
On High Dimensional Skylines

Chee-Yong Chan, H.V. Jagadish, Kian-Lee Tan, Anthony K.H. Tung, and Zhenjie
Zhang

National University of Singapore & University of Michigan
{chancy,tankl,atung,zhangzh2 }@comp.nus.edu.sg , jag@eecs.umich.edu

Abstract. In many decision-making applications, the skyline query is frequently
used to find a set of dominating data points (called skyline points) in a multi-
dimensional dataset. In a high-dimensional space skyline points no longer offer
any interesting insights as there are too many of them. In this paper, we introduce
a novel metric, calledskyline frequencythat compares and ranks the interesting-
ness of data points based on how often they are returned in the skyline when dif-
ferent number of dimensions (i.e., subspaces) are considered. Intuitively, a point
with a high skyline frequency is more interesting as it can be dominated on fewer
combinations of the dimensions. Thus, the problem becomes one of finding top-k
frequent skyline points. But the algorithms thus far proposed for skyline compu-
tation typically do not scale well with dimensionality. Moreover, frequent skyline
computation requires that skylines be computed for each of an exponential num-
ber of subsets of the dimensions. We present efficient approximate algorithms to
address these twin difficulties. Our extensive performance study shows that our
approximate algorithm can run fast and compute the correct result on large data
sets in high-dimensional spaces.

1 Introduction

Consider a tourist who is looking for hotels, in some city, that are cheap and close to
the beach. For this skyline query, a hotelH is in the answer set (i.e., the skyline) if
there does not exist any hotel in that city that dominatesH; i.e., that is both cheaper
as well as closer to the beach thanH. Our tourist can then tradeoff price with distance
from the beach from among the points in this answer set (calledskyline points). Skyline
queries are useful as they define an interesting subset of data points with respect to the
dimensions considered, and the problem of efficiently computing skylines has attracted
a lot of recent interest (e.g., [2, 3, 13, 9, 18]).

A major drawback of skylines is that, in data sets with many dimensions, the number
of skyline points becomes large and no longer offer any interesting insights. The reason
is that as the number of dimensions increases, for any pointp, it is more likely there
exists another pointq wherep andq are better than each other over different subsets
of dimensions. If our tourist, from the example in the preceding paragraph, cared not
just about price and distance to beach, but also about the size of room, the star rating,
the friendliness of staff, the availability of restaurants etc., then most hotels in the city
may have to be included in the skyline answer set since for each hotel there may be no
one hotel that beats it on all criteria, even if it beats it on many. Correlations between

Top-10 Frequent Skyline Point, pDominating Frequency
Player Name Season d(p)

Wilt Chamberlain 1961 1791
Michael Jordan 1986 2266
Michael Jordan 1987 3162
George Mcginnis 1974 4468
Michael Jordan 1988 5854
Bob Mcadoo 1974 6472
Julius Erving 1975 6781
Charles Barkley 1987 8578
Kobe Bryant 2002 9271
Kareem Abdul-Jabbar 1975 9400

Table 1.Top-10 frequent skyline points in NBA data set

dimensions ameliorates this problem somewhat, but does not eliminate it. For example,
for the NBA statistics data set [1], which is fairly correlated, a skyline query with respect
to all 17 dimensions returns over 1000 points.

To deal with this dimensionality curse, one possibility is to reduce the number of
dimensions considered. However, which dimensions to retain is not easy to determine,
and at the very least requires intimate knowledge of the application domain. In fact,
dimensionality reduction of this sort is a desirable goal in many data management and
data mining scenarios, and there has been a great deal of effort expended on trying to do
this well, with only limited success. Moreover, choosing different subsets of attributes
will result in different points being found in the skyline.

In this paper, we introduce a novel metric, calledskyline frequency, to compare and
rank the interestingness of data points based on how often they are returned in the sky-
line when different subsets of dimensions are considered. Given a set of n-dimensional
data points, the skyline frequency of a data point is determined by the2n − 1 distinct
skyline queries, one for each possible non-empty subset of the attributes. Intuitively, a
point with a high skyline frequency is more interesting since it can be dominated on
fewer combinations of the dimensions. Thus, the problem becomes one of finding top-k
frequent skyline points.

Referring once more to the 17-dimension NBA statistics data set that records the
performance of all players who have played in the NBA from 1946 to 2003. Each di-
mension represents a certain “skill”, e.g., number of 3-pointers, number of rebounds,
number of blocks, number of fouls, and so on. There are over 17000 tuples, each re-
flecting a player’s “performance” for a certain year. Note that every player has a tuple
for every year he played, so it is possible to have several tuples for one player with
different year numbers, like “Michael Jordan in 1986” and “Michael Jordan in 1999”.
Table 1 lists the top-10 frequent skyline points (represented by a player and season).
The skyline frequency of each pointp is given by217 − d(p) − 1; whered(p), which
is the dominating frequency, represents the number of subspaces for whichp is domi-
nated by some other point. Readers who follow basketball will agree that this is a very
reasonable set of top basketball players of all time. Clearly, our top-k frequent skyline

Bottom-10 Frequent Skyline Point, pDominating Frequency
Player Name Season d(p)

Terrell Brandon 2000 130559
John Starks 1991 130304
Allen Leavell 1982 130303
Rich Kelley 1981 130047
Rodney Mccray 1984 129823
Reggie Theus 1990 129727
Jamaal Wilkes 1979 129535
John Williams 1988 129151
Purvis Short 1983 129151
Rasheed Wallace 1999 128863

Table 2.Bottom-10 frequent skyline points in NBA data set

query has the notion of picking “the best of the best”, and is superior to the simpler
skyline points (which in this example will mark as equally interesting all 1051 skyline
points!).

