot and
we reorder b1, . . . b5 depending on whether they are in the relevant slice of b6.

In Algorithm 1, we use a stack to maintain the to-be-explored partial relevant-slice conditions.
The main algorithm keeps on processing the formulae in the stack when it is not empty. In each
iteration, the algorithm pops out one partial relevant-slice condition from the stack, and checks
whether it is satisfiable or not. If it is satisfiable, we get a new input µ by solving the formula. The
new input µ could lead to some unexplored relevant-slice condition. The relevant-slice condition
for the execution trace of input µ is then explored, as shown by the procedure Execute in Algorithm
1. Given the execution trace of µ, the relevant-slice condition over this trace w.r.t. the slicing criteria
C is first computed. The relevant-slice condition is reordered using the reorder procedure, and the
to-be-explored partial relevant-slice conditions are pushed into the stack.

The second parameter of Execute is used to avoid redundancy in path search. When Execute is
called with parameters t and n, let the reordered relevant-slice condition reordered rsc(C, π(t)) be
ψ′1∧ψ′2∧ . . .∧ψ′m−1∧ψ′m. For any partial relevant-slice condition ϕi = ψ′1∧ψ′2∧ . . .∧ψ′i−1∧¬ψ′i,
1 ≤ i ≤ n ≤ m, we know that ϕi has been pushed into the stack a-priori. So the for-loop in the
Execute procedure starts from n+ 1 to avoid these explored partial relevant-slice conditions.

The path exploration of Algorithm 1 when employed on the program in Figure 1 leads to the
relevant-slice conditions shown in Table II. If the “from” column of Table II contains α.β, it means
that the current input is generated by negating the βth branch constraint of the reordered relevant-
slice condition in the αth row. The path exploration based the reordered relevant-slice condition
explores all possible relevant-slice conditions of the program.

We now use the same example program in Figure 1 to explain that our technique is different
from employing path condition based path exploration on the static slice of the program. Given
a slicing criteria, we could first perform static slicing on the program with respect to the slicing
criteria. Since the static slicing result is also a complete program, we can enumerate all paths of
the static slice. Applying this approach on the program in Figure 1, the static slice result contains
all lines except for lines 11-14. As there are two branches in the static slice, path exploration based
on path condition explores all four feasible paths. In contrast, our technique generates only three
relevant-slice conditions as shown in Table II.

3.2. Proofs
Assumptions. We assume that the SMT solver used to solve relevant-slice conditions is sound

and complete (more discussion on this assumption is given in Section 6). As mentioned earlier, we
assume that the slicing criteria is in a basic block that post-dominates the entry of the program —
this is the location of the program output. This assumption makes sure that the slicing criteria is
executed for any program inputs. If a program does not satisfy this assumption, a simple program
transformation can produce an equivalent program that meets this assumption. We give one example
of transformation in Figure 6. If the program contains multiple outputs, the slicing criteria can
simply be a set of primitive criteria of the form

〈output variable, output location〉

Note that slicing can be performed on such a criteria (which is a set) without any change to our
method.

Execution Index. In the following proofs as well as our implementation, we need to align/compare
different paths. Hence, it is critical to determine whether two statement instances from different
paths are the same. We use the concept of execution index [Xin et al. 2008], which is defined as:

DEFINITION 6 (EXECUTION INDEX [XIN ET AL. 2008]). Given a program P , the index of an
execution trace π of P , denoted as EIπ , is a function of execution points in π, that satisfies:
∀ two execution points x 6= y,EIπ(x) 6= EIπ(y).
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int foo(int x){
if(x > 0){
return x+1;//slicing criteria

else
return x+2;//slicing criteria

}

(a) Program before transformation

int foo(int x){
int ret;
if(x > 0){

ret = x+1;
else

ret = x+2;
return ret;//slicing criteria

}

(b) Program after transformation

Fig. 6: Example of program transformation that makes the slicing criteria post-dominates the pro-
gram entry

Two statement instances in different paths are the same iff. they have exactly the same “execution
index”. Given two paths π and σ and a statement instance s in π, we say s also appears in σ iff. in σ
there is a statement instance s′ such that EIπ(s) == EIσ(s′). In its simplest form, we use the path
from root to s in the Dynamic Control Dependence Graph of π as the execution index of s in π.

Additional Notations Used in Proofs. Over and above the notations introduced earlier, we use
the following notations in our proofs. The immediate post-dominator of a branch b is denoted as
postdom(b). We use →d to denote dynamic data dependence, and →c to denote dynamic control
dependence. We use→p to denote potential dependence. We use d to denote transitive data de-
pendence and c to denote transitive control dependence. When no subscript is specified, we use
→ to denote any type of direct dependence and to denote the transitive closure of→.

We use s to denote a special kind of transitive dependence. Let u be a statement instance and
b be a branch instance in path π, then u  s b, iff. (i) there exist a variable v used at u, (ii) there
is no definition of v between postdom(b) and u and (iii) there is at least one static definition of
v that is statically transitively control dependent on the static branch of b. There could potentially
many static definitions of v that are statically transitively control dependent on static branch of b.
Depending on whether these definitions of v are executed, there are two different scenarios when
u s b. If all the definitions of v are not executed, then u is potentially dependent on b. Otherwise,
u is data dependent on the last definition of v (say it is d), and d is control dependent on b. In both
cases, there is a dependence chain from u to b.

Transformations. For the ease of our proofs, we statically transform any program in the following
way. Note that the transformations do not affect the program semantics, and do not impact the gen-
erality of our proofs. (i) We add a dummy statement nop at the start of the program. The statement
nop means no operation. (ii) If the slicing criteria (output statement(s)) is not a branch, we add a
dummy branch that contains a dummy use for each variable appearing in the output statement(s).
We use this branch as the slicing criterion C.

3.2.1. Priority sequence and shortened priority sequence. We need to prove the following
property for relevant-slice condition: if ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ψi is a prefix of a reordered
reordered rsc(C, t), the reordered relevant-slice condition of any input t′ satisfying ψ1 ∧ψ2 . . .∧
ψi−1∧¬ψi has ψ1∧ψ2 . . .∧ψi−1∧¬ψi as a prefix. There are two important facts to prove:(i) Each
b(ψk), 1 ≤ k ≤ i, is included in the relevant slice in path π(t′). (ii) The relative order of branch
conditions in ψ1 ∧ ψ2 . . . ∧ ψi−1 ∧ ¬ψi is not changed. To prove these two facts, we need to find
out what is not changed between reordered rsc(C, t′) and reordered rsc(C, t). In the following,
we define a shortened priority sequence sp(b) for each branch instance b. The shortened priority
sequence has the following two properties:
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(1) Let t and t′ be two inputs. Suppose ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ψi is a prefix of
reordered rsc(C, π(t)). If t′ |= ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1, then sp(b(ψi)) is the same in π(t)
and π(t′).

(2) Let bx and by be two branch instances in path π(t). If bc(bx) is reordered before bc(by) by the
reorder algorithm in Algorithm 2, then sp(bx) > sp(by).

The first property means that the shortened priority sequence for the corresponding branch instance
of each branch condition in ψ1∧ψ2∧ . . .∧ψi−1∧ψi is not changed between reordered rsc(C, t′)
and reordered rsc(C, t). The second property means that the shortened priority sequence essen-
tially defines the order of branch conditions in a reordered relevant-slice condition. We explain how
the shortened priority sequence is computed in the following.

To define the shortened priority sequence, we define the priority sequence first. In Algorithm 2,
we have an augmented reorder algorithm. When reorder is invoked fromExecute, the value for the
second parameter of the augmented reorder procedure is an empty list. The @ symbol in Algorithm
2 means list concatenation. Given the same parameters, the augmented reorder algorithm computes
the same reordered sequence as the one in Algorithm 1. In the augmented reorder procedure, a
priority sequence is computed for each branch instance along with the reorder process. Recall that
the reorder process is done in a quick-sort-like fashion. When we divide the input sequence of the
reorder procedure using ψk as the “pivot”, if b(ψi) is in the relevant slice of b(ψk), then b(ψk) is
added to the end of the priority sequence of b(ψi).

Let t be an input and bx be a branch instance in path π(t). Let the priority number for bx in π(t)

be p(bx) = [b̂1x, b̂
2
x, . . . , b̂

σ
x ]. From this priority sequence, we form a new shortened priority sequence

sp(bx) by selecting only the branches b̂ix such that b̂ix satisfies: there does not exists any b̂jx in p(bx)

such that b̂ix  c b̂
j
x. We denote the new shortened priority sequence as sp(bx) = [b1x, . . . , b

α
x ].

Note that the last branch instance in both p(bx) and sp(bx) is always bx itself. Because of our
transformation, if bk is in rs(C, π(t)), then the first branch instance in both p(bx) and sp(bx) is
from the slicing criteria C.

Let bx and by be two branch instances in path π(t). If bc(bx) is reordered before bc(by), then one
of the following two cases must be true: (i) There is a branch instance b in p(bx), where b is after
by in time order and b 6 by . (ii) by  bx. In the first case, when b is used as the “pivot” in reorder
algorithm, bc(bx) is reordered before bc(by). In the second case, since by  bx, then bx should
always be before by in the entire reorder process.

Suppose sp(bx) = [b1x, b
2
x, . . . , b

α
x ] and sp(by) = [b1y, b

2
y, . . . , b

β
y ]. Let k be the maximal number

that satisfies: for each i, i ≤ k, bix == biy . Then we say sp(bx) > sp(by) if either (i) k ==

min(α, β) and by  bx or (ii) k < min(α, β) and bk+1
y  c bk+1

x or (iii) k < min(α, β),
bk+1
x 6 c b

k+1
y ∧ bk+1

y 6 c b
k+1
x and bk+1

x is after bk+1
y in time order. By this definition, it is

impossible to have both sp(bx) > sp(by) and sp(by) > sp(bx).

3.2.2. Proof structure. We prove two theorems in this paper about relevant-slice condition and
our path exploration algorithm based on relevant-slice condition. The proof structure is shown in
Figure 7. For the ease of understanding, we give the outline of our proofs and the relations between
lemmas and theorems in the following.

In Theorem 3.3, we show that a relevant-slice condition could guarantee the unique symbolic
values of the variables used in the slicing criteria. Symbolic value can be computed by dynamic
symbolic execution. Each symbolic value is an expression in terms of the program inputs. Let s
be a statement instance in the path of input t, and v be a variable used in s. The symbolic value
of v in s is a expression in terms of input variables. If the symbolic value of v is concretized with
t, it must be the same as the value of v in s when the program is run concretely with input t. To
prove Theorem 3.3, we actually prove the stronger Lemma 3.2. Let t and t′ be two inputs and s be a
statement instance in π(t). In Lemma 3.2, we show that if t′ |= rsc(s, π(t)), then the relevant slice
w.r.t. s in π(t′) would be exactly the same as that in π(t). Theorem 3.3 could be easily derived from
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Theorem 3.14

Theorem 3.3

Lemma 3.1

Lemma 3.2

Lemma 3.10Lemma 3.4 Lemma 3.5

Lemma 3.7

Lemma 3.8

Lemma 3.9

Lemma 3.11

Lemma 3.12 Lemma 3.13

Lemma 3.6

Fig. 7: Structure of the proofs

Lemma 3.2.
In Theorem 3.14, given any feasible path π, we show that our path exploration algorithm would

explore a path π′ that shares the same relevant-slice condition with π. This is concretized by showing
that the algorithm gradually gets a sequence of relevant-slice conditions with each one closer to the
relevant-slice condition of π than the previous one. Recall that the path exploration process is by
iteratively negating a branch condition in a relevant-slice condition. Suppose we solve ϕ to get a
new input t′, we need to prove that the relevant-slice condition on π(t′) still contains ϕ as a prefix.
Otherwise, the path exploration process would be out of order. Although this is obviously true for
path condition, it is not obvious for relevant-slice condition. According to the result of relevant slice,
some branch constraints do not appear in relevant-slice condition even they are in path condition.
This important property of reordered relevant-slice condition is proved in Lemma 3.13. Let t and t′
be two inputs. In Lemma 3.13, we prove that if t′ |= ψ1 ∧ψ2 ∧ . . .∧ψi−1 ∧¬ψi, where ψ1 ∧ψ2 ∧
. . . ∧ ψi−1 ∧ ψi is a prefix of reodered rsc(C, π(t)), then reordered rsc(C, π(t′)) must contain
ψ1∧ψ2∧ . . .∧ψi−1∧¬ψi as a prefix. Let the target reordered relevant-slice condition be g = ϕ1∧
ϕ2∧. . .∧ϕn−1∧ϕn and reodered rsc(C, π(t)) be f . If the first different branch condition between
f and g is at location k, we prove that ψk == ¬ϕk in Lemma 3.12. Combining with 3.13, we show
that we could indeed get closer to π (having longer common prefix with reordered rsc(C, π) ) by
negating the kth branch condition in f . All the lemmas from Lemma 3.4 to Lemma 3.11 are used
to gradually prove Lemma 3.12 and Lemma 3.13.

