Given:

- A string **S** of alphabet characters.
- A function **f(S,T)** which transforms each character **S**_i into a string **T**_{Si}.
- An integer **K** denoting how many times **f(S,T)** is performed, i.e. **f^K(S,T)**.
- An integer **M** denoting the number of queries.
 - Each query contains an integer **m**_i.

Determine:

For each query, the m_ith character of f^K(S,T)

 $1 \le |\mathbf{S}| \le 10^6$; $2 \le |\mathbf{T}_x| \le 50$; $1 \le \mathbf{K} \le 10^{15}$; $1 \le \mathbf{M} \le 1000$; $1 \le \mathbf{m}_i \le 10^{15}$.

Example:

S = bccabac

 $T_a = ab$ $a \rightarrow ab$ $T_b = bac$ $b \rightarrow bac$ $T_c = ac$ $c \rightarrow ac$

 $T_d ... T_z$ are not important in this example.

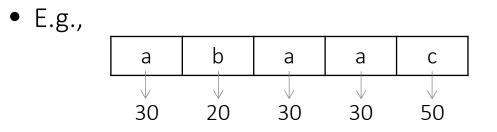
 $f^{O}(S,T) = bccabac$

 $K = 1 \rightarrow f^{1}(S,T) = bacacacabbacabac$

 $K = 2 \rightarrow f^2(S,T) = bacabacabacabacabbacbacabacabbacabac$

- How to generate f^K(S,T) for large K?
 - K can be very large, i.e. $10^{15} \rightarrow$ a hint for $O(\log K)$ solution
- How to store $f^{K}(S,T)$?
 - Recall the constraints: $1 \le |\mathbf{S}| \le 10^6$ and $2 \le |\mathbf{T}_x| \le 50$
 - The complete $f^{K}(S,T)$ can be $10^{6} \cdot 50^{10^{15}}$
 - Each query falls within the first 10^{15} characters \rightarrow we cannot store 10^{15} characters
 - We need to output only ONE character per query \rightarrow we have to exploit this.

- We don't need to generate the whole $f^{K}(S,T)$.
 - Define = $|f^K(S,T)|$
 - Iterate through the string S to find out which character we should recurse down into.



Then, the 85th character can be obtained by expanding 'a' at index-3.

• $O\left(MK\max_{i}|T_{i}| + M|S|\right)$

To handle large K: Matrix Exponentiation

 N_{aa} = count of character 'a' in T_a. N_{ab} = count of character 'b' in T_a. ... N_{za} = count of character 'a' in T_z. N_{zb} = count of character 'b' in T_z.

 r_a = count of character 'a'. r_b = count of character 'b'.

 r_z = count of character 'z'.

...

$$(r_a \quad \dots \quad r_z) \begin{pmatrix} N_{aa} & \cdots & N_{za} \\ \vdots & \ddots & \vdots \\ N_{az} & \cdots & N_{zz} \end{pmatrix}$$

$$l^{0}(c,T) = r$$
$$l^{1}(c,T) = r \cdot N$$
$$l^{2}(c,T) = r \cdot N \cdot N$$
$$\dots$$
$$l^{K}(c,T) = r \cdot N^{K}$$

 $len^{K}(c,T) = ||l^{K}(c,T)||_{1}$

Another problem: **K** is too large, $len^{K}(S,T)$ will be overflow.

Observation:

- $2 \le |T_i| \rightarrow$ it means the string length doubles at each iteration.
- $2^{10^{15}}$ is way too large, but $m_i \leq 10^{15}$
- $10^{15} \le 2^{50}$
- We can cut down **K** by exploiting **cycle** in the transformation function.

a → bda

 $b \rightarrow cdc$ $a \rightarrow b \rightarrow c \rightarrow a$

c → ab

Summary:

- Cut down K to \leq 50.
- Solve by recursing and using matrix exponentiation.

Summary:

- Cut down K to \leq 50.
- Solve by recursing and using matrix exponentiation.