To further examine this notion of skyline frequency, we selected the least skyline
frequency entries among the 1051 entries in the full skyline. The results are shown in
Table 2. These players, particularly in the years specified, can hardly be considered all-
time greats. Of course, each is a talented player, as one would expect given that these
were all in the top 1051 chosen from among all NBA players by the ordinary skyline
algorithm.

Unfortunately, skyline computations are not cheap. Given a data set withn dimen-
sions, skyline frequency computation requires2n−1 skyline queries to be executed. To
address this problem, we propose an efficient approximate algorithm that is based on
counting the number of dominating subspaces (i.e., the number of subspaces in which a
point is not a skyline point). Our scheme is tunable in that we can tradeoff the accuracy
of the top-k answers for speed. We have implemented our scheme, and our extensive
performance study shows that our method with approximate counting can run fast in
very high dimensional data set without sacrificing much on the accuracy.

We make two key contributions in this paper:

– We introduce skyline frequency as a novel and meaningful measure for comparing
and ranking skylines.

– We present efficient approximate algorithms for computingtop-k frequent skylines,
which are the top-k data points whose skyline frequencies are the highest.

The rest of this paper is organized as follows. In Section 2 we formally define the
key concepts, including frequent skylines and maximal dominating subspaces. Related
work is presented in Section 3. In Section 4, we present our proposed algorithms for
computing frequent skylines efficiently. We report on the results of an experimental
evaluation in Section 5. Finally, we conclude with a discussion of our findings in Sec-
tion 6. Due to space limitation, proofs of results are omitted.

2 Preliminaries

Given a spaceS defined by a set ofn dimensions{d1, d2, . . . , dn} and a data setD on
S, a pointp ∈ D can be represented asp = (p1, p2, . . . , pn) where everypi is a value
on dimensiondi. Each non-empty subset ofS is referred to as asubspace. A point
p ∈ D is said todominateanother pointq ∈ D on subspaceS′ ⊆ S if (1) on every
dimensiondi ∈ S′, pi ≤ qi; and (2) on at least one dimensiondj ∈ S′, pj < qj . The
skyline of a spaceS′ ⊆ S is a set of pointsD′ ⊆ D which can not be dominated by any
other point on spaceS′. That is,D′ = {p ∈ D :6 ∃q ∈ D, q dominates p on spaceS′}.
The points inD′ are calledskyline pointson spaceS′.

Based on the definition of skyline points on a subspace, we define theskyline fre-
quencyof a pointp ∈ D, denoted byf(p), as the number of subspaces in whichp is
a skyline point. GivenS andD, thetop-k frequent skyline pointsare thek points inD
that no other point inD can have larger skyline frequency than them. Atop-k frequent
skyline queryis a query that computes top-k skyline points for a given data setD and
spaceS. A subspaceS′ ⊆ S is said to be adominating subspacefor a data pointp if
there exists another data point that dominatesp on subspaceS′. We define thedominat-
ing frequencyof p, denoted byd(p), as the number of dominating subspaces forp. It
is easy to see that the skyline frequencyf(p) = 2n − d(p) − 1. So, the top-k skyline
frequency query can be computed by finding thek points with the smallest dominating
frequencies.

Let DS(q, p) denote the set of all subspaces for which a pointq dominates another
point p. We callDS(q, p) the set ofdominating subspacesof q over p. This set can
frequently be quite large, and so is unwieldy to enumerate explicitly. Just as a rectan-
gle in cartesian geometry can be represented succinctly by a pair of corner points, we
show below in Lemma 1 that the setDS(q, p) can be described succinctly by a pair of
subspaces(U, V) where (1)U ⊆ S is the set of dimensions such thatqi < pi on every
dimensiondi ∈ U ; and (2)V ⊆ S is the set of dimensions such thatqi = pi on every
dimensiondi ∈ V . It follows thatDS(p, q) = (S − U − V, V).

Lemma 1. Let DS(q, p) = (U, V). ThenS′ ∈ DS(q, p) if and only if ∃U ′ ⊆ U ,
V ′ ⊆ V , such thatS′ = U ′ ∪ V ′, andU ′ 6= ∅.

It is easy to verify that|DS(q, p)| = (2|U | − 1)2|V |.
Given two collections of subspacesS1, S2 ⊆ S, we say thatS1 coversS2 if S1 ⊇

S2. The following result provides a very simple way to determine ifDS(q, p) covers
DS(r, p) given three pointsp, q, andr.

Lemma 2. Let DS(q, p) = (Uq, Vq) and DS(r, p) = (Ur, Vr), whereUq 6= ∅ and
Ur 6= ∅. ThenDS(q, p) coversDS(r, p) if and only if (1)Ur ∪ Vr ⊆ Uq ∪ Vq and (2)
Ur ⊆ Uq.

DS(q, p) is said to be amaximal dominating subspace setfor a pointp if there
does not exist another pointr such thatDS(r, p) coversDS(q, p). Therefore,d(p) =
|⋃Mi∈MMi|, whereM = {DS(q, p) | q ∈ S, DS(q, p) is a maximal dominating
subspace set forp}.

3 Related Work

Computing the skyline of a set of points is also known as the maximum vector prob-
lem [10]. Early works on solving the maximum vector problem typically assume that
the points fit into the main memory. Algorithms devised include divide-and-conquer
paradigm [10], parallel algorithms [17] and those that are specifically designed to target
at 2 or very large number of dimensions [12]. Other related problems include top k [4],
nearest neighbor search [16], convex hull [16], and multi-objective optimization [14].
These related problems and their relationship to skyline queries have been discussed
in [3].