3.2.3. Full proofs

LEMMA 3.1. Let t and t′ be two inputs and s be a statement instance in π(t). Suppose s is not
in π(t′). Let bs be the last branch instance in π(t) that satisfies: s c bs and bs is in both π(t) and
π(t′). Then bs is evaluated differently in π(t) and π(t′).

PROOF. Let the control dependence chain from s to bs in π(t) be s c b→c bs, where b→c bs
is the last link in s c bs. Note that b could be same as s. Assume to the contrary that bs is evaluated
to the same direction in π(t) and π(t′). Then b must also be executed in π(t′). Therefore, b also
satisfies: s  c b and b is in both π(t) and π(t′). Since b is after bs in time order, this contradicts
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that bs is the last branch instance that satisfy this condition. Therefore, bs is evaluated to different
directions in π(t) and π(t′).

LEMMA 3.2. Let t and t′ be two inputs and s be a statement instance in π(t). If t′ |=
rsc(s, π(t)), then s will be executed in π(t′) , the variables used in s in π(t′) will have the same
symbolic values as in π(t), rs(s, π(t′)) is exactly the same as rs(s, π(t)) and each branch instance
in rs(s, π(t)) is evaluated to the same direction in π(t) and π(t′).

PROOF. We prove this lemma by induction. Given the path π(t), suppose it is a sequence
[s0, s1, . . . , sn−1, sn].

Initial Step: According to our transformation, the statement instance s0 must be from nop. Then
rsc(s0, π(t)) is true. It is obvious that s0 satisfies Lemma 3.2.

Inductive Step: The induction hypothesis is: for each statement sj , j < i, sj satisfies Lemma
3.2. We need to prove that si also satisfies Lemma 3.2.

First we prove that si will be executed in π(t′). Let sj be the statement prior to si such that
si →c sj . Then each statement in rs(sj , π(t)) is also in rs(si, π(t)). So we have rsc(si, π(t)) ⇒
rsc(sj , π(t)). Since t′ |= rsc(si, π(t)), t′ |= rsc(sj , π(t)). By the induction hypothesis , sj will be
executed to the same direction in π(t) and π(t′). This implies that si will be executed in π(t′).

The core of the inductive step is to prove that rs(si, π(t′)) is exactly the same as rs(si, π(t)).
This is proved in two directions. (i) If si  s′ in π(t′), then si  s′ in π(t). (ii) If si  s′ in π(t),
then si  s′ in π(t′).

Now, we prove that given any statement instance s′ in π(t′), if si  s′ in π(t′), then it must also
be si  s′ in π(t). Suppose in π(t′), si → sk  s′ where sk is another statement instance in π(t′).
We first prove that si → sk in π(t) in two steps: (i) sk appears in π(t). (ii) si → sk in π(t).

We first prove that sk appears in π(t). We prove this by contradiction. Assume to the contrary
that sk does not appear in π(t). We find the last control dependence ancestor of sk that is in both
π(t) and π(t′). Let this statement be su. This means that su is the last statement in both π(t) and
π(t′) such that sk is transitively control dependent on su in both the execution traces π(t), π(t′).

According to Lemma 3.1, the branch in su must be evaluated differently in π(t) and π(t′). Ac-
cording to the type of si → sk in π(t′) we have the following cases.

— (a) si →c sk. The existence of si in π(t) contradicts that sk is not in π(t).
— (b) si →d sk or si →p sk. In this case, the existence of si in both paths π(t), π(t′) indicates that
si 6 c su in π(t′) since su is evaluated differently in π(t) and π(t′). Similarly, si 6 c su in π(t).
This means that si appears after postdom(su) in both execution traces π(t), π(t′).
Suppose si →d sk or si →p sk in π(t′) is caused by the use of variable v at si (in case of
multiple such variables, we choose one randomly). There should be no definition of v between
postdom(su) and si in π(t). Otherwise the definition would also appear in π(t′), making si →d

sk or si →p sk impossible in π(t′). In π(t), according to the definition of  s, si  s su in
π(t). Therefore, su is in the relevant slice of si in π(t). By the induction hypothesis , su is then
evaluated to the same direction in π(t) and π(t′), contradicting our original assumption that su
is evaluated differently in π(t) and π(t′).

Therefore, in both cases, we achieve a contradiction - thereby establishing that sk must appear in
π(t).

Given that sk is in π(t), we prove that si → sk in π(t). According to the type of si → sk in π(t′)
we have the following cases. (a) si →c sk in π(t′). — The existence of si and sk in π(t) already
shows that si →c sk. (b) si →d sk or si →p sk in π(t′). — Suppose the dependence between si and
sk is caused by the use of variable v (in case of multiple such variables, we choose one randomly)
at si in π(t′). Then si 6→ sk could only happen in π(t) because v is redefined by another statement
instance between sk and si in π(t). Suppose the last definition of v before si in π(t) is at statement
instance sn. So we have si → sn in π(t). By the induction hypothesis, sn will be executed in π(t′).
The variable v will still be redefined by sn in π(t′), which contradicts that si →d sk or si →p sk in
π(t′). Therefore, we have proved that in both case, si → sk in π(t).
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We have now proved that si → sk in π(t). According to induction hypothesis, the relevant slice
of sk is the same in π(t) and π(t′), that is, rs(sk, π(t)) == rs(sk, π(t′)). Thus, for any statement
instance s′ such that sk  s′ in π(t′) — we must have sk  s′ in π(t). Therefore, si → sk  s′

in π(t). Thus, we have proved that given any statement instance s′ in π(t′), if si  s′ in π(t′), then
it must also be si  s′ in π(t).

Next, we prove that given a statement instance s′ in π(t), if si  s′ in π(t), then it must also be
si  s′ in π(t′). Suppose si → sj  s′ in π(t). According to induction hypothesis, sj appears
in π(t′) and sj  s′ in π(t′). So we only need to prove that si → sj in π(t′). According to the
dependence type of si → sj , we have the following two cases.

— (a) si →c sj in π(t). The existence of both si and sj already implies that si →c sj in π(t′).
— (b) si →d sj or si →p sj in π(t). We need to prove that the dependence between si and sj still

appears in π(t′). Suppose si →d sj or si →p sj in π(t) is caused by the use of variable v at si.
We prove si →d sj or si →p sj in π(t′) by contradiction. Assume to the contrary that this is not
the case in π(t′). This could only happen if v is redefined between sj and si in π(t′). Suppose
the last definition of v before si in π(t′) is statement instance sn, so si →d sn in π(t′). We have
already established that for any statement instance s′ in π(t′), if si  s′ in π(t′), then it must
also be si  s′ in π(t). Thus, sn must also appear in π(t), and si →d sn in π(t). This contradicts
that si →d sj or si →p sj in π(t) (simply by the definition of dynamic data dependencies and
potential dependencies). So if si →d sj or si →p sj is in π(t), si →d sj or si →p sj is also in
π(t′),

Therefore, we have proved by induction that rs(si, π(t′)) is exactly the same as rs(si, π(t)) (induc-
tive step).

Since the entire slice of si is exactly the same in two paths, the symbolic values of the
variables used in si must be exactly the same in π(t) and π(t′). Suppose si uses α variables
v1, v2, . . . , vα−1, vα to define variable s̄i. Let the corresponding definition of these variables be at
si1, s

i
2, . . . , s

i
α−1, s

i
α. Note that each definition six, 1 ≤ x ≤ α, is same in both π(t′) and π(t) since

six is in the relevant slice of si. According the induction hypothesis, the symbolic value of each vx is
the same in π(t) and π(t′), where 1 ≤ x ≤ α. Moreover, the definition of s̄i is computed in exactly
the same way (using the same operations) from v1, v2, . . . , vα−1, vα in π(t) and π(t′). Therefore,
the symbolic value of s̄i in si is the same in π(t) and π(t′). We know that t′ |= rsc(si, π(t)). There-
fore, t′ should satisfy the branch constraints corresponding to the branches appearing in the relevant
slice rs(si, π(t)) == rs(siπ(t′)). Therefore each branch instance in rs(si, π(t)) is evaluated to the
same direction in π(t) and π(t′). This completes the proof.

THEOREM 3.3. If the relevant-slice conditions of two paths π1 and π2 w.r.t. C are the same,
then the variables used in the slicing criteria C have the same symbolic values in π1 and π2.

PROOF. Let t1 and t2 be two test inputs whose execution traces are π1 and π2 respectively.
According to the theorem statement, we have rsc(C, π1) == rsc(C, π2). Since t2 |= rsc(C, π2),
t2 |= rsc(C, π1). According to Lemma 3.2, the symbolic values of the variables used in C are
exactly the same in π(t2) and π(t1), where π(t2) == π2 and π(t1) == π1. Therefore, the variables
used in the slicing criteria C have the same symbolic values in π1 and π2. This completes the
proof.

LEMMA 3.4. Let t and t′ be two inputs, given a branch instance b in π(t), if t′ |=
rsc(b, π(t))\bc(b), b will be executed in π(t′) and the variables used in b in π(t′) would have
the same symbolic values as in π(t).

LEMMA 3.5. Let t be an input. Let reordered rsc(C, π(t)) be ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1 ∧ ψk in
path π(t). Then for any i, 1 ≤ i ≤ k, ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ⇒ rsc(b(ψi), π(t))\ψi.
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LEMMA 3.6. Let bx and by be two branch instances in path π(t). If bc(bx) is reordered before
bc(by) by the reorder algorithm in Algorithm 2, then the shortened priority sequences sp(bx) >
sp(by).

PROOF. Suppose sp(bx) is [b1x, b
2
x, . . . , b

α−1
x , bαx ] and sp(by) is [b1y, b

2
y, . . . , b

β−1
y , bβy ]. When

sp(bx) 6= sp(by), let k be the maximal number that satisfies: for each i, i ≤ k, bix == biy .
If k == min(α, β), it must be either k == α or k == β. If k == α, then we have bx ==

bαx == bkx == bky and bky  by . Therefore, we have bx  by , which could not be possible when
bc(bx) is reordered before bc(by). Therefore, when k == min(α, β), it must be k == β and
by  bx.

If k < min(α, β), we enumerate the relation between bk+1
x and bk+1

y .

(1) bk+1
y  c b

k+1
x . This is possible.

(2) bk+1
x  c b

k+1
y . We prove that it is not possible to have bc(bx) being reordered before bc(by).

This is proved through (i) bk+1
y 6 bx (ii) There is no branch b after bk+1

y such that b is in
p(bx), but b 6 by . We first prove bk+1

y 6 bx by contradiction. Assume to the contrary that
bk+1
y  bx. According to the process of computing p(bx), if bk+1

y  bx and bk+1
x  c b

k+1
y ,

then bk+1
y is in p(bx). However, according to the definition of sp(bx), if bk+1

x  c b
k+1
y and bk+1

y

is in p(bx), then bk+1
x is not in sp(bx). This contradicts that bk+1

x is in sp(bx). Next, we prove
that there is no branch b after bk+1

y such that b is in p(bx), but b 6 by . This is obvious since for
each b after bk+1

y and b is in p(bx), we have b  bk+1
x  bk+1

y  by , contradicting b 6 by .
Therefore, we know that there is no branch b after bk+1

y such that by is reordered after bx by
using b as the “pivot”. So when bc(bk+1

y ) is used as the “pivot” in the reorder algorithm, either
bc(bx) is already after bc(bk+1

y ) hence after bc(by), or bc(bx) is still before bc(bk+1
y ). If bc(bx)

is still before bc(bk+1
y ), given the “pivot” bc(bk+1

y ) and the fact that bk+1
y 6 bx, bc(bx) will be

reordered after bc(bk+1
y ) hence after bc(by). This contradicts that bc(bx) is before bc(by).

