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Abstract. Outlier analysis is an important task in data mining and
has attracted much attention in both research and applications. Previ-
ous work on outlier detection involves different types of databases such
as spatial databases, time series databases, biomedical databases, etc.
However, few of the existing studies have considered spatial networks
where points reside on every edge. In this paper, we study the interest-
ing problem of distance-based outliers in spatial networks. We propose
an efficient mining method which partitions each edge of a spatial net-
work into a set of length d segments, then quickly identifies the outliers in
the remaining edges after pruning those unnecessary edges which cannot
contain outliers. We also present algorithms that can be applied when
the spatial network is updating points or the input parameters of out-
lier measures are changed. The experimental results verify the scalability
and efficiency of our proposed methods.

1 Introduction

Outlier analysis, which aims to find a small number of exceptional objects in a
database, is an important data mining task. Methods have been developed for
different types of databases such as spatial databases [1,2,13,17,16,19], time
series databases [10,14], biomedical databases [21,22], etc. In these methods,
the databases are typically considered static and relational, and the distance
used in identifying outliers is always measured by Euclidean distance.

However, in many real applications where spatial data are managed, spatial
objects are often added or removed, and the position and accessibility of spatial
objects are constrained by spatial networks [21]. Examples include road networks,
river networks, plane networks, rail networks, etc.

In general, a spatial network can be modeled as a graph where points are
located on the edges. These points can be static objects such as buildings, or
snapshots of mobile objects such as vehicles. Clearly, the actual distance between
any two points, called network distance, is measured by the length of the shortest
path connecting them in the network instead of Euclidean distance. Figure 1
depicts an example of a spatial network, where each node is denoted by a square,



each edge is associated with a distance label, and each point (object) is denoted
by a cross and lies exactly on an edge.

Mining outlying objects in a spatial network can provide very useful knowl-
edge to decision makers. For example, a road supervisor is interested to know
which(or how many) vehicles are most deviant to other vehicles in distance dur-
ing rush hour, or which roads or portions of a road have the least traffic. Such
outlier information can be used to analyze traffic patterns in a network and help
adjust the coverage of traffic volume.

Due to the features of shortest
distance and the dynamics of spa-
tial networks, state-of-the-art algo-
rithms on mining outliers in tradi-
tional databases cannot be straight-
forwardly applied in spatial networks.
As shown in Figure 1, point Pjs, Pig
and P are close to each other in
Euclidean distance(if not considering
network constraint). For instance, if
we apply the well-known cell-based
outlier detection method [12] to this
graph, Plg, P19 and P26 will be
grouped into a small cell, and will
be treated as non-outliers. However,
since the only route to Psg in the net-
work is through the edge (n7,n4), and
the remaining points have much larger
network distances to Pyg than to any
other point, so Pss is an outlier. This problem motivates us to design a novel
method to find outliers in a spatial network efficiently. Some recent work has
been done on identifying graph outliers [4,8, 20], but the processed graph em-
ployed contains only nodes and edges, and is different from a spatial network
where additional points reside on the edges. Furthermore, these existing methods
basically aim to find exceptional nodes or exceptional edges.

In this paper, we study the interesting problem of distance-based outliers in
spatial networks. We propose an efficient mining method which partitions each
edge of a spatial network into a set of length d segments, then quickly identifies
the outliers in the remaining edges after pruning those unnecessary edges which
cannot contain outliers. We also present algorithms for dynamical settings where
points in a spatial network are inserted /removed, or where the input parameters
of outlier measures are changed. Our contributions are as follows:

Fig. 1. An example of a spatial network

— We introduce the problem of distance-based outliers in spatial networks.

— We develop very efficient algorithms for mining outliers in spatial networks
in both static settings and dynamic settings, including when points in a
spatial network or input parameters of outlier measures are updated.

— We perform extensive experiments on both synthetic datasets and real datasets.



The rest of the paper is organized as follows. Section 2 surveys related work.
Section 3 introduces the preliminaries of outliers in spatial networks. Section
4 introduces the mining algorithm for static spatial networks. Section 5 intro-
duces the mining algorithm for spatial networks in dynamic settings. Section 6
presents the performance analysis of these methods. We conclude the paper with
a summary in Section 7.