Börzs̈onyi et al. [3] first introduced the skyline operator into relational database
systems by extending the SQL SELECT statement with an optional SKYLINE OF
clause. A large number of algorithms have been developed to compute skyline queries.
These can be categorized into non-index-based (e.g.,block nested loop[3], Sort-Filter-
Skyline[6, 7], divide and conquer[3]), and index-based (e.g.,B-tree[3], bitmap[18],
index [18], nearest neighbor[9], BBS[13]). As expected, the non-index-based strate-
gies are typically inferior to the index-based strategies. It also turns out the index-based
schemes can progressively return answers without having to scan the entire data input.
The nearest neighbour scheme, which applies the divide and conquer framework on
datasets indexed by R-trees, was shown to be superior over earlier schemes in terms of
overall performance [9]. There have also been work on processing skyline queries over
distributed sources [2], over streaming data [11], and for data with partially-ordered
domains [5]. All these algorithms are developed for computing skylines for a specific
subspace.

The recent papers on skyline computation in subspaces [19, 15] is more closely re-
lated to our work. Yuan et al. [19] proposed two methods to compute skylines in all the
subspaces by traversing the lattice of subspaces either in a top-down or bottom-up man-
ner. In the bottom-up approach, the skylines in a subspace are partly derived by merging
the skylines from its “child” subspaces at the lower level. In the top-down approach, the
sharing-partition-and-merge and sharing-parent property of the DC algorithm [3] is ex-
ploited to recursively enumerate the subspaces and compute their skylines from the top
to bottom level, which turns out to be much more efficient than the bottom-up approach.
Since we can get the skyline frequencies if the skylines in every subspace is available,
we compare their top-down approach with our top-k method in the performance study.
Another study on computing skylines in subspaces is by Pei et al. [15]. They introduced
a new concept called skyline group, every entry of which contains the skyline points
sharing the same values in a corresponding subspace collection. They also proposed an
algorithmskyey, which visits all the subspaces along an enumeration tree, finds the sky-
lines by sorting and creates a new skyline group if some new skyline points are inserted
into an old group. The skyline groups found are maintained in a quotient cube struc-
ture for queries on subspace skyline. Their study tries to answer where and why a point
is part of skyline without any accompanying coincident points. However, their scheme
can not help to solve the skyline frequency problem since a point can be in exponential
number of skyline groups in high dimensional space.

The approximate counting technique used in our work is related to the problem of
counting the number of assignments that satisfies a given disjunctive normal form(DNF).

In [8], Karp et. al. proposed a monte-carlo algorithm which takes2n ln 2
δ /ε2 samples to

give an approximate count of the assignments, whose error rate is smaller thanε with
probability1− δ. Since the sample size is irrelevant to the size of the sets, this method
is much more efficient than the conventional iteration method, especially when the size
of valid assignment set is much larger than sample number.

4 Top-k Frequent Skyline Computation

The most straightforward approach to compute top-k frequent skylines is the following
two-phase approach. First, compute the skyline points for each subspace by using an
existing algorithm (e.g., skycube algorithm [19]). Next, compute the skyline frequency
of each pointp by summing up the number of subspaces for whichp is a skyline. We
called this technique asubspace-basedapproach since it essentially enumerates each
subspace to compute skylines. A number of recent approaches have been proposed for
computing precise skylines for the complete collection of subspaces [19, 15].

However, computing skylines over all subspaces can be costly. In this paper, we
propose a novel approach to compute top-k frequent skylines based on computingmax-
imal dominating subspace sets. This approach comprises of two key steps. The first step
computes the maximal dominating subspace sets for each data point. Based on these,
the second step then computes each point’s dominating frequency either precisely or
approximately. Thus, our approach actually computes the top-k skyline frequencies by
computing the bottom-k dominating frequencies.

In the rest of this section, we first give an overview of our approach in Section 4.1,
and then present the details of the two phases, maximal dominating subspace set compu-
tation and dominating subspace counting, in Sections 4.2 and 4.3, respectively. Finally,
we present two optimization techniques to improve the efficiency of our approach in
Section 4.4.

4.1 Overview

The intuition for our approach is based on the result in Section 2 that each dominat-
ing subspace of a pointp is covered by some maximal dominating subspace set ofp.
Since the dominating frequency of a point is the dual of its skyline frequency, we can
compute the skyline frequency of a pointp by computing its dominating frequency in
two stages. First, find all the maximal dominating subspace sets ofp, and then count
the number of subspaces covered by them. The top-k frequent skyline points is then
obtained by taking the bottom-k points with the lowest dominating frequencies.

The main procedure of our approach is shown in Algorithm 1 which takes a set of
data pointsD, a set of dimensionsS, and an integer valuek as inputs and computes the
top-k frequent skylines inD w.r.t. S. To avoid the complexity of explicitly sorting the
points by their dominating frequencies, we maintain a frequency threshold (denoted by
θ) that keeps track of thekth smallest dominating frequency among all the processed
points. This frequency threshold is initialized in step 1 to2|S|−1, which is the maximum
possible dominating frequency value. The top-k frequent skylines are maintained in a

Algorithm 1 Top-k Frequent Skyline Algorithm (D, S, k)

1: initialize frequency thresholdθ = 2|S| − 1
2: initialize R, the set of top-k frequent skylines, to be empty
3: for every pointp ∈ D do
4: M = ComputeMaxSubspaceSets(D, S, p, k, θ, |R|)
5: d(p) = CountDominatingSubspaces(M)
6: if (|R| < k) or (d(p) < θ) then
7: remove the point with the highest dominating frequency inR if |R| = k
8: insertp into R
9: updateθ to be the highest dominating frequency inR

10: end if
11: end for
12: return R

setR which is initialized to empty in step 2. For each data pointp ∈ D (steps 3-11), the
procedureComputeMaxSubspaceSets is first invoked to compute the setM of all
the maximal dominating subspace sets of pointp by comparing every other point with
pointp on all the dimensions. Next, the procedureCountDominatingSubspaces
is called to compute the dominating frequencyd(p) of p, which is the total number of
subspaces inS that are covered by the maximal dominating subspace sets inM. If R
has fewer thank skylines or if the dominating frequency ofp (i.e.,d(p)) is smaller than
the frequency thresholdθ, thenp is inserted intoR and the value ofθ updated. Note
that if R already hask skylines before a new point is to be inserted, than a pointq in R
with the largest dominating frequency (i.e.,d(q) = θ) is removed fromR.