(3) bk+1
x 6 c b

k+1
y ∧ bk+1

y 6 c b
k+1
x . We prove that bk+1

x is after bk+1
y in time order using contra-

diction. Assume to the contrary that bk+1
x is before bk+1

y in time order. According to whether
bk+1
y is transitively dependent on bk+1

x , we have the following two cases: (i) bk+1
y  bk+1

x , then
there is at least one branch b that is between postdom(bk+1

x ) and bkx such that b is in sp(bx).
this contradicts that the (k + 1)th element in sp(bx) is bk+1

x . (ii) bk+1
y 6 bk+1

x . We first show
bk+1
y 6 bx. Assume to the contrary that bk+1

y  bx. Then when bk+1
y is used as the “pivot” in

the reorder process, bx is before bk+1
y and bk+1

x is after bk+1
y . Therefore, bx and bk+1

x are in two
different sub-sequences, making it impossible to have bk+1

x in the shortened priority sequence of
bx. This contradicts that bk+1

x is in sp(bx). Given bk+1
y 6 bx, when bk+1

y is used as the “pivot”
in the reorder process, either bc(bx) is already after bc(bk+1

y ) hence after bc(by), or bc(bx) is
still before bc(bk+1

y ). If bc(bx) is still before bc(bk+1
y ), given the “pivot” bc(bk+1

y ), bc(bx) will
be reordered after bc(bk+1

y ) hence after bc(by). This contradicts that bc(bx) is before bc(by). So
it is impossible to have bk+1

x before bk+1
y in either case.

So we have either (i) k == min(α, β) and by  bx or (ii) k < min(α, β) and bk+1
y  c b

k+1
x .

or (iii) k < min(α, β) and bk+1
x 6 c b

k+1
y ∧ bk+1

y 6 c b
k+1
x and bk+1

x is after bk+1
y in time order.

This is exactly the definition of sp(bx) > sp(by).

LEMMA 3.7. Let t be an input and b and bk be two branch instances in π(t). Suppose in π(t),
sp(bk) is [b1k, b

2
k, . . . , b

i
k]. If bjk  b, where 1 ≤ j < i, and postdom(b) is after postdom(bj+1

k ),
then bc(b) is before bc(bk) in reordered rsc(C, π(t)).
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PROOF. We first prove that b is not in p(bk). Based on the possible position of b in π(t), we have
the following two cases:(i) b is after postdom(bj+1

k ). Since bjk  b, b could only be between bjk and
postdom(bj+1

k ). According to the process of computing the shortened priority sequence, any branch
instances between bjk and postdom(bj+1

k ) cannot be in p(bk). (ii) b is before postdom(bj+1
k ). Since

postdom(b) is after postdom(bj+1
k ), it must be bj+1

k  c b. Therefore, we have bj+1
k  c b and b is

in p(bk). This cannot happen given bj+1
k is in sp(bk).

According to the reorder algorithm, if bc(bk) is reordered before bc(b) and b is not in p(bk), then
there must be a branch instance b̂uk in p(bk) such that b̂uk is after b and b̂uk 6 b. We will prove
that such a b̂uk cannot exist. Such a b̂uk should be after postdom(b), otherwise b̂uk  c b. Since
postdom(b) is after postdom(bj+1

k ), b̂uk is after postdom(bj+1
k ). However if b̂uk in p(bk) is after

postdom(bj+1
k ), b̂uk  bjk  b. So it is not possible to have any b̂uk in p(bk) such that b̂uk is after

b and b̂uk 6 b. This means that bc(bk) cannot be reordered before bc(b). Therefore, bc(b) is before
bc(bk) in reordered rsc(C, π(t)).

LEMMA 3.8. Let t and t′ be two inputs. Let the reordered relevant-slice condition in π(t) be
reordered rsc(C, π(t)) = ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ψi. Then if t′ |= ψ1 ∧ ψ2 ∧ . . . ∧ ψk, k ≤ i, for
any j, 1 ≤ j ≤ k, b(ψj) is evaluated to the same direction in π(t) and π(t′).

LEMMA 3.9. Let t and t′ be two inputs. Suppose ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1 ∧ ψk is a prefix of
reordered rsc(C, π(t)). Let b(ψk) be bk. Suppose the shortened priority sequence for bk in π(t)
is sp(bk) = [b1k, b

2
k, . . . , b

i
k], where bik == bk. If t′ |= ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1, then (i) For any j,

1 ≤ j ≤ i, bjk also appears in π(t′). (ii) For any j, 1 ≤ j < i, each statement that is between bjk and
postdom(bj+1

k ) in rs(bjk, π(t′)) is also in rs(bjk, π(t)). (iii) For any j, 1 ≤ j < i, each statement
that is between bjk and postdom(bj+1

k ) in rs(bjk, π(t)) is also in rs(bjk, π(t′)).

PROOF. We prove the claims in the lemma one by one.
For any j, 1 ≤ j ≤ i, bjk also appears in π(t′). Suppose bjk →c b. Since bjk →c b, we have

bjk  b and postdom(bc) after bjk hence after postdom(bj+1
k ). According to Lemma 3.7, bc(b)

is reordered before bc(bk)(same as ψk) in reordered rsc(C, π(t)). This means that the branch
condition of b is actually one of the ψm, where m ≤ k − 1. Since t′ |= ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1,
according to Lemma 3.8, b will be evaluated to the same direction in π(t) and π(t′). So bjk is also
executed in π(t′).

For any j, 1 ≤ j < i, each statement that is between bjk and postdom(bj+1
k ) in rs(bjk, π(t′))

is also in rs(bjk, π(t)). We prove this by contradiction. Assume to the contrary that there is an s in
π(t′), where s ∈ rs(bjk, π(t′)) and s is between bjk and postdom(bj+1

k ), but s is not in rs(bjk, π(t)).
There must exist two nodes s1 and s2 in bjk  s in π(t′) such that bjk  s1 in π(t), but s1 6→ s2 in
π(t). If it is not the case, then in π(t) we have bjk  s. We prove s1→ s2 to draw the contradiction
in two steps: (i) s2 appears in π(t). (ii) s1→ s2.

We first prove that s2 appears in π(t). According to the dependence type from s1 to s2 in π(t′),
we have the following two cases:(i) s1→c s2. the existence of s1 in π(t) shows that s2 also exists
in π(t). (ii) s1 →d s2 or s1 →p s2. Assume to the contrary that s2 does not appear in π(t). We
find the last control ancestor s3 of s2 that is in both π(t) and π(t′). According to Lemma 3.1, s3 is
evaluated to different directions in π(t) and π(t′). Suppose s1→d s2 or s1→p s2 is caused by the
use of variable v at s1(in case of multiple such variables, we choose one randomly). There should
be no definition of v between postdom(s3) and s1 in π(t). Otherwise, that definition would be kept
in π(t′), making s1→ s2 impossible in π(t′). According to the definition of s, s1 s s3 in π(t).
Therefore, we have bjk  s1 s3 in π(t). Because s2 c s3, postdom(s3) is after s2 and hence
after postdom(bj+1

k ) in π(t′). Since the relative time order of any two statement instances does not
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change across different paths, the existence of both s3 and bj+1
k in π(t) indicates that postdom(s3)

is after postdom(bj+1
k ) in π(t). According to Lemma 3.7, bc(s3) is reordered before bc(bk)(same

as ψk) in reordered rsc(C, π(t)). Since t′ |= ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1, according to Lemma 3.8, s3
is evaluated to the same direction in π(t) and π(t′). However, this contradicts that s3 is evaluated to
different directions in π(t) and π(t′).

Then, we show s1 → s2 in π(t). According to the dependence type from s1 to s2 in π(t′),
we have the following two cases: (i) s1 →c s2. The existence of s1 and s2 already shows that
s1 →c s2 in π(t). (ii) s1 →d s2 or s1 →p s2. Assume to the contrary that s1 6→ s2 in π(t).
Suppose s1 →d s2 or s1 →p s2 is caused by the use of variable v at s1(in case of multiple
such variables, we just choose one randomly). Therefore, s1 6→ s2 in π(t) could only be v is
redefined by some statement instance between s1 and s2 in π(t). We denote this statement instance
as s4. Suppose s4 is control dependent on s5 in π(t), we have bjk  s4  s5 and postdom(s5)

after s4 hence after postdom(bj+1
k ). According to Lemma 3.7, bc(s5) is reordered before bc(bk) in

reordered rsc(C, π(t)). Since t′ |= ψ1∧ψ2∧ . . .∧ψk−1, according to Lemma 3.8, s5 is evaluated
to the same direction in π(t) and π(t′). Therefore, s4 will be executed in π(t′). This contradicts that
s1→d s2 or s1→p s2 in π(t′).

For any j, 1 ≤ j < i, each statement that is between bjk and postdom(bj+1
k ) in rs(bjk, π(t)) is

also in rs(bjk, π(t′)). For a statement s that is in rs(bjk) and is between bjk and postdom(bj+1
k ), We

first prove that s exists in π(t′). For any branch instance bc such that s c bc, we have bjk  s bc
and postdom(bc) after s hence after postdom(bj+1

k ). According to Lemma 3.7, bc(bc) is reordered
before bc(bk)(same as ψk) in reordered rsc(C, π(t)). Since t′ |= ψ1 ∧ψ2 ∧ . . .∧ψk−1, according
to Lemma 3.8, bc is evaluated to the same direction in π(t) and π(t′). Therefore, s will be executed
in π(t′).

Then, we prove that bjk  s in π(t′). Assume to the contrary that this is not the case. There must
exist two nodes s1 and s2 in bjk  s in π(t) such that bjk  s1 in π(t), but s1 6→ s2 in π(t′). If
it is not the case, then in π(t′) we have bjk  s. According the proof in the last paragraph, s1 and
s2 are both executed in π(t′). According to the dependence type from s1 to s2 in π(t), we have
the following two cases:(i) s1 →c s2. The existence of s1 and s2 already shows that s1 →c s2
in π(t′). (ii) s1 →d s2 or s1 →p s2. Suppose s1 →d s2 or s1 →p s2 in π(t) is caused by the
use of variable v at s1(in case of multiple such variables, we just choose one randomly). Therefore,
s1 6→ s2 in π(t′) could only be v is redefined by some statement instance between s1 and s2 in
π(t′). We denote this statement instance as s4. According to the above proof, s4 also exists in π(t).
Therefore, v should also be redefined by s4 in π(t), contradicting that s1 →d s2 or s1 →p s2 in
π(t).

LEMMA 3.10. Let t and t′ be two inputs. Suppose ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1 ∧ ψk is a prefix of
reordered rsc(C, π(t)). If t′ |= ψ1∧ψ2∧ . . .∧ψk−1, then sp(b(ψk)) is the same in π(t) and π(t′).

PROOF. Let b(ψk) be bk. Suppose the shortened priority sequence for bk in π(t) is sp(bk) =
[b1k, b

2
k, . . . , b

i
k], where bik == bk.

We prove sp(b(ψk)) is also [b1k, b
2
k, . . . , b

i
k] in π(t′) in the following steps:(i) We prove that bjk  

bj+1
k for each j, 1 ≤ j < i, in π(t′). (ii) We prove that each bjk is in p(bk) in π(t′). (iii) We prove

that for any branch instance in p(bk) in π(t′), either it is transitively control dependent on some bjk,
where bjk is in sp(bk) in π(t) or it is some bjk. (iv) We show that for each bjk in π(t′), if bjk  c bc
then bc is not contained in p(bk) in π(t′).

We first show that bjk  bj+1
k in π(t′), where 1 ≤ j < i. Since bjk  bj+1

k and bjk 6 c b
j+1
k in

π(t), there must be a statement instance s between postdom(bj+1
k ) and bjk in π(t) such that bjk  s

and s  s b
j+1
k . Note that such an s could be the same as bjk. Suppose s  s b

j+1
k is caused by

the use of variable v at s(in case of multiple such variables, we choose one randomly). As proved
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in Lemma 3.9, between postdom(bj+1
k ) and bjk, rs(bjk, π(t′)) is exactly the same as rs(bjk, π(t)).