However, if you solve each query independently, you will get **TLE** as $M \le 1000$.

 \rightarrow You need to solve all queries at once (in one pass).

Given:

- A string **S** which has no substring containing 3 or more identical characters.
- An integer **K**, the number of maximum operations.

An operation on **S**: Convert **S**_i into another character (non-asterisk) s.t. **S** contains a substring of 3 or more identical characters. Turn such (maximal) substring into an asterisk.

Determine:

The maximum number of characters in S which can be turned into asterisks with at most K operations.

 $1 \le \mathbf{K}, \ |\mathbf{S}| \le 1000$

Example:

S = abacaac

lf K = 1

```
abacaac → aba<u>a</u>aac : ab*c
```

ANS: 4

If K = 2

```
abacaac \rightarrow a<u>a</u>acaac : *caac \rightarrow *caa<u>a</u> : *c*
ANS: 6
```

Example:

S = abacaac

If K = 1 **abacaac** \rightarrow **aba<u>a</u>aac : ab*c** ANS: 4 This example suggests that the solution is **not** incremental, i.e. the solution for (S,K) does not necessarily use the solution for (S,< K)

If K = 2

```
abacaac \rightarrow a<u>a</u>acaac : *caac \rightarrow *caa<u>a</u> : *c*
ANS: 6
```

Example:

S = abacaac

If K = 1This example suggests that
the solution is **not** incremental,
i.e. the solution for (S,K) does not
necessarily use the solution for (S,< K)</th>ANS: 4If K = 2If K = 2Greedy does not work!abacaac \rightarrow aaacaac : *caac \rightarrow *caaa : *c*ANS: 6

Also, the operations order does matter.

first attempt ... dynamic programming

f(S, K) → The maximum number of characters in S which can be turned into asterisks with at most K operations (i.e. the answer we want).

$$f(S,K) = \max_{\substack{i \in valid(S,i) \\ j = [0,K)}} (f(A,j) + f(B,K-j-1))$$



... we need a muse and see the problem from a different perspective

Consider the Weighted Interval Scheduling Problem.

→ Given N intervals each with its weight, find a subset of intervals (at most of size K) s.t. there are no overlapping intervals and the total weight is maximized.

lt's a similar problem!	abacaaccbaabacbba
	aba
	асаа
	aac
	acc
	baa
	aaba
	cbb
	bba

... we need a muse and see the problem from a different perspective

Consider the Weighted Interval Scheduling Problem.

→ Given N intervals each with its weight, find a subset of intervals (at most of size K) s.t. there are no overlapping intervals and the total weight is maximized.

It's a similar problem!	abacaaccbaabacbba aba acaa aac acc baa aaba cbb	but different	abacaa aba acaa
	bba		

In Weighted Interval Scheduling Problem, we can only take one interval.

In Magical String, we can take "both" intervals.

- Let SINGLE be the set of all intervals obtained individually from S.
- Let EXTEND be the set of all intervals obtained by extending SINGLE
 - [a, b] is in EXTEND iff its size is ≥ 3 and there is an interval [L, R] in SINGLE which can be cut into [a, b] by
 other intervals in SINGLE.
 - By definition, all intervals in SINGLE are in EXTEND.
- → The solution for Weighted Interval Scheduling Problem with EXTEND as the intervals is the solution for Magical String.

abacaa	
aba	[1,3]
acaa	[3,6]
саа	$[4,6] \longrightarrow [4,6]$ is obtained by cutting $[3,6]$ with $[1,3]$.

Generate SINGLE

O(|S|)

 $O(|S|^2)$

Generate EXTEND

Size of EXTEND = O(|S|)

• Solve WISP with K: N intervals O(NK)

- Generate SINGLE
- Generate EXTEND

O(|S|) $O(|S|^2)$

Size of EXTEND = O(|S|)

• Solve WISP with *K*: *N* intervals

O(NK)