Example 1.Consider the computation of the top-2 frequent skylines for a set of4-
dimensional data pointsD = {a, b, c, e} shown below:

Point d1 d2 d3 d4

a 2 3 4 5
b 1 5 2 6
c 3 4 4 4
e 4 3 4 3

To compute the set of maximal dominating subspace sets of pointa, we need to deter-
mineDS(q, a) for eachq ∈ D − {a}. We haveDS(b, a) = ({d1, d3}, ∅), DS(c, a) =
({d4}, {d3}), andDS(e, a) = ({d4}, {d2, d3}). By Lemma 2,DS(e, a) coversDS(c, a),
and soDS(c, a) is not a maximal dominating subspace set ofa. However, since neither
DS(b, a) norDS(e, a) covers each other, they are both maximal dominating subspace
sets ofa. The number of dominating subspaces covered by each of them is given by:
|DS(b, a)| = 3 and|DS(e, a)| = 4. Since there are no common dominating subspaces
that are covered by bothDS(b, a) andDS(e, a), the number of dominating subspaces
of a is d(a) = |DS(b, a)| + |DS(e, a)| = 7. Similarly, we haved(b) = 3, d(c) = 11,
andd(e) = 5. Thus, the top-2 frequent skylines areb ande. ¤

Algorithm 2 ComputeMaxSubspaceSets(D, S, p, k, θ, r)
1: initializeM, the set of maximal dominating subspace sets ofp, to be empty
2: for every pointq in D − {p} do
3: let U ⊆ S such that on every dimensiondi ∈ U , qi < pi

4: let V ⊆ S such that on every dimensiondi ∈ V , qi = pi

5: if (r = k) and ((2|U| − 1)2|V | ≥ θ) then
6: return {(U, V)}
7: end if
8: initialize isMaximal = true
9: for every maximal dominating subspace set(P, Q) ∈M do

10: if (U ∪ V ⊆ P ∪Q) and (U ⊆ P) then
11: isMaximal = false
12: break out of for loop
13: else if(P ∪ Q ⊆ U ∪ V) and (P ⊆ U) then
14: remove(P, Q) fromM
15: end if
16: end for
17: if isMaximalthen
18: insert(U, V) intoM
19: end if
20: end for
21: return M

4.2 Maximal Dominating Subspace Computation

Algorithm 2 shows theComputeMaxSubspaceSets procedure to compute the col-
lection of maximal dominating subspace sets of an input pointp ∈ D (w.r.t. a set of
dimensionsS). The remaining three input parameters (k, θ, andr), whereθ is the high-
est dominating frequency among all ther frequent skylines processed so far, are used
to optimize the computation whenp is determined to be not among the top-k frequent
skylines. The output collection of maximal dominating subspace sets is maintained in
a setM which is initialized to be empty in step 1. Each maximal dominating subspace
set inM is represented in the form of a subspace pair; i.e.,M = {(U1, V2), (U2, V2),
· · · , (Un, Vn)}, where each(Ui, Vi) corresponds toDS(qi, p) for some pointqi ∈ D.

To compute the maximal dominating subspace sets ofp, the algorithm comparesp
against each other pointq in D (steps 2-20). First,DS(q, p) = (U, V) is determined
in steps 3-4. Steps 5-7 is an optimization (to be explained at the end of the discussion)
that can be ignored for now. Steps 8-19 compare(U, V) against each of the maximal
dominating subspace sets computed so far inM to determine if(U, V) is also a maxi-
mal dominating subspace set and updateM accordingly. Specifically, if there is some
subspace set(P, Q) ∈ M that covers(U, V), then by Lemma 2, we can conclude that
(U, V) is not a maximal dominating subspace set (steps 11-12). On the other hand, if
subspace set(P, Q) ∈M is covered by(U, V), then(P, Q) is not a maximal dominat-
ing subspace set and is removed fromM (step 14). Finally, if(U, V) is not covered by
any of the maximal dominating subspace sets inM, then(U, V) is a maximal dominat-
ing subspace set and it is added toM (step 18).

Algorithm 3 CountDominatingSubspaces(M)
1: letM = {M1, M2, · · · , Mn}
2: initialize counterC = 0
3: for i = 1 ton do
4: for every dominating subspace(P, Q) that is covered byMi do
5: if (P, Q) is not covered by anyMj , j ∈ [1, i) then
6: C = C + 1
7: end if
8: end for
9: end for

10: return C

We now explain the optimization performed in steps 5-7 that makes use of the ad-
ditional input parametersk, θ, andr. The main idea is to avoid computing the precise
collection of maximal dominating subspace sets ofp if p is determined to be not among
the top-k frequent skylines. Specifically, if there are alreadyk intermediate frequent
skylines (i.e.,r = k) and |DS(q, p)|, which is given by(2|U | − 1)2|V |, already ex-
ceedsθ, thenp clearly can not be among the top-k frequent skylines. In this case, it is
not necessary to know the precise maximal dominating subspace sets ofp; instead, the
algorithm simply returns the single subspace set(U, V) (in step 6) since this is suffi-
cient for the main algorithm to conclude thatp is not a top-k frequent skyline. With this
optimization,ComputeMaxSubspaceSets computes the precise collection of max-
imal dominating subspace sets ofp only whenp could potentially be a top-k frequent
skyline.