2 Related Work

In the database point of view, recent research on outlier detection can be cate-
gorized into statistics-based, distance-based, density-based and clustering-based
approaches [9].

Outlier research has its roots in statistics [7, 3], and this early work can be
classified as distribution-based and depth-based. A distribution-based method
uses some kind of data distribution model such as Normal, which is mostly
univariate, to describe the properties of a dataset. It then tests for outliers
based on the postulated distribution. The problem of this method is that it
assumes that the dataset possesses some probability distribution beforehand.
In real applications, it is difficult to know the underlying data distribution. A
depth-based method uses computational statistics to represent data in different
depths and outliers are probably those data in lower depths. However, as such
a method relies on k-dimensional convex hulls computation with a lower bound
cost of 2(n*/2), it is not efficient for high dimensions.

The concept of distance-based outliers, proposed by Knorr and Ng [12], de-
fines an object p being an outlier, if at most n objects are within distance d of
p. Outliers pertain to the global view of a dataset. A cell-based outlier detec-
tion approach that partitions a dataset into cells is also presented in the work.
The time complexity of this cell-based algorithm is O(N + c*) where k is dimen-
sion number, N is dataset size, and c is a number inversely proportional to d.
For very large databases, this method achieves better performance than depth-
based methods. However, it is still exponential to the number of dimensions.
Ramaswamy et al. extended the notion of distance-based outliers by using dis-
tance to the k-nearest neighbor to rank outliers [19], where an efficient algorithm
is given based on the technique of partitioning dataset and distance bounding
[18].

Some clustering algorithms such as CLARANS [15], DBSCAN [5], BIRCH
[25], and CURE [6] consider outliers, but only to the point of ensuring that
they do not interfere with the clustering process. Further, outliers are only by-
products in clustering algorithms, and generally, clustering algorithms cannot
be applied directly to a spatial network to find outliers.

Breunig et al. introduced the concept of local outliers, which assigns each
piece of data a local outlier factor (LOF) of being an outlier, depending on
its neighborhood[2]. This outlier factor can be used to rank objects according
to their outlierness. Computing the LOF of all objects in a database requires
O(n*runtime of a knn query). The outlier factors can be computed very effi-



ciently if OPTICS is used to analyze the clustering structure. A top-n based
local outliers mining algorithm which uses the distance bound of a micro-cluster
to estimate density was presented in [11].

3 Preliminaries

Before we introduce mining algorithms for the spatial network outliers. Let us
revisit related concepts and notions of spatial networks and outliers, interesting
readers can see the details in [23, 12]. Let a spatial network be a weighted graph
G = (V,E,WW), and V is a set of nodes, and F is a set of edges. The function
W : E — R7T associates each edge with a positive weight. Without loss of
generality, W can be regarded as the distance in an edge. The position of a point
(i.e. object) p in the network can be expressed by < n;,n;,pos > where the
pos € [0, W(e)] and e = (n;,n;). It shows p has pos unit away from the node n;
along the edge (n;,n;). As shown in Figure 1, P;5 lies on the edge (ng,n2) and it
is 3.2 units away from ng along the edge, so it is represented by < ng, nsg,3.2 >.
We assume the number of points in the spatial network G is N, and the edges
in the spatial network satisfies the triangle inequality.

Definition 1. Let p and q be two points whose positions are (ng,ny, posp) and
(n,,,ny, posy ), respectively. The direct distance ddist(p, q) between points p and
q is defined by |pos, —pos,| if ng = nl, and ny, = ny, (i.e., p and q lie on the same
edge); otherwise, it is defined as co. Given a point p with position (ng, ny, posy ),
the direct distance ddist(p,n,) between p and n, is pos,. The direct distance
ddist(p,ny) is defined by W(ng,ny) — posp [23].

Note that ddist only works for two points lying on the same edge, while the ddist
of a point from a node works only when the point is lying on an edge adjacent
to the node.

Definition 2. Given nodes n; and n;, the network distance ndist(n;,n;) is
defined as the distance of the shortest path from n; to n; and vice versa[23].