Therefore, bjk  s in π(t′) and there is not definition of v between postdom(bj+1
k ) and s in π(t′).

According to the definition of s, s  s b
j+1
k is irrespective of the direction of bj+1

k . So in π(t′),
we also have s s b

j+1
k . So we have bjk  bj+1

k in π(t′).
Next, we prove that each bjk is in p(bk) in π(t′), where 1 ≤ j ≤ k. Assume to the contrary that

this is not the case. Since ψk is in reorderd rsc(C, π(t)), b(ψk)(same as bk) is in rs(C, π(t)). Then
the first element in sp(bk) must be from C. According to the proof in last paragraph, b1k  bk in
π(t′). Therefore, the first element of p(bk) in π(t′) would still be from C, which is b1k. So b1k is in
p(bk) in π(t′). For j > 1, suppose bjk is the first one in sp(bk) in π(t) that is not in p(bk) in π(t′).
Therefore, we have bj−1k is in p(bk) in π(t′). According to the process of computing p(bk), there
must be some “pivot” b (including bjk) between bj−1k and bjk, where bj−1k  b and b 6 bjk and
b  bk in π(t′). According to the proof in last paragraph, we have bj−1k  bjk and bjk  bk in
π(t′). Therefore, b could not be the same as bjk, meaning b could only be after bjk and before bj−1k .
According to the possible locations of b, we have the following two cases: (i) b is between bjk and
postdom(bjk). If b is between bjk and postdom(bjk), then b  c b

j
k, contradicting that b 6 bjk. (ii)

b is between postdom(bjk) and bj−1k . As shown in Lemma 3.9, rs(bj−1k , π(t′)) is exactly the same
as rs(bj−1k , π(t)) between bj−1k and bjk. Since we have b 6 bjk in π(t), b 6 bjk in π(t′) either. This
contradicts that b  bjk in π(t′). In each case, we get a contradiction showing that the assumption
is wrong. So we have bjk is in p(bk) in π(t′).

Then, we prove that for any given branch instance in p(bk) in π(t′), either this branch instance
is transitively control dependent on some bjk, where bjk is in sp(bk) in π(t), or it is some bjk. This is
the same as: for any branch b, if b is not between any pair of bjk and postdom(bjk), 1 < j ≤ i, then
b cannot be in p(bk) in π(t′). Note that j > 1 is because the range between b1k and postdom(b1k) is
after the slicing criteriaC(same as b1k) in time order. Assume to the contrary that such a b exists, then
bmust be between some bjk and postdom(bj+1

k ). According to Lemma 3.9, between postdom(bj+1
k )

and bjk, rs(bjk, π(t′)) is exactly the same as rs(bjk, π(t)), then such b is also in π(t). According to
the process of computing p(bk), b is contained in p(bk) in π(t), contradicting that p(bk) does not
contain any branches that are between postdom(bj+1

k ) and bjk. Therefore, we have proved that such
b could not exist.

Finally, we show that for each bjk in π(t′), if bjk  c bc then bc is not contained in p(bk) in
π(t′). Assume to the contrary that there exists a bc, b

j
k  c bc and bc is contained in p(bk) in π(t′).

According to proof in the last paragraph bc must be either transitively dependent on some bik or bc is
the same as bik. In either case, we have bjk  c b

i
k in π(t′). Recall that control dependence between

two statement instances are preserved across paths as long as the two statement instances both exist.
Since bjk and bik are also in π(t), we have bjk  c b

i
k in π(t). Therefore bjk can not be in sp(bk) in

π(t), contradicting that bjk is in sp(bk) in π(t).
According to the process of computing shortened priority sequence, sp(bk) in π(t′) would be

[b1k, b
2
k, . . . , b

i
k].

LEMMA 3.11. Let t be an input and bx be a branch instance in rs(C, π(t)). If the shortened
priority sequence of bx in π(t) is sp(bx) = [b1x, . . . , b

α
x ], then for any i, 1 ≤ i < α, bix  bi+1

x . This
essentially means that there is a dependence chain from slicing criteria to bx, which means bx will
be included in rs(C, π(t)).

LEMMA 3.12. Let π1 and π2 be two paths. Let f and g be reordered rsc(C, π1)
reordered rsc(C, π2) respectively. Suppose f is ϕ1∧ϕ2∧ . . .∧ϕj−1∧ϕj and g is ψ1∧ψ2∧ . . .∧
ψi−1∧ψi. If the first different branch condition between f and g is at location k, then ϕk == ¬ψk.
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PROOF. We first show that b(ϕk) and b(ψk) must be the same. We prove this by contradiction.
Assume to the contrary that b(ϕk) and b(ψk) are different. Let b(ϕk) be bx and b(ψk) be by . Since
the first different branch condition between f and g is at location k, ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk−1 (same
as ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1) is satisfied by the input of both paths. , Since the input of π1 satisfy
ϕ1 ∧ϕ2 ∧ . . .∧ϕk−1, by is contained in rs(C, π1) according to Lemma 3.11. The branch condition
bc(by) should not be in ψ1 ∧ψ2 ∧ . . .∧ψk−1, which is the same as ϕ1 ∧ϕ2 ∧ . . .∧ϕk−1. So bc(by)
could only be after bc(bx)(same as ϕk) in reordered rsc(C, π1). Similarly, bc(bx) could only be
after bc(by) in reordered rsc(C, π2). According to Lemma 3.6, we have sp(bx) > sp(by) from π1.
Similarly we have sp(by) > sp(bx) from π2. This contradicts that the shortened priority sequences
are the same in both paths by Lemma 3.10. So b(ϕk) and b(ψk) must be the same.

According to Lemma 3.4 and 3.5, ϕ1∧ϕ2∧ . . .∧ϕk−1 can guarantee that the symbolic values of
the variables used at b(ϕk)(same as b(ψk)) are the same in π1 and π2. So ϕk could only be different
from ψk if the branch b(ϕk) and b(ψk) are evaluated to different directions in π1 and π2. So we
have ϕk == ¬ψk.

LEMMA 3.13. Let t and t′ be two inputs. If t′ |= ψ1 ∧ψ2 ∧ . . .∧ψi−1 ∧¬ψi, where ψ1 ∧ψ2 ∧
. . . ∧ ψi−1 ∧ ψi is a prefix of reodered rsc(C, π(t)), then reordered rsc(C, π(t′)) must contain
ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi as a prefix.

PROOF. We will prove the following properties of π(t′):

— Each b(ψk), 1 ≤ k ≤ i, in π(t) is executed in π(t′) and the variables used in each b(ψk) have the
same symbolic values in π(t) and π(t′).

— Each b(ψk), 1 ≤ k ≤ i, in π(t) is contained in rs(π(t′)).
— The order of the branch conditions is the same as ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi in π(t′).
— The first i branch conditions of reodered rsc(C, π(t)) must be from the branch instances
{b(ψk)|1 ≤ k ≤ i}.

Each b(ψk), 1 ≤ k ≤ i, in π(t) is executed in π(t′) and the variables used in each b(ψk)
have the same symbolic values in π(t) and π(t′). Since k ≤ i, so ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi ⇒
ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1. According to Lemma 3.4 and 3.5, each b(ψk) in π(t) is executed and the
variables used in each b(ψk) have the same symbolic values in π(t) and π(t′).

Each b(ψk), 1 ≤ k ≤ i, in π(t) is contained in rs(π(t′)). Since k ≤ i, so ψ1 ∧ ψ2 ∧ . . . ∧
ψi−1 ∧ ¬ψi ⇒ ψ1 ∧ ψ2 ∧ . . . ∧ ψk−1. According to Lemma 3.11, each b(ψk) in π(t) is contained
in rs(π(t′)).

The order of the branch conditions is the same as ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi in π(t′). Let
ψj and ψk be any two branch conditions in ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi, where 1 ≤ j < k ≤ i.
According to Lemma 3.7, if ψj is before ψk, then sp(b(ψj)) > sp(b(ψk)). According to Lemma
3.10, the priority sequence of b(ψj) and b(ψk) in π(t′) are the same as those in π(t) respectively.
Therefore in π(t′), we also have sp(b(ψj)) > sp(b(ψk)). This shows that the relative order of any
two branch conditions in ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi are the same π(t) and π(t′). Therefore, the
order of the branch conditions is the same as ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi. in π(t′).

The direction of each branch instance is restricted by the corresponding branch condition in ψ1 ∧
ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi.

The first i branch conditions of reodered rsc(C, π(t)) must be from the branch instances
{b(ψk)|1 ≤ k ≤ i}. Assume to the contrary that this is not the case. Let ϕ be the first branch condi-
tion whose branch instance is not in {b(ψk)|1 ≤ k ≤ i} and ϕ is one of the first i branch conditions
in reordered rsc(C, π(t′)). According to the above proof, all the branch conditions before ϕ are
satisfied by t. Therefore, according to Lemma 3.10, b(ϕ) appears in π(t). Since sp(ϕ) > sp(ψi),
this contradicts that b(ϕ) does not appear in {b(ψk)|1 ≤ k ≤ i}.

According to the above proved properties, reordered rsc(C, π(t′)) must contain ψ1∧ψ2∧ . . .∧
ψi−1 ∧ ¬ψi as a prefix.

We now prove the completeness of our path search method.
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THEOREM 3.14. Given a program P and an execution trace π(t) for input t in P , Algorithm
1 must explore an execution trace π(t′) for some input t′ such that π(t) and π(t′) share the same
relevant-slice condition (irrespective of the initial test input with which Algorithm 1 is started) —
provided the total number of relevant-slice conditions in P is bounded.

PROOF. Consider any input t in program P , its execution trace π(t) and the associated reordered
relevant-slice condition g. We use dist(f, g) to denote the distance from f to g where f is also
a reordered relevant-slice condition of some path. Suppose f = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕj−1 ∧ ϕj and
g = ψ1∧ψ2∧ . . .∧ψi−1∧ψi. Let k be the number such that (i) for allm ≤ k we have ϕm == ψm,
and (ii) either k == min(i, j) or ϕk+1 6= ψk+1.

We first show that when k == min(i, j), it must be that f == g. Without losing generality, let
us assume to the contrary that f 6= g and k == j, which means that i > j. If an input tf satisfies
f , then tf |= ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕj−1 ∧ ϕj , which is the same as tf |= ψ1 ∧ ψ2 ∧ . . . ∧ ψj−1 ∧ ψj .
According to the proof of Lemma 3.10, b(ψj+1) must appear in the trace π(tf ), which contradicts
that the first k branch conditions in f and g are the same and the length of f is only k.

We now define the distance on reordered relevant-slice conditions. Given two reordered relevant-
slice conditions f and g, we define dist(f, g) ≡ 1 − k

i . When dist(f, g) == 0, f and g are the
same. The definition of dist is asymmetric, that is, dist(f, g) 6= dist(g, f) is possible.

In Algorithm 1, we maintain a fcurrent which has the closest distance to g among all the explored
relevant-slice conditions. Suppose fcurrent = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕj−1 ∧ ϕj and g = ψ1 ∧ ψ2 ∧ . . . ∧
ψi−1 ∧ ψi. Suppose the first different branch condition between fcurrent and g is at location k + 1.
When fcurrent is explored, the partial relevant-slice condition ϕ1∧ϕ2∧ . . .∧ϕk∧¬ϕk+1 is pushed
into the stack. This formula will be eventually processed by our path search algorithm, provided the
total number of relevant-slice conditions is bounded in program P .