Our implementation ofComputeMaxSubspaceSets uses a bitmap represen-
tation for subspaces to enable efficient manipulations. IfS hasn dimensions, then a
subspace ofS is represented by an-bit bitmap with theith bit corresponding to dimen-
siondi such that a bit is set to1 iff its corresponding dimension is in the subspace. As
an example, in an8-dimensional spaceS, the subspace{d1, d3, d5, d6} is represented
by the bitmap “10101100”. Given two bitmapsB1 andB2 (corresponding to subspaces
S1 andS2, respectively),S1 coversS2 if and only if the logical-AND ofB1 andB2

is equal toB1. Furthermore, by exploiting arithmetic bit-operation,|DS(U, V)| for a
given subspace set(U, V) can be efficiently computed with a left shift operation inO(1)
time.

4.3 Dominating Subspace Counting

In this section, we discuss how to derive the number of dominating subspaces for a
pointp based on the collectionM of maximal dominating subspace sets forp returned
byComputeMaxSubspaceSets for p. Since there is usually more than one maximal
dominating subspace set inM and the subspaces covered by them generally overlap,
the challenge is to efficiently compute the number of dominating subspace sets taking
into account of the overlapping covered subspaces.

As an example, considerM = {M1,M2}, whereM1 = ({d1, d2}, {d3}) and
M2 = ({d1, d3}, {d4}). Note that there are a total of eight dominating subspaces

covered byM: {d2}, {d2, d3}, {d1, d2}, {d1, d2, d3}, {d1}, {d1, d3}, {d1, d4} and
{d1, d3, d4}. Among these, the first six are covered byM1 while the last four are cov-
ered byM2; hence, there are two dominating subspaces (i.e.,{d1} and{d1, d3}) that
are covered by bothM1 andM2.

One direct approach to derive the number of dominating subspaces is to apply the
Inclusion-Exclusionprinciple to obtain the union of all the subspaces covered by the
maximal dominating subspaces. However, this method is non-trivial as it requires enu-
merating all the subspaces covered by each maximal dominating subspace and checking
if the enumerated subspace has already been previously generated. In the following, we
propose two alternative methods based on precise counting and approximate counting,
respectively, for counting the number of dominating subspaces covered byM.

Precise Counting Our improved approach for computing the exact number of dom-
inating subspaces is shown in Algorithm 3. For each maximal dominating subspace
setMi ∈ M, let Si denote the collection of dominating subspaces that are covered
by Mi. We define for eachSi, a new subspace collection (denoted byS′i) as follows:
S′i = Si −

⋃
j∈[1,i) Sj . It is easy to verify that (1)

⋃
Mi∈M Si =

⋃
Mi∈M S′i; and (2)

S′i ∩ S′j = ∅ for any distinct pairS′i andS′j . In this way, we transform the problem
of counting the union of a collection of sets to a subset counting problem without any
intersection among the subsets. For every maximal dominating subspace setMi ∈ M,
we enumerate over each of the subspaces covered byMi and check whether it is also
covered by an earlier maximal dominating subspace setMj , j ∈ [1, i). Referring to
the preceding example withM = {M1,M2}, we haveS′1 = {{d1}, {d1, d3}, {d2},
{d2, d3}, {d1, d2}, {d1, d2, d3}}, andS′2 = {{d1, d4}, {d1, d3, d4}}.

However, the simple precise counting method can not scale efficiently to handle
high-dimensional spaces because we still need to enumerate all the(2|U | − 1)2|V | sub-
spaces for a maximal dominating subspace(U, V). For example, with|U | = 20, over
one million of subspaces need to be compared against with every previous maximal
dominating subspace.

Approximate Counting To avoid the high complexity of the precise counting ap-
proach, we present an effective approximate counting method that is based on extending
a Monte-Carlo counting algorithm [8] originally proposed for counting the number of
assignments that satisfy a specified DNF formula, which is a #P-complete problem.

Our approach is shown in Algorithm 4 which takes three input parameters (M,
ε, andδ) and returns an approximate count of the number of dominating subspaces
covered by a collectionM of maximal dominating subspace sets for some point. The
approximate answer is within an error ofε with a confidence level of at least1−δ. Steps
1-6 first compute the number of subspaces (denoted byNi) covered by each maximal
dominating subspace setMi ∈M, and the total number of these (possibly overlapping)
subspaces denoted byN . To obtain the desired error bound, a random repeatable sample
of T = 2n ln(2/δ)/ε2 number of maximal dominating subspace sets is selected from
M, where the probability of samplingMi is proportional to the number of subspaces
covered byMi. For each generated maximal dominating subspace setMi, a dominating
subspace set(U, V) that is covered byMi is randomly selected and checked if it is also

Algorithm 4 ApproxCountDominatingSubspaces(M, ε, δ)
1: letM = {M1, M2, · · · , Mn}
2: for i = 1 ton do
3: let Mi = (Ui, Vi)
4: Ni = (2|Ui| − 1)2|Vi|

5: end for
6: N =

P
Mi∈MNi

7: T = 2n ln(2/δ)/ε2

8: initialize C = 0
9: for i = 1 toT do

10: choose a maximal dominating subspace setMi with probabilityNi/N
11: choose a subspace set(U, V) that is covered byMi with equal probability
12: if (U, V) is not covered by anyMj , j ∈ [1, i) then
13: C = C + 1
14: end if
15: end for
16: return N · C/T

covered by any maximal dominating subspace setsMj , j ∈ [1, i). A counter, denoted
by C, is used to keep track of the number of distinct dominating subspaces determined
from this sampling process. The approximate count output by the algorithm is given
(N × C)/T ; the proof of the error bound follows from [8].