Definition 3. Given points p and q, where p lies on the edge (n,,ny) and q lies
on the edge (nl,n;), the network distance ndist(p,q) is the distance of the
shortest path from p to q. ndist(p, q) is defined by minge (4. b} ye{a’ v} (ddist(p, ng)+
ndist(ng, ny)+ddist(ny, q)) if p and g lie on different edges; otherwise, ndist(p, q)
is the minimum of the previous quantity and ddist(p, q)[23].

Since the number of nodes in the spatial networks is much smaller than that
of points, so the network distance between each pair of nodes n; and n; can be
materialized with little cost and will be used frequently to speed up distance
comparisons in the stage of outliers detection. To facilitate efficient access, the
adjacency list and points are stored in two separate flat files indexed by B+-
trees[24], as shown in Figure 2 representing the spatial network of Figure 1.

Given a collection of N points that lie on a network, we aim to find a small
group of points according to the following criteria.



Adj. List flat file

Point flat file
3
—=
np |16 (ny.n;)
ng n; |42 5139
n, |35 37 |
: %
n.
L= 0 e _
Adj. List n, |16 gg Point
- ny |25 438 /B+”ee
ree|
ng ns |46 | (nyny
. 2
ng |4.0 421%
3 .. . 2 0.8
n [32].. ..

Fig. 2. Data structure of the network and segment trees

Definition 4. Given user-defined parameters P and d, and a network distance
function F', a point o in a spatial network G is a distance-based outlier if at least
fraction P of points in G lie greater than network distance d from o.

4 Mining Outliers in Static Spatial Networks

In this section, we first present a naive index-based method to identify the out-
liers among the points in network. Then we propose a novel edge-segmentation
method which can significantly improve the performance of mining outliers.

4.1 A Naive Index-based method

For a point o in the spatial network G, the d-neighborhood of o contains the set
of points that are within distance d of 0. The fraction P is the minimum fraction
of points in G that must be outside the d-neighborhood of an outlier. Obviously,
given P and d, the problem of identifying distance-based outliers in the spatial
network can be solved by answering a nearest neighbor search at each point o.

We can build an index by employing a range search with a network distance
of d for each point o to find such outliers. If more than (1—P)N points are found
in the d-neighborhood, o is a non-outlier; otherwise, o is an outlier. When the d
becomes larger, each range search costs larger which degrades the performance
greatly, so the worst case of this method has the complexity of O(N?). Such an
index can be maintained for answering outlier queries multiple times.

4.2 An edge-segmentation method

Before introducing our outliers mining algorithms, we first consider pre-processing

a spatial network. We partition each edge e = (n;,n;) into [#] segments
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sitions of the segment ends. In practice, one end segment in each edge such

as S(MW may not be of a length of exactly d, but an actual length d* < d.
d

As shown in Figure 3, edge (n1, ng) is equally partitioned into segments [n,
n), [nh,nb), [nh,nh), [ns,n)) and [n),ns]. The statistics information such as the
number of points in each segment is also maintained.

Now each edge segment of a spatial network can be categorized into one of
the following types: (1) Qutlier Segment(OS) which consists of outliers; (2) Non-
outlier Segment(NS) which cannot contain any outlier; and (3) Undetermined
Segment(US) which may or may not have outliers. Without any pairwise distance
computation during the outlier detection, an Qutlier-Segments returns objects
that are outliers, or a Non-outlier Segments can be immediately pruned. The
remaining outliers can be identified among the Undetermined Segments.

Now the problem is how to quickly identify the type of an edge as Qutlier-
Segment, Non-outlier Segment or Undetermined Segment.
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Fig. 3. Edge segmentation Fig.4. OS and NS

Definition 5. The smallest distance between segment S; =[ng, ny] and segment
S; =[ncynal, sdist(S;,S;), is min{ndist(ng,n.), ndist(ng, nq), ndist(ny,n.),
ndist(ny, nq)}. Segment S; is adjacent to segment S; if the smallest distance
between S; and Sj, sdist(S;,S;) < d.

Here, S; refers to the segment adjacent to S; in either right side or left side.
The adjacent segments of S; are also called the d-neighborhood of S;.