According to Lemma 3.12, ¬ϕk+1 == ψk+1. It is clear that ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk ∧ ¬ϕk+1 is
the same as ψ1 ∧ ψ2 ∧ . . . ∧ ψk ∧ ψk+1. Note that g = ψ1 ∧ ψ2 ∧ . . . ∧ ψi is satisfiable, as g
is the relevant-slice condition of a feasible path π(t). Since k < i (fcurrent and g are same up to
the first k conjuncts), g ⇒ ψ1 ∧ ψ2 ∧ . . . ∧ ψk ∧ ψk+1. Since g is satisfiable, ϕ1 ∧ ϕ2 ∧ . . . ∧
ϕk ∧ ¬ϕk+1 (same as ψ1 ∧ ψ2 ∧ . . . ∧ ψk ∧ ψk+1) is also satisfiable. Let t0 be an input which
satisfies ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk ∧ ¬ϕk+1, that is t0 |= ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk ∧ ¬ϕk+1. Using Lemma
3.13 we get that reordered rsc(C, π(t0)) contains ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk ∧ ¬ϕk+1 (which is same
as ψ1 ∧ ψ2 ∧ . . . ∧ ψk ∧ ψk+1) as a prefix. By the definition of distance dist, the distance from
reordered rsc(C, π(t0)) to g should be

dist(reordered rsc(C, π(t0)), g) ≤ 1− k + 1

i
< 1− k

i

Replacing fcurrent with reordered rsc(C, π(t0)) will therefore decrease dist(fcurrent, g). Thus,
from fcurrent our path search algorithm moves to the execution trace for input t0 in one step. Since
g contains only i conjuncts, we need at most i such steps to make dist(fcurrent, g) to be 0. When
dist(fcurrent, g) == 0, we have a path π(t′) that has the same reordered relevant-slice condition
with g (such a t′ can be found since in each step of replacing fcurrent we obtain a feasible execution
trace which is executed by at least one program input). Since the reordered relevant-slice conditions
of π(t) and π(t′) are identical, therefore the relevant-slice conditions of π(t) and π(t′) must be
identical.

4. IMPLEMENTATION
In this section, we discuss our combined infra-structure for symbolic execution and dependency
analysis of Java programs.

Our implementation is based on JSlice[Wang and Roychoudhury 2008]1. JSlice is an open-source
dynamic slicing tool working on Java bytecodes. We have extended JSlice to compute relevant-slice

1http://jslice.sourceforge.net/
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Fig. 8: Architecture of relevant-slice condition computation

conditions. The architecture of our extended JSlice is shown in Figure 8. The “Operand Stack” in
Figure 8 stands for the stack of operands in a method activation frame. The recorded execution trace
of JSlice does not contain operand stack information. This is a design choice for keeping the trace
compact. During slicing, we need to recover the execution stack from a recorded trace to derive
operation on stack variables. For example, given an iload instruction (loading integer to the top of
current stack), we need the operand stack to know which stack variable is modified. Different from
stack variables, operations of heap variables are directly recorded in execution trace.

JSlice keeps the collected trace in a compressed form to achieve scalability. The compression
is online — as the trace is generated it is simultaneously compressed and then slicing is done on
the compressed trace. The slicing algorithm works directly on the compressed trace. We design our
extension of JSlice to retain this feature (of analyzing compressed traces without decompression).

In Figure 8, relevant slicing and symbolic execution are separated for ease of understanding.
However, we do not need the entire relevant slicing result to start computing relevant-slice condition
in the implementation. The process of constructing the relevant-slice condition is done along with
the backward relevant slicing to achieve efficiency. Since the relevant slicing process is backward,
we also compute the relevant slice condition via a backward symbolic execution which starts from
the slicing criteria and stops at the beginning of the trace.

For backward symbolic execution, we keep a set of symbolic values whose definitions have not
been encountered and need to be explained later in the backward symbolic execution process. The
symbolic value of a variable v is explained by either an assignment to v or by program input to v.
Let us take the sample program in Figure 1 to show our backward symbolic execution on a relevant
slice. Note that although we show this example at the source code level, our implementation is at
the Java bytecode level. Suppose the input is 〈x == 6, y == 5, z == 2〉. The relevant slice for the
execution trace of this input is [5, 6, 9, 10, 15, 16]. Backward symbolic execution along this relevant
slice is shown in Table III. The set of to-be-explained variables are shown in the third column of
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Table III: Backward symbolic execution example

Relevant slice Symbolic values To be explained variables Relevant slice condition
16 return out; { } { out } true
15 out = b; { out→ b } { b } true
10 b = a; {out→ a, b→ a } { a } true
9 if(x+y > 10) {out→ a, b→ a } {a, x, y } x+ y > 10
6 a = x; {out→ x, b→ x, a→ x } { x, y } x+ y > 10
5 if(x-y >0) {out→ x, b→ x, a→ x } { x, y } x− y > 0 ∧ x+ y > 10

Table III.
To construct the relevant-slice conditions, we need to precisely represent the semantics of each

bytecode type in the generated formulae. There are more than 200 different bytecode types in the
Java Virtual Machine instruction set, and all of them are handled in our implementation. Our imple-
mentation also handles native method calls. However, due to the JSlice version that our implemen-
tation is based on, currently we cannot handle programs with multi-threading and reflection.

In the original implementation of JSlice, the concrete operand values of most executed instruc-
tions are not stored in the compressed trace as they are not needed in the slicing process. However,
these values are needed when the semantics of some operations cannot be precisely modelled. In
such cases, we have to under-approximate the generated path condition/relevant-slice condition by
concretizing certain symbolic values in the relevant-slice condition. For example, Java allows a pro-
gram to use libraries written in other languages through native method call. Since the native calls
cannot be traced in Java Virtual Machine, the symbolic return values from native calls cannot be
precisely modelled. In this case, we simply concretize the symbolic return value from a native call
using the concrete return value of the native call (therefore, the concrete return value of native calls
are traced in our implementation).

As mentioned in Section 3, we need to reorder the branch conditions in a relevant-slice condition
in our path exploration process. Let rs(C, π) be the relevant slice on trace π w.r.t. the slicing cri-
teria C. Let rsc(C, π) be the relevant-slice condition computed on rs(C, π). To reorder the branch
conditions in rsc(C, π) using the reorder procedure shown in Algorithm 1, we need to compute a
relevant slice using each branch instance in rs(C, π) as the slicing criteria. Suppose there are m
branch instances in rs(C, π), our implementation traverses the trace π for m times to compute the
m relevant slices. In future, we plan to speed up this process, by computing all m relevant slices at
the same time of computing rs(C, π). We also observe that there are a lot similarities among the
slices w.r.t. different branch instances (used as slicing criteria) in the same trace. For example, if a
branch instance bi is in the relevant slice of branch instance bj , then the relevant slice w.r.t. bi is a
subset of the relevant slice w.r.t. bj . In future, we could exploit the similarities among these slices
to further reduce the cost of our reorder procedure.

Our execution engine is a combined infra-structure for dynamic dependency analysis and dy-
namic symbolic execution. Thus, apart from computing relevant-slice conditions, we can simply
disable the dependency analysis in our engine to compute path conditions. The path conditions and
relevant-slice conditions generated from our tool are in the SMT-LIB format2, which can be solved
by various Satisfiability Modulo Theory or SMT solvers. In our implementation, we choose Z3
[De Moura and Bjørner 2008]3 as the SMT solver for our tool.

5. EXPERIMENTS
In the following, we first compare our relevant-slice condition based path exploration method with
path condition based path exploration. We then present three applications of relevant-slice condi-

2http://www.smt-lib.org/
3http://research.microsoft.com/en-us/um/redmond/projects/z3/
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Table IV: Experiments in full program exploration

Subject prog. Size (LOC) RSC coverage Time #Testcases Avg. formula size #Solver calls
RSC PC RSC PC RSC PC RSC PC

Tcas 113 100% 6.3s 13.1s 29 88 5744 64810 412 939
BinarySearchTree 175 75% 6.1s 58.6s 64 453 3836 49266 163 3188

OrdSet 211 79% 2.1s 7.4s 12 59 6444 55461 96 293
Schedule 257 100% 0.3s 15.4s 3 75 1808 13728 13 932

DisjointSet 102 100% 20.8s 64.8s 69 278 7643 170533 1192 3855

tions in: i) the debugging of evolving programs and ii) test-suite augmentation and iii) mining finite
state automata from programs.

Algorithm 3 PCExplore:path exploration using path condition
1: Input:
2: P : The program to test
3: t : An initial test case for P
4: Output:
5: T : A test-suite for P
6:
7: Stack = null // The stack of partial PC to be explored
8: Execute(t, 0)
9: while Stack is not empty do

10: let 〈f, j〉 = pop(Stack)
11: if f is satisfiable then
12: let µ be one input that satisfies f
13: put µ into T
14: Execute(µ, j)
15: end if
16: end while
17: return T
18:
19: procedure Execute(t, n)
20: execute t in P and compute path condition pc
21: let pc = ψ1 ∧ ψ2 ∧ . . . ∧ ψm−1 ∧ ψm

22: for all i from n+1 to m do
23: let h = (ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi)
24: push 〈h, i〉 into Stack
25: end for
26: return
27: end procedure

5.1. Path exploration
We compare our path exploration algorithm RSCExplore in Algorithm 1 with the PCExplore shown
in Algorithm 3. The PCExplore algorithm closely resembles our RSCExplore algorithm in Algo-
rithm 1. The main difference is that PCExplore uses path condition instead of relevant-slice condi-
tion. Because of using path condition, neither slicing nor reordering takes place in PCExplore.

The subject programs shown in Table IV are from SIR [Do et al. 2005] repository. Tcas and
Schedule are originally written in C language, we manually translate them into Java language. For
Tcas and Schedule, the slicing criteria are set as the final program outputs. For the other three data-
structure programs, the slicing criteria are set as the outputs of the test drivers. The lines of code
(LOC) in each program are also shown in Table IV.

The completeness of exploration is difficult to achieve in practice for several reasons. Two of
the main reasons are (i) the limited power of current SMT solvers and (ii) imprecise modeling of
program semantics for symbolic execution. Because of these two reasons, our technique may miss
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1 int foo(int x, int y){ //input
2 int out; //output
3 int a[2] = {0,1};
4 if(x > 0)
5 System.out.println("x is greater than zero");
6 if(a[x]>0){
7 if(y > 0)
8 out = 1;
9 else
10 out = -1;
11 }else{
12 out = 0;
13 }
14 return out;//slicing criteria
15 }

Fig. 9: Example of imprecise array modelling

a certain relevant-slice condition rsci when PCExplore can explore a path whose relevant-slice
condition is rsci. More discussion of the incompleteness of SMT solvers is provided in Section 6.
In the next paragraph, we explain how imprecise modeling of array can cause our implementation
to be not as complete as PCExplore in terms of relevant-slice condition coverage.

Consider the example program in Figure 9. The branch in line 6 uses a[x] in its branch condi-
tion. In our current implementation, we concretize symbolic array index using the value observed
at execution time. Suppose the initial input for the program in Figure 9 in both our method RSC-
Explore and PCExplore is 〈x == 0, y == 0〉. When computing the branch condition of line 6
for input 〈x == 0, y == 0〉, we concretize the symbolic value of x using 0, which is the value
of x in line 6 when executing the program with input 〈x == 0, y == 0〉. After concretization,
the branch condition of line 6 is ¬(a[0] > 0), which is reduced to true. Thus, due to the con-
cretization of symbolic array index, the branch at line 6 cannot contribute a branch condition to
either path condition or relevant-slice condition. The path condition and relevant-slice condition for
〈x == 0, y == 0〉 are ¬(x > 0) and true respectively. Since the relevant-slice condition for the
initial input 〈x == 0, y == 0〉 is true (containing no branch condition), our technique terminates.
However, some relevant-slice conditions are missed by our technique. In particular, the relevant-
slice conditions of paths that evaluate branch at line 6 to false are missed. In contrast, PCExplore
could explore all feasible paths (hence all relevant-slice conditions) of the program in Figure 9. If
arrays are modelled precisely, this problem will disappear.

The “RSC coverage” column in Table IV measures how much incompleteness in relevant-slice
condition coverage is introduced by the imprecise modelling of program semantics in our imple-
mentation. The numbers in the “RSC coverage” column are computed as follows. Let the program
being explored be P . We employ PCExplore on P to explore program paths and construct a test-
suite TPCExplore which contains the set of all paths in P covered by PCExplore. For each test case t in
TPCExplore, we compute the relevant-slice condition on the execution trace of t and put this relevant-
slice condition into a set SPCExplore. Similarly, we generate a test-suite TRSCExplore for program P
using our path exploration method RSCExplore. For each test case t in TRSCExplore, we compute the
relevant-slice condition on the execution trace of t and put this relevant-slice condition into a set
SRSCExplore. Then the “RSC coverage” column in Table IV is |SRSCExplore|

|SPCExplore| . As shown in Table IV, our
method cannot always achieve 100 percent relevant slice coverage as compared to PCExplore due
to the imprecise modelling of program semantics in our implementation.