Complexity Analysis LetM = {(U1, V1), (U2, V2), . . . , (Un, Vn))}. We useUm, Vm,
Ua andVa to denotemax1≤i≤n{|Ui|}, max1≤i≤n{|Vi|},

∑n
i=1 |Ui|/n, and

∑n
i=1 |Vi|/n,

respectively.
In the exact counting algorithm, since each covered subspace for a maximal domi-

nating subspace set(Ui, Vi) must be compared with the previous maximal dominating
subspace sets, the computation complexity for(Ui, Vi) is (i− 1)(2|Ui|−1)2|Vi|. There-
fore, the total time complexity of the exact counting algorithm is

∑
(i−1)(2|Ui|−1)2|Vi| =

O(n22Um+Vm). Note that by Jensen’s Inequality,
∑

(i−1)(2|Ui|−1)2|Vi| = Ω(n2Ua+Va−1).
In the approximate counting algorithm, the sampling process is independent of|Ui|

and|Vi|. Since there are a total of2n ln(2/δ)/ε2 subspace sets sampled, the upper and
lower bounds on the computation complexity of the approximate counting approach are
O(2n2 ln(2/δ)/ε2) andΩ(2n ln(2/δ)/ε2), respectively.

With the above analysis, it is not difficult to verify that the exact counting method
can not be slower than approximate counting method in constant factor whenUm +
Vm ≤ ln ln(2/δ)+2 ln(1/ε)−lnn+1, while the approximate counting method can not
be slower than exact counting method whenUa+Va ≥ ln ln(2/δ)+2 ln(1/ε)+lnn+2.

4.4 Optimizations

In this section, we present two optimizations to further improve the performance of the
ComputeMaxSubspaceSets algorithm presented in Section 4.2. In the current
ComputeMaxSubspaceSets algorithm, the main optimization relies on using the

frequency thresholdθ (steps 5-7) as a quick filtering test to check whether a point is
guaranteed to be not among the top-k frequent skylines. Clearly, it is desirable to prune
out points that are not top-k frequent skylines as early as possible using this efficient
checking to reduce the unnecessary elaborate enumeration and comparison performed
in steps 8-19.

Pre-Sorting Our first optimization is based on the observation that the effectiveness of
the pruning test is dependent on the order in which the data points are processed. For ex-
ample, no early pruning would be possible if the points are processed in non-descending
order of their skyline frequencies. One idea to maximize the pruning effectiveness is to
first sort the data points based on some simple criterion such that points that have higher
potential to be top-k frequent skylines appear earlier. Our optimization simply sorts the
points in non-descending order of the sum of their dimension values. The intuition be-
hind this heuristic is that a point with a smaller sum is likely to have smaller values on
more dimensions and is therefore likely to have a higher skyline frequency. A similar
idea was previously used in [6, 15, 19].

Checkpoint Our second optimization aims to generalize the pruning test to improve
its effectiveness. Currently, the pruning test for a pointp is applied in the context of
a single maximal dominating subspace set (i.e.,DS(q, p) for someq ∈ D). However,
when the number of maximal dominating subspace sets is large, it is possible that each
maximal dominating subspace set inM on its own does not cover too many dominating
subspaces (to causep to be pruned) even though the collection of dominating subspaces
covered byM as a whole is large.

To overcome this limitation, we extend the pruning test to be done at several “check-
points” by invokingCountDominatingSubspaces to count the number of domi-
nating subspaces at intermediate stages and performing the pruning tests using interme-
diate collections ofM each of which generally consists of more than one maximal dom-
inating subspace set. Thus, by counting the coverage for multiple maximal dominating
subspace sets rather than a single maximal dominating subspace set, the opportunity for
pruning is increased.

In the implementation of this optimization, we set checkpoints at exponential sizes;
i.e., when the number of maximal dominating subspace sets reaches2t (for somet >
0), the counting process is invoked to check whether the current number of subspaces
covered has already exceeded the threshold. This exponential checkpoint setup turns
out to perform better than any “linear” checkpoint setup since the number of subspaces
covered is usually proportional to the number of maximal dominating subspace sets.

5 Performance Study

In this section, we present an experimental evaluation of our proposed algorithms for
computing top-k frequent skylines using both synthetic as well as real data sets.

5.1 Experimental Setup

We generated synthetic data sets by varying the number of dimensions, the size of the
data set and the distributions of the data set; in particular, we considered the three com-
monly used types of data distributions: independent, correlated, and anti-correlated. In
addition, we also conducted experiments on the NBA real data set [1] that is mentioned
throughout this paper. The characteristics of this real data set most closely resembles a
correlated data distribution.

We compare the performance of the following four algorithm variants:

1. Exact Count (EC): This scheme adopts exact counting, and employs the Pre-
Sorting and Checkpoint optimizations.

2. Approx Count without Sorting (ACWS) : This scheme uses approximate counting
and only the Checkpoint optimization.

3. Approx Count without Checkpoint (ACWC) : This scheme employs approximate
counting with only the Pre-Sorting optimization.

4. Approx Count(AC) : This scheme adopts approximate counting together with both
Pre-Sorting and Checkpoint optimizations.

All experiments were carried out on a PC with a 2 GHz AMD Athlon processor and
2 GB of main memory running the Linux operating system. Unless otherwise stated,
we use the following default setting in our study: 15-dimensional data set with 100K
records,ε = 0.2, k = 10, andδ = 0.05. The default algorithm for all experiments is
AC, which we expect to show is the algorithm of choice.

5.2 Tuning the Approximate Counting Scheme

There are several tunable parameters in the approximate counting scheme:ε, δ and
k. We study the relationship between the effect of these parameters on efficiency and
precision. The efficiency result is shown in Fig. 1, while the precison result is shown in
Fig. 2.

We first discuss the efficiency results which compare the computation time as a
function of different parameters. When we varyε from 0.1 to 0.4 in AC, the processing
time decreases greatly since the number of samples is quadratic to1/ε in approximate
counting. When we varyδ from 0.025 to 0.1 in AC, the processing time is very stable
since the number of samples in approximate counting is linear toln(2/δ), which does
not change much withδ. From Fig. 1(c), which shows the result whenk is varied from
10 to 70, we can see that the increase trend of the processing time is almost linear to the
result sizek, which indicates that AC is scalable to various values ofk.