Definition 6. The largest distance between segment S; =[ng, np] and segment
S; =[ne,nql, Mdist(S;, S;), is max{ndist(ng, n.), ndist(ng,nq), ndist(ny,ne),
ndist(ny, ngq)}. Segment S; is complementary to segment S; if the largest dis-
tance between S; and Sj, ldist(S;, S;) < d.

Here, S; may also have multiple complementary segments. Specifically, if .S;
is a segment with length d, there is no such complementary segment. If S is
S;’s complementary segment, it must be S;’s adjacent segment; but if S; is S;’s
adjacent segment, it may not be S;’s complementary segment.

Lemma 1. Given segment S;, S;, if S; is not an adjacent segment to S;, then
any point p € S;, ¢ € S; must be more than d apart, i.e. ndist(p,q) > d.



Lemma 2. Given ¢; points in segment S; and c; points in S)s adjacent seg-
ments, S; is an outlier segment (OS) if ¢;+c; < (1 — P)N.

Lemma 3. Given c¢; points in segment S; and c; points in Sis complementary
segments, S; is a non-outlier segment(NS) if ¢;+c; > (1 — P)N.

As shown in Figure 4, the number of points in segments [nf,n5], [nh,n4],
[n5,n}] are 1, co and c3 respectively. If co > (1 — P)N, none of points in [n4,n}]
is an outlier. If ¢; + ¢2 + ¢5 < (1 — P)N, all the points in [n},n}] are outliers.

Those segments which are neither outlier segments nor non-outlier segments
are undetermined segments(US).

Thus, we can scan the spatial network once, and partitioning edges of the
spatial network into segments of length d. Suppose there are m segments, and the
whole points are categorized into three types of segments:OS, NS and US. Since
the points in OS segments and NS segments can easily be identified as either
outliers or non-outliers, the remaining mining task is obviously to further check
those segments labeled as “US”. That is, each point p in such a ?US” segment
will be evaluated the distance only between the points in the d-neighborhood
of the segment where p resides. If none of the points is identified as an outlier,
the segment is labeled as “INS”, otherwise the segment is labeled as “US(0)”.
The pseudo-code of the mining algorithm is as follows.

Algorithm 1 An Edge-Segmentation Outlier Detection Method.
Input: A spatial network G = (V, E, W) partitioned into m segments, N, d, P
Output: Outliers in G

Method:

1. FORi=1tom DO Count; =0

2. FOR each point p DO

3. Map p to its segment S;, increment Count; by 1;

4. FORi=1tom DO

5. IF Counti+) 5. is complementary to s; Count; > (1 — P)N THEN
6. Label Sz as “NS”;//Si is a Non-Outlier Segment

7. ELSE IF Counti+) g ;s agjacent to s, Count; < (1 —P)N THEN
8. Label Sz as “OS”;//Si is an Outlier Segment

9. ELSE//Sl is an Undetermined Segment, needs to check its points one by one
10. FOR each object p € S; DO

11. Countp = Count;;

12. FOR each object ¢ € S; where S; adjacent to S; DO
13. IF ndist(p,q) < d THEN

14. Increment Count, by 1;

15. IF Count, < (1— P)N THEN

16. P is an outlier, label S; as “US(0)”;//5; an outlier
17. IF S; is not labeled as “US(0)” THEN

18. Label S; as “NS”;

19. Output outliers in Gj



Step 1 takes m time(since there are m segments), where m < N is the total
number of segments. Step 2 to step 3 takes N time. For Step 4 to step 19,
the worst case happens when each segment contains at most N(1 — P) objects,
and each object in a segment is required to check up to N(1 — P) objects in
each of the adjacent or complementary segments. As the number of adjacent
or complementary segments is bounded by m, hence, step 4 to step 19 takes
O(m(N(1 — P))?) time. Thus the worst case time complexity is O(m(N(1 —
P))?2 + N) = O(m(N(1 — P))?). Furthermore, based on the similar analysis in
[12], we know that since P is expected to be extremely close to 1 in practice,
especially for large datasets, so O(mN?(1— P)?) can be approximated by O(m),
thus under such circumstance the time complexity is O(m + N).