In columns 4-11 of Table IV, we compare the time, number of generated test cases, formula size
and number of solver calls between our method RSCExplore and PCExplore. The formula size is
measured by the number of bytes in the SMT-LIB formula file. For getting these numbers, both our
method (RSC) and the PCExplore method are run to completion, and the running time is recorded.
Note that the time reported in Table IV includes the time taken in every steps of our method and

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:26

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 0  2  4  6  8  10  12  14  16

R
S

C
 c

o
v
e

ra
g

e

Time (seconds)

RSCExplore
PCExplore

(a) Tcas

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 0  10  20  30  40  50  60  70

R
S

C
 c

o
v
e

ra
g

e

Time (seconds)

RSCExplore
PCExplore

(b) BinarySearchTree

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 0  1  2  3  4  5  6  7  8

R
S

C
 c

o
v
e

ra
g

e

Time (seconds)

RSCExplore
PCExplore

(c) OrdSet

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 0  2  4  6  8  10

R
S

C
 c

o
v
e

ra
g

e

Time (seconds)

RSCExplore
PCExplore

(d) Schedule

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 0  10  20  30  40  50  60  70

R
S

C
 c

o
v
e

ra
g

e

Time (seconds)

RSCExplore
PCExplore

(e) DisjointSet

Fig. 10: Relevant-slice condition coverage comparison

PCExplore. For example, the time taken by our method includes the time for program execution,
relevant slicing, relevant-slice condition computation, branch condition reordering, formula solving,
etc. As shown in Table IV, our technique takes much less time than PCExplore. The efficiency
comes from several sources. First, since we use relevant-slice condition instead of path condition,
the formula size of our approach is much smaller than that of PCExplore. This reduces the time taken
by the solver. Second, the number of different relevant-slice conditions is considerably smaller than
the number of path conditions. This reduces both the number of executions and the number of solver
calls.
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Table V: DARWIN debugging results (LOC stands for Lines of Code)

Subject prog. Stable version Buggy version Diff Time Debugging results
PC RSC PC RSC

JLex 1.2.1 (7290 LOC) 1.1.1 (6984 LOC) 518 LOC 543 min 15 min 50 LOC 3 LOC
JTopas 0.8 (4514 LOC) 0.7 (5754 LOC) 2489 LOC 81 min 5 min 4 LOC 4 LOC

NanoXML 2.1(4947 LOC) 2.2 (5244 LOC) 2496 LOC 2m56s 43s 8 LOC 6 LOC

Figure 10 compares the relevant-slice condition coverage of our Algorithm 1 with PCExplore
under the same time limit. Note that PCExplore intends to achieve path coverage. However, as we
have observed - several paths may have the same input-output relationship, and testing is always
done by checking outputs. We check the number of relevant-slice conditions that are covered by
the paths explored in PCExplore. As shown in Figure 10, our technique gets higher relevant-slice
condition coverage then PCExplore when the given time is short.

5.2. Debugging of evolving programs
The obvious application of relevant-slice conditions is in software testing - it groups program paths
and can be used to efficiently generate a concise test-suite. We now show another application of
relevant-slice conditions namely in the debugging of evolving programs. As a program evolves,
functionality which worked earlier breaks. This is commonly known as software regressions. For
any large scale software development, debugging the root-case of regressions is an extremely time
consuming activity.

We applied our relevant-slice conditions on the DARWIN method for debugging evolving pro-
grams [Qi et al. 2009]. Given two program versions P and P ′, and a test case t which passes in P
but fails in P ′, the work in [Qi et al. 2009] tries to find the root cause of the failure of t in P ′. The
debugging proceeds by computing and composing the path conditions of t in P and P ′, as follows.

First, the path conditions f and f ′ of t in P and P ′ are computed. We then compute the formula
f ∧¬f ′ as follows. Suppose f ′ is f ′ = (ψ1∧ψ2∧ . . .∧ψm) where ψi are primitive constraints. The

following m formulae {ϕi | 0 ≤ i < m} are then solved where ϕi
def
= f ∧ψ1 ∧ . . . ψi ∧¬ψi+1. We

invoke a Satisfiability Modulo Theory or SMT solver to solve the m formulae {ϕi | 0 ≤ i < m}.
Finally, for every ϕi which is satisfiable, we can find a single line in the source code which is a
potential error root cause — the branch corresponding to ψi+1 (which is negated in ϕi).

We observe that the path conditions f and f ′ in the above method can be replaced by relevant-
slice conditions. Path condition is not “goal-directed” — it contains the constraints of branches
which are not “related” to the observable error. In particular, a path condition will typically contain
constraints for branches which are not in the dynamic or relevant slice of the observable error.
Consider the following example program

1 ... // input inp1, inp2
2 if (inp1 > 0)
3 x = inp1 + 1;
4 else
5 x = inp1 - 1;
6 if (inp2 > 0)
7 y = inp2 + 1
8 else
9 y = inp2 - 1;
10 ... // output x, y

Suppose the observed value of x is unexpected for inp1 == inp2 == 0 because of a “bug” in
line 2 (say, the condition should be inp1 >= 0). The path condition is ¬(inp1 > 0) ∧ ¬(inp2 >
0). Clearly, the constraint ¬(inp2 > 0) corresponding to the branch in line 6 is unrelated to the
observable error (unexpected value of x). Indeed, line 6 is not in the dynamic slice or relevant slice
of the slicing criterion corresponding to the output value of x in line 10.
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Thus, due to the inherent parallelism in sequential programs, path conditions contain constraints
for branches which are not in the slice of the observed error. Composing these path conditions for
debugging then allows for such “unrelated” branches to be incorporated into the bug report (which
is output by the debugging method). Indeed including these “unrelated” branch constraints increases
the burden on the SMT solvers invoked by the DARWIN method, both in terms of the size of the
formulae and the number of the formulae to solve. In addition, these “unrelated” branch constraints
also introduce some false positives into the bug report produced by the DARWIN method.

Replacing path condition with relevant-slice condition in the DARWIN method resolves these
issues. Thus, given a test case t that passes in the old version program P but fails in the new version
program P ′ — we now compute g and g′, the relevant-slice conditions of t in P and P ′ respectively.
We then solve g ∧¬g′ in a manner similar to the solving of f ∧¬f ′ in DARWIN (where f, f ′ were
the path conditions of t in programs P, P ′).

We compare the debugging result of DARWIN using relevant-slice conditions with the original
DARWIN method (which uses path conditions) in Table V.

Both methods are fully automated. We did not use the same SIR programs as used in Section
5.1 because debugging regression errors for SIR programs is usually trivial. This is because the
difference between two SIR program versions is usually small. The first subject program being used
is JLex4. JLex is a lexical analyzer generator written in Java. We use version 1.2.1 of JLex as
the stable version, and version 1.1.1 as the buggy version. There are 6984 and 7290 lines of code
in version 1.1.1 and version 1.2.2 respectively. The changes across version 1.1.1 and version 1.2.1
consist of 518 lines of code. In particular, the version 1.1.1 of JLex cannot recognize ‘\r’ as the
newline symbol, while in version 1.2.1 this bug is fixed. We use an input file manifesting this bug.

The experimental results from DARWIN using relevant-slice conditions vs. the original DAR-
WIN method appears in Table V. The original DARWIN method, which uses path conditions, takes
543 minutes (or 9 hours) to perform the debugging. The result of DARWIN is a bug report con-
taining 50 lines of code, which are highlighted to the programmer as potential root-causes of the
observable error. In contrast, DARWIN using relevant-slice condition takes only 15 minutes. The
result is a bug report containing only 3 lines of code — potential root causes of the observed error.
Indeed, the actual error root-cause lies in one of these three lines of code. Thus, by using relevant-
slice conditions inside our DARWIN debugging method - we could avoid 47 false positives among
the potential error causes which are reported to the programmer. Moreover, there is a huge savings
in the debugging time (15 minutes vs 9 hours) which comes from the relevant-slice conditions being
much smaller than path conditions.

We also conducted experiments using JTopas 5 as the subject program. JTopas is a Java li-
brary for parsing arbitrary text data. We use version 0.8 of JTopas as the stable version, and
version 0.7 as the buggy version. There are 5754 and 4514 lines of code in version 0.7 and ver-
sion 0.8 respectively. JTopas allows users to customize whitespace characters (i.e. characters that
are considered as whitespace characters) by using function setWhitespaces. JTopas also uses a
boolean field defaultWhitespaces to control whether the default whitespace characters are used or
the user-customized whitespace characters are used. To use the customized whitespace characters,
defaultWhitespaces has to be set to false. Unfortunately, the buggy JTopas-0.7 does not re-

set the member defaultWhitespaces leading to the default whitespace characters still being used
instead of the customized ones although the user has specified the custom whitespace characters.
In our experiment, we customize whitespace characters to {‘ ’, ‘\r’,‘\t’} ({‘ ’, ‘\n’, ‘\r’,‘\t’} by
default) and use an input file manifesting the aforementioned bug. The debugging results of DAR-
WIN using path condition and DARWIN using relevant-slice condition are shown in Table V. The
results from the original DARWIN method (using path condition) and DARWIN using relevant-
slice condition are both four lines of code. They both contain the location where ‘\n’ is treated
differently between the two versions. The pinpointed location shows that the stable version does

4http://www.cs.princeton.edu/˜appel/modern/java/JLex/
5http://jtopas.sourceforge.net/jtopas/index.html
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public int getProperty(String key,
int defaultValue)

{
String val=(String)attributes.get(key);
if (val == null) {
return defaultValue;

} else {
try {

return parseInt(val);
} catch (NumberFormatException e) {

throw invalidValue(key, val);
}

}
}

(a) getProperty in NanoXML-2.1

public int getProperty(String name,
int defaultValue)

{
return getIntAttribute(name, defaultValue);

}
public int getIntAttribute(String name,

int defaultValue)
{
String value=(String)attributes.get(name);
if (value == null) {
return defaultValue;

} else {
try {
return parseInt(name); //bug

} catch (NumberFormatException e) {
throw invalidValue(name, value);

}
}

}

(b) getProperty in NanoXML-2.2

Fig. 11: Regression bug in NanoXML-2.2

not consider ‘\n’ as a whitespace. In contrast, the buggy version still treats ‘\n’ as a whitespace
because defaultWhitespaces is true (even though whitespace characters have already been cus-
tomized). From this clue, the programmer could easily infer that the member defaultWhitespaces
was not assigned to the correct value. Although using relevant-slice condition does not eliminate
any false positives in the debugging result, it does reduce the time taken by DARWIN from 81
minutes to 5 minutes.

Lastly, we applied DARWIN technique on a regression bug in NanoXML 6. NanoXML is a sim-
ple XML file parser. A regression bug happened when NanoXML was changed from version 2.1 to
version 2.2. The simplified source code of the bug is shown in Figure 11. Given a property name
of an XML element as specified in the parameter, the getProperty method is used to get the
integer-typed value of the property. The implementation of getProperty method was changed
from version 2.1 to 2.2. In particular, in version 2.2, the code was restructured and getProperty
method was implemented by simply calling another method getIntAttribute. Unfortunately,
the implementation of method getIntAttribute contains a bug. The bug lies in the second
return statement in Figure 11b. Instead of return parseInt(name), it should be return
parseInt(value). We applied our DARWIN debugging technique with version 2.1 as the ref-
erence version and version 2.2 as the buggy version. Version 2.1 and version 2.2 of NanoXML have
4947 and 5244 lines of code respectively, and there are 2496 different lines of code between these
two versions. The original path-condition-based DARWIN technique took 2 minutes and 56 seconds
to generate a bug report with 8 lines of source code. In contrast, DARWIN technique using relevant-
slice condition only took 43 seconds to generate a bug report with 6 lines. Both the debugging time
and the debugging result were improved.