The effectiveness of the method is measured by precision, which is the ratio between
the number of true top-k frequent skylines and the result size k. Looking at Fig. 2, we
note that the precision on correlated data set is always close to 1. Even on independent
and anti-correlated data sets, the AC algorithm can achieve precision over 90% with a
large range of different parameters. The figure also indicates thatε is the most important
factor affecting the precision of the result. The precision decreases monotonically with
the increase ofε, while the other two parameters,δ andk, do not have too much impact
on the precision.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0.40.30.20.1

T
im

e
(S

ec
on

ds
)

epsilon

Correlated
Independent

Anti-Correlated

(a) epsilon

 0

 200

 400

 600

 800

 1000

 1200

 1400

0.10.0750.050.025

T
im

e
(S

ec
on

ds
)

delta

Correlated
Independent

Anti-Correlated

(b) delta

 0

 200

 400

 600

 800

 1000

 1200

70503010

T
im

e
(S

ec
on

ds
)

k

Correlated
Independent

Anti-Correlated

(c) k

Fig. 1.Efficiency comparison as a function of different parameters

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.40.30.20.1

pr
ec

is
io

n

epsilon

Correlated
Independent

Anti-Correlated

(a) epsilon

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.10.0750.050.025

P
re

ci
si

on

delta

Correlated
Independent

Anti-Correlated

(b) delta

 0.5

 0.6

 0.7

 0.8

 0.9

 1

70503010

P
re

ci
si

on

k

Correlated
Independent

Anti-Correlated

(c) k

Fig. 2.Precision comparison as a function of different parameters

From this experiment, we can conclude that even settingε = 0.2 andδ = 0.05 is
enough to provide very good results for top-k frequent skyline queries. As such, we use
these as the default setting.

5.3 Effect of number of dimensions

We study the impact of dimensionality on the efficiency of the algorithms. We compare
all the four algorithms EC, AC, ACWS and ACWC on data sets ranging from 10-25
dimensions. The results on the three synthetic data sets are shown in Fig. 3.

First, we look at the three approximate counting schemes. In the figure, the “bars”
that are beyond the maximum time plotted are truncated (in other words, all “bars” with
the maximum value have much larger value than the maximum value plotted). From the
poor performance of ACWS and ACWC, we can see the effect of the pre-sorting and
checkpoint optimizations. It is clear that pre-sorting is an important optimization. With-
out pre-sorting, the efficiency decreases by at least one order of magnitude. The check-
point optimization is useful when the dimensions are independent or anti-correlated
since it can prune many points. The combined effect of both optimizations contributes
to the superior performance of AC.

Now, comparing AC and EC, we observe that EC slightly outperforms AC at low
dimensionality (< 15). This is because when the dimensionality is low, the subspaces
covered by those maximal subspace sets are fewer than the number of samples needed

 0

 10

 20

 30

 40

 50

 60

 70

 80

25201510

T
im

e
(S

ec
on

ds
)

Dimensionality

AC
EC

ACWS
ACWC

(a) Correlated Data

 0

 500

 1000

 1500

 2000

 2500

 3000

25201510

T
im

e
(S

ec
on

ds
)

Dimensionality

AC
EC

ACWS
ACWC

(b) Independent Data

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

25201510

T
im

e
(S

ec
on

ds
)

Dimensionality

AC
EC

ACWS
ACWC

(c) Anti-Correlated Data

Fig. 3.Efficiency comparison on varying dimensionality

 0

 0.5

 1

 1.5

 2

 2.5

 3

30025020015010050

T
im

e
(S

ec
on

ds
)

data size (K)

AC(delta=0.05)
AC(delta=0.1)

EC

(a) Correlated Data

 0

 50

 100

 150

 200

30025020015010050

T
im

e
(S

ec
on

ds
)

data size (K)

AC(delta=0.05)
AC(delta=0.1)

EC

(b) Independent Data

 0

 500

 1000

 1500

 2000

 2500

30025020015010050

T
im

e
(S

ec
on

ds
)

data size (K)

AC(delta=0.05)
Ac(delta=0.1)

EC

(c) Anti-Correlated Data

Fig. 4.Efficiency comparison on varying data size

by AC. However, when the dimensionality is high, AC shows its strength since the
number of samples is irrelevant to the dimensionality, while EC must enumerate all the
covered subspaces whose number is exponential to the dimensionality.

Third, looking at the figure, we see that the relative performance of the schemes
remain largely unchanged under different distributions. As expected, the computation
time is higher for all schemes when the data becomes more anti-correlated.

Since ACWS and ACWC perform poorly relative to AC, we shall not discuss them
further.

5.4 Effect of data set cardinality

In this experiment, we evaluate the impact of data size on the computation efficiency
for 15-dimensional data. The data size is varied from 50K to 300K. We study two vari-
ants of AC:δ = 0.05 andδ = 0.1. The results in Fig. 4 show that although the time
complexity of Algorithm 1 is theoretically quadratic to the data size in the worst case,
the actual efficiency of these methods is almost linear in the data size. On the corre-
lated data set, EC always outperforms the algorithms with approximate counting. This
is because the dominating frequencies of the top-k points are all very small when the
data is correlated. For the data set with independent dimensions, EC outperforms AC
(δ = 0.05) but only outperforms AC (δ = 0.1) when the data size is smaller than 200K.
For the anti-correlated data set, both AC (δ = 0.05) and AC (δ = 0.1) are faster than
EC since the dominating frequency is large enough.

5.5 Results on Real Data Set

We use the NBA player statistics data set as our real data set for this experiment. As
noted, there are 17266 tuples over 17 dimensions.