5 Mining Outliers in Dynamic Settings

In the previous section, we introduce an edge-segmentation method to efficiently
mine distance-based outliers in a static setting in which the whole points are
available in a spatial network. In this section, we will discuss the dynamic set-
tings for outliers detection in the following two cases:(1) the points are added
to or removed from edges, or (2) users may query the outliers with respect to
different input parameters d or p. In both cases, it requires to effectively main-
tain the existing segmentation structure and mine the changes of outliers in an
incremental way.

5.1 Mining outliers when points are updated

From the perspective of data management, points in the spatial network are
always updated in the case of m; insertions or mo deletions. Since the distance-
based outlier is dependent on N, so after updating, if the number of points is
changed to N’ where N’ = N + m; — ma, each point in the spatial network
needs to check whether there are (1 — p)N’ points within its d neighborhood
region. Thus we can apply the edge-segmentation algorithm to the updated
spatial network to find the changes of outliers. The problem is how to make
full use of the existing segmentation structure and avoid unnecessary distance
computation as much as it can?

It is clear that each segment is labeled either OS, NS or US after the outlier
detection in static setting. Such information can incrementally maintained in the
case of points deletion or insertion. Since the number of points is changed after
updating points, the type of each segment .S; needs to be quickly updated based
on Lemma 2 and Lemma 3 given in the previous section.

The problem is that if S; is labeled as OS or NS, we obviously know that
the whole points in S; are either outliers or non-outliers, but for those unde-
termined segments(US) S;, we still need further check every point P in S; to
see if it is an outlier or not. To reduce the cost of such pairwise computation and
to improve the efficiency of incremental mining as much as possible, we store
the points in each edge into a binary tree, and the points of each segment can be
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Fig. 5. Data structure of the network and segment trees

further partitioned till a length of u. For segment S;, the points within it are or-
ganized as a binary tree. That is, if the parent node covers points in subsegment
with length [, it will be expanded to two child nodes: the left child node covers
points in left half of subsegment with length /2 and the right child node covers
points in right half. The tree expansion procedure starts with segment .S; (root
node), and continues until one of following conditions is satisfied: (1)the node
does not cover any points in current subsegment; (2) the length of subsegment
is less than 2u. Figure 5 shows the example of organizing edge segments (d = 8)
and their subsegments corresponding to the network in Figure 1, into tree struc-
tures. The points of each segment are maintained into a binary segment tree.
Each node in the tree is labeled (shown as ”L” in Figure 5) in one of three types.
We observe that the smaller the u, the larger size of the tree, and less number of
points in each subsegment in the lowest level of the tree. As shown in the Figure
5, the tree only expands to the level 2 when u = 4, while it expands to the level
3(in dashed box) if u = 2.

Now we can progressively check outlier points level-by-level instead
of one by one. If the current segment (subsegment) S; is labeled as US, the left
and right child subsegments of S; will be checked to see whether they are OS, NS
or US. Before checking Lemma 2 and Lemma 3, the number of points in current
subsegment, its adjusted adjacent subsegments, and its adjusted complementary
subsegments in same level of the trees should be obtained. Fortunately, all these
information is stored in the trees and we do not need to access the points again.
An example of progressive checking US segment is illustrated in Figure 6, where
d =10 and u = 2. Note that the length of segment S;3 is d* = 6 since S;3 is the
last segment in the edge.

If segment S;5 is undetermined, its subsegment S;2; and S;22 are checked.
If subsegment S;o1 is still undetermined, its subsegment S;217 and S;212 are
further checked. For different segment S;, the range of its adjacent segments
(shown in dashed lines) and the range of its complementary segments (shown in
blacken lines) are adjusted correspondingly. We can see in Figure 6 that with the



decreasing of the subsegment length, the gap between these two ranges becomes
smaller and smaller, so does the chance that the subsegment is still labeled as
NS. The pseudo-code of the mining algorithm is as follows.

d=10,d*=6,u=2
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Fig. 6. Progressive check for "US” subsegments

Algorithm 2 A Dynamic Outlier Detection Method for Updated Points.
Input: Segment Trees of G = (V, E, W) , N, d, P, m; insertions, my deletions
Output: Outliers in G

Method:

1
2
3
4
5.
6.
7
8
9
1

FOR i =1 to m; + mo DO

Update points in G and counts in corresponding segments and subsegments;

FOR i =1 to m DO

IF Counti+zsj is complementaryto S; COU/I’Ltj 2 (]‘ - P)(N +my — m2) THEN
Label Sl as “NS”; //S7 is a Non-Outlier Segment

ELSE IF C’ount,;JrZSj is adjacent to 5, Count; < (1 — P)(N +m1 —m2) THEN
Label Sz as “OS”; //Sl is an Outlier Segment

ELSE //SZ is an Undetermined Segment, check its subsegments or points

SubsegmentCheck(S;);

0. Output outliers in G;

Procedure: SubsegmentCheck(S;)

1. IF S; is the subsegment in non-leaf node THEN

2.

FOR k=1to2DO //check the left and right child subsegments of S;



3. IF S;. satisfies the condition of Lemma 3 or Lemma 2 THEN

4. Label Sik as “OS” or “NS”; //Sl;c is an Outlier/Non-Outlier Subsegment
5. ELSE //Slk is an Undetermined Subsegment, check its subsegments or points
6. SubsegmentCheck(S;i);

7. ELSE //Sl is an Undetermined Subsegment in leaf node, check its points one by one
8. FOR each point p in S; DO

9. Count, = Count;;

10. FOR each point ¢ € S; where S; is adjacent to S; DO

11. IF ndist(p,q) < d THEN

12. Increment Count, by 1;

13. IF Count, < (1 — P)(N +my —mg) THEN

14. p is an outlier, label S; as “US(0)”; //S; has outlier(s)

15. IF S; is not labeled as “US(0)” THEN

16. Label S; as “INS”;

Note that the only difference between algorithm 2 and algorithm 1 is that
in algorithm 2 if S; is undetermined we make use of the subsegment points
count information in binary trees to recursively check subsegments of S; (by the
procedure SubsegmentCheck(S;)) . The points scan does not happen unless the
subsegment in leaf node is still undetermined.

5.2 Mining outliers when parameter d or P changes

As we know, the output of the distance-based outliers in a spatial network relies
on two parameters d and P. So how to choose the meaningful value of d or P is
crucial to the effectiveness of mining results. In practice, users have more expe-
rience and better understanding in using percentage P, i.e. the higher value of
P means higher degree of the outlierness. On the other hand, since many users
are not domain experts, they are not sure which value of d is suitable to the
mining algorithm. Instead, they are more likely choosing different values of d
for the outlier mining algorithm and evaluate the effectiveness by comparing the
outliers with respect to different input parameters. As a result, it is necessary to
develop efficient incremental methods for answering outliers in case of updates
on d. Since d is always changed, the data structure used in the previous sec-
tion: a binary tree with multiple level for each edge is not suitable, under such
circumstance, we have to just keep one level in each binary tree.

Without loss of generality, we assume each time users input a new d' =
c-u, where c is a positive integer. Specifically, this corresponds to changing
the segments based on the lowest level of subsegments with unit u described in
Section 5.1.

Since each segment of length d consists of multiple subsegments where each
has length w, thus for any new distance threshold d’, it is not necessary to build
the new edge-segments from scratch by re-partitioning the edges into segments of
the new d’ for storage. Instead, we can only maintain the existing edge-segments
and each time ”virtually” infer the corresponding segments of the new length d’
when accessing the existing edge segments for outlier detection. Figure 7 shows
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the example that given the edge segments Sji,Si2,... of length d where S;;
consists of subsegments with unit length v in leaf nodes, the new edge segments
Sii,Sly, ... of length d’' can be inferred by shifting the position of existing subseg-
ment to that of a new subsegment. By updating the counts in the new segment,
we can evaluate its new segment type accordingly. Those segments with label
?»US” will be further checked to identify the outlierness of each belonging point.
Since the procedure outlier detection is similar to the previous subsection, we
omit the detailed description due to the limitation of space. We also have the
following interesting property for the inferred new edge segments.

Lemma 4. Suppose the edge segments of length d' are inferred from edge seg-
ments of length d, if d' > d and if segment S. of length d’ contains any segment
S; of length d labeled as "NS”, S/ is labeled as "NS”; if ' < d and if any
segment S, of length d' is contained in any segment S; of length d labeled as
”?08S”, S! is labeled as ?OS”.