5.3. Test-suite augmentation
Test-suite needs to be augmented when old test-suite no longer meets the test requirement due
to program changes [Qi et al. 2010; Santelices et al. 2008; Xu et al. 2010]. Suppose a program
P is changed to program P ′. We can employ PCExplore to generate a set of change-exposing
test cases to augment the existing test suite. More specifically, we can first apply PCExplore to
get signatures of program P and P ′ separately. Suppose the signature for program P is Sig(P ),
which is a set of path condition and symbolic output value pairs. For each path π explored by
PCExplore, we add 〈pc(π), symout(π)〉 into Sig(P ), where pc(π) denotes the path condition along

6http://devkix.com/nanoxml.php
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path π and symout(π) denotes the symbolic value of output computed on π. Similarly, we compute
the signature for program P ′ as Sig(P ′). We could try to generate a test case for each formula
f(πi, πj)

def
= (pc(πi) ∧ pc(πj) ∧ symout(πi) 6= symout(πj)), where 〈pc(πi), symout(πi)〉 ∈

Sig(P ) and 〈pc(πj), symout(πj)〉 ∈ Sig(P ′). If f(πi, πj) is satisfiable, its solution is guaranteed
to have different output in program P and P ′ according to the definition of f(πi, πj). We then
enumerate all possibilities values of i and j which make f(πi, πj) satisfiable. Whenever f(πi, πj)
is satisfiable, its solution is put into a set TPCExplore. Through this process, we get a set of test cases
in TPCExplore. These test cases in TPCExplore expose the semantic changes between the two programs.

As we have seen in this paper, we could use the relevant-slice condition to efficiently gen-
erate a more concise signature for a program. When using relevant-slice condition to generate
the signature, each element in Sig(P ) becomes 〈rsc(π), symout(π)〉, where rsc(π) is the rel-
evant slice condition along path π. We also need to change the definition of f(πi, πj) accord-
ingly. For signatures generated using relevant-slice condition, we define f(πi, πj) as f(πi, πj)

def
=

(rsc(πi)∧rsc(πj)∧symout(πi) 6= symout(πj)). By solving all the possible instances of f(πi, πj),
we get a set of test cases TRSCExplore. As path exploration based on relevant-slice condition does not
lose any precision when generating the signature, TRSCExplore has the same change-exposing abil-
ity than TPCExplore. On the other hand, path exploration based on relevant-slice condition is much
more efficient than PCExplore, which makes computing TRSCExplore much less costly than comput-
ing TPCExplore.

1 int foo(int x, int y, int z){
2 int out; // output variable
3 int a;
4 int b = 2;
5 if(x - y > 0) //b1
6 a = x;
7 else
8 a = y;
9 if(x + y > 10) //b2
10 b = a;
11 if(z*z > 3) //b3
12 System.out.println("square(z)>3");
13 else
14 System.out.println("square(z)<=3");
15 out = b;
16 return out; //slicing criteria
17}

(a) Original Program

1 int foo(int x, int y, int z){
2 int out; // output variable
3 int a;
4 int b = 2;
5 if(x - y > 2) //b1, changed
6 a = x;
7 else
8 a = y;
9 if(x + y > 10) //b2
10 b = a;
11 if(z*z > 3) //b3
12 System.out.println("square(z)>3");
13 else
14 System.out.println("square(z)<=3");
15 out = b;
16 return out; //slicing criteria
17}

(b) Changed Program

Fig. 12: Sample program

We now show the process of computing TRSCExplore in action using the programs in Figure 12 as
an example. The program in Figure 12a is the same as the program in Figure 1. Figure 12b contains
a changed version of the program in Figure 12a. The branch at line 5 is changed from if(x-y>0)
to if(x-y >2). As mentioned in Section 1, the program in Figure 12a has the following signature

— (x− y > 0) ∧ (x+ y > 10)⇒ out == x
— (x− y ≤ 0) ∧ (x+ y > 10)⇒ out == y
— (x+ y ≤ 10)⇒ out == 2

The signature of the changed program in Figure 12b is as follows,

— (x− y > 2) ∧ (x+ y > 10)⇒ out == x
— (x− y ≤ 2) ∧ (x+ y > 10)⇒ out == y
— (x+ y ≤ 10)⇒ out == 2
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Following the aforementioned process of generating TRSCExplore, after removing unsatisfiable for-
mulae, only the following formula is satisfiable

((x− y > 0) ∧ (x+ y > 10)) ∧ ((x− y ≤ 2) ∧ (x+ y > 10)) ∧ (x 6= y)

By generating a test input from this formula, we get TRSCExplore as {〈x == 6, y == 5〉} (The input
variable z is not bounded and can be any integer value). Programs P in Figure 12a and P ′ in Figure
12b produce different output when given this input.

We compared the change-exposing ability of TPCExplore and TRSCExplore using tcas from SIR as
the benchmark. There are 41 versions of tcas with seeded bugs. Each one of these 41 versions
has only one change from the original program. Among them, two versions always crash with
array out of bound exceptions after being translated from C to Java. These two versions are not
considered in our experiment. For each version i, we use the original program as P and version
i as P ′. Then we compute the two set of test cases TPCExplore and TRSCExplore based on P and P ′.
We compare the change-exposing ability of TPCExplore and TRSCExplore. We observe that whenever the
number of change-exposing inputs in TPCExplore is not zero, the number of change-exposing inputs
in TRSCExplore is not zero. This shows that using relevant-slice condition to explore the program does
not change the ability of generating change-exposing inputs. On the other hand, redundant path
exploration is avoided, which improves the efficiency of the approach. Overall, the time taken to
generate TRSCExplore is 20.8% of the time taken to generate TPCExplore in the experiment with tcas.

5.4. Mining finite state automata from programs
In this section, we show an application of our RSCExplore algorithm in mining FSA (Finite-State
Automata) from real programs. An FSA contains finite number of states and transitions. At any
point of time, an FSA is only in one state. Each transition connects its source state to its destination
state. A transition is only activated when the FSA is in its source state and its transition condition
is satisfied. FSA is frequently used to model control systems and event-driven systems. Uncovering
FSA from real implementation of such systems could help better understand these systems. Pro-
grammers can also check whether the mined FSA matches the system specification to make sure
that the specification is correctly implemented.

Uncovering FSA from real program implementation amounts to uncovering all states, transitions
and transition conditions associated with transitions. We first need to identify the variables that
represent the FSA state in the program. Those variables are then set as the slicing criteria in our
path exploration algorithm. Recall from Section 5.3 that we can use our path exploration algorithm
based on relevant-slice condition to produce a signature of the explored program. Given a program
P , our RSCExplore algorithm generates a signature Sig(P ) for P . Each entry in the signature
Sig(P ) is in the form of 〈rsc(π), symout(π)〉. Suppose variable s in the program contains the
FSA state. By setting s as the slicing criteria, symout(π) is the symbolic value of s which tells
us how the FSA state s changes. In addition, the relevant-slice condition rsc(π) represents the
transition condition that has to be satisfied for the FSA state to be symout(π). In other words, if the
program state (including variables besides the FSA state) satisfies rsc(π), the FSA state will change
to symout(π). By setting the slicing criteria as the FSA state, our technique only focuses on the
computation that affects the FSA state. Computation unrelated to FSA state is immediately ruled
out during slicing. This not only saves effort in path exploration but also helps derive more precise
FSA models. In contrast, we can also use path exploration based on path condition to generate a
signature SigPC(P ) for P . Each entry in SigPC(P ) is in the form of 〈pc(π), symout(π)〉. The path
condition pc(π) can be used as the transition condition and symout(π) represents how the state
changes. However, computation unrelated to the FSA state also takes place in the path condition,
making path condition unnecessarily complicated. Moreover, more than one path containing the
same state transition is explored, leading to wastage of time and computation power.

We have applied the above technique onto two real-life programs: CTAS (Center TRACON Au-
tomation System) and an XML type parser used in SQL Power Architect [Software 2012].
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Fig. 13: FSAs for CTAS Air Traffic Controller
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Fig. 14: FSAs for XML type parser

CTAS is an air traffic control system from NASA whose weather control logic specification is
publicly available [cta ]. Each CTAS system consists of one Weather Control Panel(WCP), one
Air-Traffic Controller(ATC) and multiple clients. Both WCP and clients only communicate with
ATC. The major task of ATC is to get weather information from WCP and update the weather
information of all clients. We focus on the FSA used in the ATC. The ATC implements an FSA
with 9 states and 17 transitions. The 9 states are UNKNOWN, PREINITIALIZING, INITIALIZING,
POSTINITIALIZING, PREUPDATING, UPDATING, POSTUPDATING, POSTREVERTING and DONE.
Initially, the ATC is in the UNKNOWN state. Initialization of a newly connected client puts the ATC
into PREINITIALIZING state. The ATC will then send load-weather instructions to the client and
transit to INITIALIZING state, waiting for response from the client. If the client has successfully
loaded the weather, the ATC will get into POSTINITIALIZING state, waiting the response from the
client of successfully using the weather information. If the response comes, the ATC will go to DONE
state. The ATC may also update all clients with new weather information. This process starts with
the PREUPDATING state, in which the ATC sends out the update instructions to all clients and goes
to UPDATING state. If all clients have successfully loaded the weather information, the ATC goes
to POSTUPDATING state waiting all clients to use the new weather information. If the ATC fails
to get the new weather from the WCP in the weather updating process, the ATC will instruct all
clients to use previous weather information and go into POSTREVERTING state to wait the responses
from the clients. When all clients have updated the new weather or reverted to previous weather,
the ATC goes into DONE state. The main control logic of ATC is implemented as an FSA with the
aforementioned 9 states of ATC and transitions representing the actions of the ATC.

The other subject program we use is an XML type parser taken from SQL Power Architect which
is a data modeling and profiling tool. Different from normal XML parser, the XML type parser tries
to read as few bytes from the parsed XML file as possible and yet decide the document type of the
XML file. It uses an FSA to maintain the parsing state. There are 5 states and 12 transitions. The 5
states are OUTSIDE, BRACKET, COMMENT, IGNORE and TAG. The state OUTSIDE means that parsed
byte is outside any brackets. If the parsed byte is inside brackets but not part of a tag, then the state
is BRACKET. When parsing XML comments, the state becomes COMMENT. Finally, if the parsed byte
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is part of a tag, the parsing state becomes TAG.
The FSAs used by the aforementioned programs and the mined FSAs are shown in Figure 13

and Figure 14. Transition conditions are omitted for simplicity. If a transition is met more than
once in our technique, the number of times is labeled aside the transition. For the weather control
logic in CTAS, our method constructs an FSA with 9 states and 24 transitions in 5.5 seconds. In
contrast, path exploration based on path condition does not terminate within 1 hour. For the XML
type parser in SQL Power Architect, our method constructs an FSA with 5 states and 37 transitions
in 7.6 seconds. In contrast, path exploration based on path condition takes 6 minutes to construct
an FSA with 1337 transitions. For both programs, all states and transitions are uncovered using our
method. On the other hand, our method constructs FSAs with more transitions than the actual FSAs
implemented by the subject programs. This is due to the imprecision of static analysis in computing
potential dependence, causing more than one path with the same relevant-slice condition to be
explored.

6. THREATS TO VALIDITY
Internal threats. An internal threat to validity comes from potential bugs in our implementation.

We note that the slicing functionality of JSlice is thoroughly tested and has been widely used in both
academia and industry. To guarantee the correctness of our symbolic execution implementation in
JSlice, we have manually checked some of the generated path conditions/relevant-slice conditions.

Another source of threat to validity comes from the subject program selection in the evaluation.
Studies on more subject programs could help better assess the effectiveness of our technique.

Program crashes. Our path exploration does not try to cover all paths. Instead, we try to group
paths based on symbolic outputs. This is done with the goal of test-suite construction, where test-
ing will expose possible failures in the program. However, failure of a test case does not only
come from unexpected outputs - it can also come from program crashes. Thus, for the paths
which we do not explore if they contain program crashes - these will not be exposed by the
test-suite computed by our technique. For example, given if(x>0){p[i] = 0;}, it is pos-
sible that the branch is never evaluated to true in our exploration process, hence any possible
ArrayIndexOutOfBoundsException in the access to p[i] will not be spotted by the gen-
erated test-suite. For branches that are not in the relevant slice of any trace, our technique do not
guarantee that both directions of the branch will be explored. Realistically, our test-suite construc-
tion could be supplemented by techniques to statically detect possible program crashes, such as
memory errors [Xie et al. 2003].