 0

 2

 4

 6

 8

 10

 12

T
im

e
(S

ec
on

ds
)

NBA data set

AC
EC

ACWS
ACWC

Fig. 5.Efficiency comparison on NBA data set

 0

 200

 400

 600

 800

 1000

 1200

AntiCorrelatedIndependentCorrelated

T
im

e
(S

ec
on

ds
)

Distribution

AC
EC
SC

Fig. 6. Efficiency comparison with Skycube al-
gorithm

Fig. 5 comparies the efficiency of the four algorithms, AC, EC, ACWS and ACWC.
From the figure, we can see that ACWC outperforms all the other methods on the real
data set; this is due to the fact that the NBA data set is fairly correlated. Although AC
is slower than ACWC by a little (due to the cost of the unnecessary checkpoints), its
performance is still much better than that of the exact counting algorithm.

5.6 Comparison of number of maximal dominating subspaces

Table 3 compares the number of maximal dominating subspaces that are maintained by
the various algorithms for different number of data dimensions and data distributions
(i.e., correlated, independent, and anti-correlated). The last column in the table lists
the upper bounds on the number of maximal dominating subspace sets. Note that for a
data set withD dimensions, the upper bound is given by

(
D

dD/2e
)
, where each maximal

dominating subspace consists ofdD/2e dimensions.
As expected, the points in the anti-correlated data set has the maximum number of

maximal dominating subspaces. However, the number of maximal dominating subspace
is still much smaller than the theoretical upper bound listed in the last column. This in-
dicates that our method does not suffer from the exponential increase of dimensionality
in practice.

5.7 Comparative study

We also compared our EC and AC schemes against the Skycube algorithm [19]. Al-
though the Skycube algorithm (denoted as SC) can find the precise top-k frequent sky-
lines, it does not scale beyond 15 dimensions. Our results show that it takes more than

Dimensionality Correlated Independent Anti-Correlated Upper Bound

10 17 64 62 252
15 72 483 565 6435
20 188 1897 2477 184756
25 587 5119 7617 5200300

Table 3.Comparison of number of maximal dominating subspaces

10 hours for SC to run on the independent data set with 100K 15-dimensional points.
This is because SC focuses on conventional skyline query in any specified subspace,
and thus spends most of its computation time on points which cannot be top frequent
skyline points. As such, we only present the results for 100K 10-dimensional data sets
in Fig. 6.

From the figure, it is clear that both EC and AC are superior to SC in all the three
types of data sets. SC is not scalable as it may need to compute all the subspaces which
is exponential in the number of dimensions. We note that for small number of dimen-
sions (10 in this case), our AC scheme returns the exact answers, i.e., it has 100%
precision. That is, we do not give up any precision loss to obtain performance gain in
this case.

 0

 200

 400

 600

 800

 1000

 1200

AntiCorrelatedIndependentCorrelated

T
im

e
(S

ec
on

ds
)

Distribution

AC
EC
SC

Fig. 7.Efficiency Comparison on 10D

6 Conclusions

Skyline queries have been lauded for their ability to find the most interesting points in
a data set. However, in high dimensional data sets, there are too many skyline points
for them to be of practical value. In this paper, we introduced skyline frequency as a
measure of interestingness for points in the data set. The skyline frequency of a point
measures the number of subspaces in which the point is a skyline. We developed an
efficient approximation algorithm to compute the top-k frequent skyline query. Our

experimental study demonstrated the performance and the effectiveness of the proposed
algorithm.

We plan to extend this work in several directions. First, we would like to explore
precomputation techniques (e.g., indexes) to further speed up the computation of top-k
frequent skyline query. Second, our current work assumes a static data set. We would
like to study techniques to facilitate incremental updates. Finally, exploring other inter-
estingness measures of skyline points is also part of our future work.

Acknowledgement: We thank the authors of [19] for sharing their implementation of
the Skycube algorithm.

References

1. NBA basketball statistics. http://databasebasketball.com/stats.download.
2. W. Balke, U. G̈untzer, and X. Zheng. Efficient distributed skylining for web information

systems. InEDBT’04.
3. S. Börzs̈onyi, D. Kossmann, and K. Stocker. The skyline operator. InICDE’01.
4. M. Carey and D. Kossmann. On saying “enough already!” in SQL. InSIGMOD’97.
5. C.-Y. Chan, P.-K. Eng, and K.-L. Tan. Stratified computation of skylines with partially-

ordered domains. InSIGMOD’05.
6. J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. InICDE’03.
7. P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in large data sets. In

VLDB’05.
8. R. M. Kapp, M. Luby, and N. Madras. Monte-Carlo approximation algorithms for enumer-

ation problems.J. Algorithms, 10(3):429–448, 1989.
9. D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: an online algorithm for

skyline queries. InVLDB’02.
10. H.T. Kung, F. Luccio, and F.P. Preparata. On finding the maxima of a set of vectors.JACM,

22(4), 1975.
11. X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the sky: efficient skyline computation over

sliding windows. InICDE’05.
12. J. Matousek. Computing dominances in En. Information Processing Letters, 38(5):277–278,

1991.
13. D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm for skyline

queries. InSIGMOD’03.
14. C. H. Papadimitriou and M. Yannakakis. Multiobjective query optimization. InPODS’01.
15. J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best views of skyline: a semantic approach

based on decisive subspaces. InVLDB’05.
16. F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-

Verlag, 1985.
17. I. Stojmenovic and M. Miyakawa. An optimal parallel algorithm for solving the maximal

elements problem in the plane.Parallel Computing, 7(2), June 1988.
18. K.-L. Tan, P.-K. Eng, and B.C. Ooi. Efficient progressive skyline computation. InVLDB’01.
19. Y. Yuan, X. Lin, Q. Liu, W. Wang, J.X. Yu, and Q. Zhang. Efficient computation of skyline

cube. InVLDB’05.

