Problem

Given a sequence S with N elements.

We need to find a subsequence with 4 elements with pattern:

ABAB

where $A \neq B$

Solution

Let's first consider a brute force solution, where we look at:

- All pairs of indices (i, j) where $S_{i}=S_{j}$. There are $O\left(N^{2}\right)$ such pairs.
- All pairs of indices (u, v) where $S_{u}=S_{v}$. There are $O\left(N^{2}\right)$ such pairs.

There are $O\left(N^{4}\right)$ indices iju v. If $i<u<j<v$, then we have found a solution.

We observe that if $i<u<j<v$ forms a solution, then any i^{\prime} satisfying $S_{i}=S_{i^{\prime}}$, and $i^{\prime}<i$ also forms a solution, since $i^{\prime}<i<u<j<v$ and $S_{i^{\prime}}=S_{i}=S_{j}$.

Thus, instead of looking at all $O\left(N^{2}\right)$ pairs of indices (i, j), we only look at all the pairs ($i_{\text {min }}, j$) where $i_{\text {min }}$ is the minimum index such that $S_{\text {imin }}=S_{j}$. There is only $O(N)$ pairs of $\left(i_{\text {min }}, j\right)$.

Similarly, we only need to look at the pairs of indices $\left(u, v_{\max }\right)$ where $v_{\max }$ is the maximum index such that $S_{u}=S_{v \max }$. There are also $O(N)$ such pairs.

Thus, we have improved our solution to $O\left(N^{2}\right)$ with some pre-processing:

- For each value x, stores the smallest index $\operatorname{imin}(x)$ where $S_{i m i n(x)}=x$, and the largest index $\operatorname{imax}(x)$ where $S_{\operatorname{imax}(x)}=x$.
- Loop through all index j and u. Let $i=\operatorname{imin}\left(S_{j}\right)$ and $v=\operatorname{imax}\left(S_{u}\right)$. If $i<u<j<v$ and $A_{u} \neq A_{j}$, then we have found a solution.

Improve to $O(N * \log N)$

We re-state the problem as follows:

- Given $O(N)$ segments $[i, j]$.
- Given $O(N)$ queries (u, v). We need to check if there exist any segment such that $i<u<j<v$.

This problem can be solved efficiently as follows:

- For each segment $[i, j]$, we create 2 events:
- At time $=i$, we add a new segment $[i, j]$ to our data structure.
- At time $=j$, we remove the segment $[i, j]$ from our data structure. Note that this segment must be previously added.
- For each query (u, v), we create 1 event:
- At time $=u$, we query if there is a segment $[i, j]$ in our data structure, such that:
- $A_{u} \neq A_{j}$
- $j<v$

We sort all events according to time. This will make sure that we do not need to check for the condition $i<u<j$, since the segment will only exist in our data structure at the time of query iff $i<u<j$.

To check efficiently if there is at least one segment with $j<v$, we can store segments in a Segment Tree.