Approximation of relevant slice. Due to the conservative nature of static analysis used in com-
puting relevant slice, our technique may over-approximate the potential dependencies and hence the
relevant slice. Since more branches will appear in the over-approximate relevant slice (than what
should appear in the actual relevant slice), therefore the computed relevant-slice conditions from
the over-approximated relevant slice will be stronger than the relevant-slice conditions that would
have been computed from the actual relevant slice. In that case, we may explore more than one paths
that have the same relevant-slice condition. Consider the following program.

101 if(x > 0){
102 p.num = 0;
103 }
104 out = q.num;

Suppose p and q never alias each other. If the static analysis cannot determine the non-alias
between p and q, line 104 is potential dependent on line 101 when the branch at line 101 is evaluated
to false. Therefore, the branch at line 101 is included in relevant slice and our technique will try to
explore both directions of the branch at line 101, which is unnecessary. Note that this strengthening
of relevant-slice condition only causes duplicated exploration of some relevant-slice conditions, it
does not affect the completeness claim of our technique.
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1 int foo(int x, int y, int z){//input variables
2 int out; // output variable
3 String s = null;
4 int a;
5 int b = 2;
6 if(x - y > 0) //b1
7 a = x;
8 else
9 a = y;
10 if(x + y > 10) //b2
11 b = a;
12 if(z*z > 3) //b3
13 s = "square(z) > 3";
14 else
15 s = "square(z) <= 3";
16 out = b;
17 System.out.println(s); //slicing criteria
18 return out; //slicing criteria
19 }

Fig. 15: Sample program with multiple outputs

Different output types and multiple outputs. Programs produce outputs in various ways including
return value, side-effect on heap variables, direct interaction with files, etc. Our technique naturally
considers all these output types of outputs on users’ demand. When multiple outputs exist, users
simply need to include all these outputs in the slicing criteria. Consequently, the computed relevant
slices contain all statements affecting at least one of the outputs. However, including more outputs
in slicing criteria increases the size of relevant slices and relevant slice conditions, which reduces
the effectiveness of our technique. Let us use the example in Figure 1 to illustrate this issue. In our
earlier discussion, we have been considering the return statement in line 16 as the slicing criteria.
Suppose now we also want to consider the two printing statements in line 12 and 14 as outputs.
We first need to transform the program into the program in Figure 15, so that the slicing criteria
post-dominate the program entry. After the transformation, both line 17 and line 18 in Figure 15
are set as slicing criteria. Applying our technique, our tool generates the following summary with 6
entries as opposed to the 3-entry summary in Section 1 when only the return statement is set as the
slicing criteria.

— If x− y > 0 and x+ y > 10 and z ∗ z > 3, then s == "square(z) > 3" and out == x
— If x− y > 0 and x+ y > 10 and z ∗ z ≤ 3, then s == "square(z) <= 3" and out == x
— If x− y ≤ 0 and x+ y > 10 and z ∗ z > 3, then s == "square(z) > 3" and out == y
— If x− y ≤ 0 and x+ y > 10 and z ∗ z ≤ 3, then s == "square(z) <= 3" and out == y
— If x+ y ≤ 10 and z ∗ z > 3, then s == "square(z) > 3" and out == 2
— If x+ y ≤ 10 and z ∗ z ≤ 3, then s == "square(z) <= 3" and out == 2

With more outputs, our technique is less efficient. However, for the above program, our technique
is still more efficient than full path exploration, which will exercise all eight paths.

Scalability issues. Apart from considering more outputs, lack of inherent parallelism in a program
also reduces the effectiveness of our technique. If a program contains little inherent parallelism, the
relevant slice of an input tmay contain the majority of the execution trace of input t. In such case, the
improvement of our technique over path exploration based on path condition is limited. Although
our technique considerably improves the efficiency of the path exploration, the path explosion prob-
lem still exists. In the worst case, the number of relevant-slice conditions grows exponentially with
the number of branches in the program.

SMT solver support. The proofs presented in Section 3.2 assume that the underlying SMT solver
is both sound and complete. The SMT solvers we have used are sound. That is, if the solver declares
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1 int foo(int i){ //input variable
2 int a[2];
3 int out = 0;//output variable
4 a[0] = 0;
5 a[1] = 1;
6 if(a[i] > 0){
7 out = 2;
8 }
9 return out;
10 }

Fig. 16: Example program showing imprecise array modelling

that a formula is satisfiable (unsatisfiable), then the formula is indeed satisfiable (unsatisfiable). We
now examine the completeness aspect of the assumption. In general, off-the-shelf SMT solvers are
not complete for relevant-slice conditions generated from real programs. However, SMT solvers
could be complete for formulae within certain theories. For example, the STP [Ganesh and Dill
2007] solver is sound and complete for quantifier-free formulae in the theory of bit-vectors and
arrays. Therefore, if a subject program only uses fixed-size integer variables and the fixed-size
integers are modeled as bitvector arrays, the STP solver then acts as a decision procedure for such
formulae. In our experiment, Z3 is used as the underlying SMT solver. Z3 is not complete for non-
liner integer operations. Although being incomplete, various heuristics incorporated into Z3 have
been shown to be effective for solving formulae with non-liner integer operations in practice. Z3
has three types of output: sat, unsat and unknown. The sat output indicates that the formula is
satisfiable and the unsat output indicates that the formula is unsatisfiable. The unknown output
suggests that Z3 fails due to incompleteness. However, we did not observe any unknown output
from Z3 in our evaluation presented in Section 5. If incompleteness of the underlying SMT solver
occurs, our path exploration could be incomplete.

Modeling of bytecode semantics in implementation. Finally, we note that the completeness proof
of Algorithm 1 in Section 3.2 also assumes that the semantics of the different program statement
executed in a trace is precisely modeled in the computed relevant-slice condition of that execution
trace. However, in our implementation, certain program features are not precisely modeled, which
causes our path exploration to be incomplete. In particular, polymorphism and arrays are not pre-
cisely modeled in our current implementation. Let us consider the example program in Figure 16.
Suppose the slicing criteria is at line 9. The precise relevant-slice condition for the execution trace of
input i == 0 is i ≥ 0∧i < 2∧a[i] > 0∧((i == 0∧a[i] == 0)∨(i == 1∧a[i] == 1)). To get this
precise relevant-slice condition, we need to trace all the possible assignments to any element of ar-
ray a[]. However, in our implementation, we compute an approximated relevant-slice condition by
concretizing the array index of any array reference as is done in other dynamic symbolic execution
engine, such as BitBlaze [Song et al. 2008]. Therefore, the approximated relevant-slice condition
we get is a[1] > 0, which could be reduced to true in this example. Because of this approximation,
exploration then misses the case that the branch at line 6 could be evaluated to false.

7. RELATED WORK
The technique proposed in this paper is based on dynamic path exploration[Sen et al. 2005;
Godefroid et al. 2005] and relevant slicing[Wang and Roychoudhury 2008; Agrawal et al. 1993;
Gyimóthy et al. 1999]. Our technique improves existing dynamic path exploration techniques by
grouping several paths together using relevant-slice condition. Existing dynamic path exploration
tries to achieve path coverage. In contrast, our technique only selects one path from each relevant-
slice condition to explore.

There are several works which focus on improving the efficiency of dynamic path exploration. In
[Godefroid 2007], function summaries are generated and exploited. In [Godefroid et al. 2008], the
grammar of the input is used to avoid generating large percentage of invalid inputs. Our approach is
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orthogonal to these approaches, therefore, our approach can be combined together with any of these
approaches to further improve the efficiency of the path search. In the context of software evolution,
to avoid redundant path exploration, Person et al. [Person et al. 2011] propose incremental symbolic
execution that focuses on path conditions affected by program changes.

In [Santelices and Harrold 2010], a program is statically decomposed into several path families,
where each path family contains several paths that share similar behavior. Instead of analyzing
each path individually, a program can be analyzed at the granularity of path family. The authors of
[Santelices and Harrold 2010] also compute a “path family condition” for each path family, which
could characterize that path family. The path partition based on relevant-slice condition is different
from the notion of “path family” in [Santelices and Harrold 2010] in the sense that “path family” is
more abstract. For example, all program paths in Figure 1 can be grouped into one path family, but
they are grouped into three partitions by our technique. At the same time, “path family condition”
does not guarantee the same input-output relationship, whereas relevant-slice condition does. The
main difference between our work and [Santelices and Harrold 2010] lies in the static vs. dynamic
nature of the two techniques. The work in [Santelices and Harrold 2010] statically computes their
path family conditions, while we dynamically explore the relevant-slice conditions. Because of
the dynamic nature of our method, we can under-approximate the relevant-slice conditions , while
[Santelices and Harrold 2010] over-approximates their “path family conditions” if needed. Clearly,
the dynamic nature of our method makes it more suitable for test generation. Note that the effect
of program statements written in real-life programming languages are hard to precisely model as
symbolic formulae. In such a situation, under-approximation is a practical simplification, since it
amounts to concretizing parts of the formula.

Other researchers have also used the notion of “path equivalence” to alleviate the path explosion
problem. However, which paths are considered equivalent are different between our work and earlier
works. The difference in the definition of path equivalence originates from the different goals of our
work and earlier works. In [Boonstoppel et al. 2008], the goal is to explore all possible program
states. Based on this goal, two paths are equivalent if the symbolic states of all live variables are the
same. In contrast, we only consider the variables that can affect the output – two paths are equivalent
if they have the same symbolic expression for the output. In [McMillan 2010], the goal is to reach
some critical locations in a program. Therefore, two paths are equivalent if they cannot reach any
critical locations for the same reason (blocked by the same condition).

Apart from the application of relevant-slice condition in debugging mentioned in Section 5, there
are many other path condition based techniques that could benefit from relevant-slice condition.

Our relevant-slice condition can be used to minimize an existing test-suite[Harrold et al. 1993;
Wong et al. 1995]. If a test-suite contains two test cases that have the same relevant-slice condition,
these two test cases compute the output in the same way. Therefore, we can choose to eliminate one
of them to make the test-suite smaller.

The work in [Csallner et al. 2008] explores paths to generate program invariants. For each path
explored, the path condition serves as a pre-condition and the symbolic program output is treated as
a post-condition. Thus, each explored path produces a program invariant which is defined as such a
(pre-condition, post-condition) pair. Similar approaches are used in [Godefroid 2007; Person et al.
2008] to generate method summaries. Instead of using path condition, we can generate such program
invariants using relevant-slice conditions — the relevant-slice condition is the pre-condition and for
each relevant-slice condition explored, there is a unique symbolic output which serves as the post-
condition. Moreover, the invariants generated using relevant-slice conditions will be simpler (as
relevant-slice conditions are smaller than path conditions) and fewer (since a single relevant-slice
condition groups more paths).

Our backward symbolic execution is different from call-chain-backward symbolic execution or
CCBSE [Ma et al. 2011]. CCBSE is essentially a backward search procedure that starts from a target
program location and searches for a feasible program path reaching the target. Forward symbolic
execution is still used as sub-procedure in the search process. In contrast, our technique traverses
traces/relevant slices backwardly to compute path conditions/relevant-slice conditions.
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8. DISCUSSION
In this paper, we have presented a novel path exploration method based on symbolic program out-
puts. Our path exploration dynamically groups paths on-the-fly, where two paths that have the same
symbolic output are grouped together. Given such a path partitioning, we can generate a test case
from each partition. This enables us to efficiently obtain a concise test-suite which stresses all pos-
sible input-output relationships in the program.

We experimentally compare the efficiency and coverage of our method with respect to path search
method based on symbolic execution. The path partitioning computed by our method can be ex-
ploited in various other software engineering activities. We have shown its use in the debugging of
errors introduced by program changes, that is, in root-causing observable software regressions. By
comparing the path partitioning in two program versions, we infer the semantic differences across
the versions, leading to precise root cause identification. We have also shown the use of our method
in test-suite augmentation. We generate test-cases to augment an existing test-suite by focusing on
the different partitions across two program versions. Finally, we show that our method can help
uncover finite state machine specifications from real program implementations.
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