For the case of different values of P, there is no need to rebuild or infer the
new edge segments, but only updating the type of each segment by applying the
similar method in subsection 5.1 to reduce the unnecessary pairwise distance
computations. We have the following interesting property for the type of edge
segment in the case of new P’.

Lemma 5. For the segment S;, if new percentage threshold P' > P, then S;
will still be NS if S; is ?NS” w.r.t. P; if P' < P, then S; will still be ” OS”
if S; is ?OS” w.r.t. P.

6 Experimental Evaluation

In this section, we evaluate the performance of our proposed techniques. We
implemented the naive index based method and the edge-segmentation method
for mining outliers. We also implemented the algorithms for mining outliers in
dynamic settings with the points being updated and when parameters changing.
All algorithms are written in C++ and the experiments were run on a PC
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with a Pentium 4 CPU of 1.6GHz, a memory of 512Mb. We used the real road
networks of Canada which can be obtained from www.maproom.psu.edu/dcw/
and did some cleaning to form a connected network. In the network, there are
42582 nodes and 46731 edges. The Euclidean distance of the connected nodes is
set as the weights of the graph edges, and this is a natural way for the weight
setting when we simulate the traffic of the road networks.

On the road networks, we generated points that simulate real world traf-
fic. We start from a random node and use Dijkstra’s algorithm to traverse the
network and add points to the edges. The way to control the points generated
is similar to [24] which focuses on generating the points to form clusters but
we expand it to create the outliers. At the border of each cluster, we make the
points especially sparse so as to control outlier. By adjusting the magnification
factor F' and the initial separation distance $;,;+[24], points are generated with
different sparsity so that we can test different parameters for the outlier mining.
For some fixed d and P, we run the naive nested loop and segmentation based
algorithms and they all return the same results. It is also the same when we run
our dynamic mining algorithms or compute it from scratch without using the
existing results computed earlier. This proves the effectiveness of the algorithms,
so we just focus on investigating the efficiency and the scalability of the methods.
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To test efficiency and scalability, we generated sets of points with different
cardinality. The cardinality of the points set is from 200k to 2000k where P is a
fixed value (0.9985). Figure 8 shows the runtime for these different data sets. We
can see that the naive nested loop method is much slower than the segmentation
based method which is almost linearly increased with the number of points. If
10% points is updated on each set of points listed in Figure 9, it shows that
our incremental method runs much faster than iterating the static segmentation
method on the updated points.

We use a set of 800k points to investigate the performance of proposed meth-
ods in the case of changing values of P and d. If d changes, we keep P as 99.5%;
while if P changes, d is kept as 20 units(outliers have been computed when
P =99.5%). Both Figure 10 and Figure 11 show that the dynamic segmentation
methods perform better than static methods.

Interestingly, we observe in Figure 12 that when P increases, the sum of per-
centage of NS and US is almost 100% with respect to the very small percentage
of OS, which reflects the fact that the larger value of P, the less number of
outliers in the spatial network. The similar result can be obtained if we increase
the value of d since the larger value of d also leads to less number of outliers.

7 Conclusion

The achieved fruitful results in both research

and applications have substantially demon-

strated the important role of outlier anal- 80 no-Outlier segments ——
ysis in data mining area. Existing work on 70| undetemined segments ]
outlier detection involves in different types

of databases such as spatial databases, time
series databases, bio-medical database etc.,
while few of them is applied on spatial net-
works where points reside in every edge.
In this paper, we explore the interesting 20 : . . .
problem of distance-based outlier in spatial oa% 0% 0'?,9;“8 OfO 'F? e et
networks and propose an efficient mining

method which partitions each edge of spatial ~ Fig. 12. Dynamic methods(4)
network into a set of length d segments, then

quickly identify the outliers in the remaining

edges after pruning those unnecessary edges which cannot contain outliers. We
also study the dynamic settings in the spatial network, including updating points
or the input parameters of outlier measures are changed. The experimental re-
sults verify the scalability and efficiency of our proposed methods.
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