
Mining Frequent Closed Patterns in Microarray Data

Gao Cong, Kian-Lee Tan, Anthony K.H. Tung, Feng Pan
School of Computing

National University of Singapore
3 Science Drive 2, Singapore

{conggao, atung, tankl, panfeng}@comp.nus.edu.sg

Abstract

Microarray data typically contains a large number of
columns and a small number of rows, which poses a great
challenge for existing frequent (closed) pattern mining al-
gorithms that discover patterns in item enumeration space.
In this paper, we propose two new algorithms that explore
the row enumeration space to mine frequent closed pat-
terns. Several experiments on real-life gene expression data
show that the new algorithms are faster than existing algo-
rithms, including CLOSET, CHARM, CLOSET+ and CAR-
PENTER.

1. Introduction

Microarray datasets may contain up to thousands or tens
of thousands of columns (genes) but only tens or hundreds
of rows (samples). Discovering frequent patterns from mi-
croarray datasets is very important and useful, especially
in the following: 1) To discover association rules, which
can not only reveal biological relevant associations between
genes and environments/categories to identify gene regula-
tion pathways but also help to uncover gene networks [1].
2) To discover bi-clustering of gene expression as shown in
[8].

However, these high-dimensional microarray datasets
pose a great challenge for existing frequent pattern discov-
ery algorithms. While there are a large number of algo-
rithms that have been developed for frequent pattern dis-
covery and closed pattern mining [3, 4, 7], their basic ap-
proaches are based on item enumeration in which combi-
nations of items are tested systematically to search for fre-
quent (closed) patterns. As a result, their running time in-
creases exponentially with increasing average length of the
records. The high dimensional microarray datasets render
most of these algorithms impractical.

It was first shown in [2] that the complete frequent closed
patterns can also be obtained by searching in the row enu-

meration space, which was also observed in [5] 1. More-
over, [2] proposed an algorithm, CARPENTER, to explore
the row enumeration search space by constructing projected
transposed database recursively.

Considering that many algorithms have been proposed
to mine frequent (closed) patterns by item enumeration, it
would be interesting to investigate whether some ideas can
be borrowed from these algorithms to search row enumera-
tion space more efficiently. In this paper, we developed two
new efficient algorithms, RERII and REPT, to explore the
row enumeration space to discover frequent closed patterns.
Algorithm RERII is inspired by algorithms that mine pat-
terns from vertical layout data [7], while algorithm REPT
is inspired by algorithms that are based on FP-tree [4]. But
RERII and REPT are very different from them in that both
of them adopt row enumeration. Compared with CAR-
PENTER, RERII and REPT use different implementation
methods and employ more powerful pruning methods. Sev-
eral experiments are performed on real-life microarray data
to show that the new algorithms are much faster than the
existing algorithms, including CLOSET [4], CHARM[7],
CLOSET+[6] and CARPENTER[2].

2. Problem definition and preliminary

Let I={i1, i2, .., im} be a set of items. Let D be
the dataset (or table) which consists of a set of rows
R={r1, .., rn} with each row ri consisting of a set of items
in I , i.e ri ⊆ I . Figure 1 shows an example dataset. To
simplify notation, in the sequel, we will denote a set of row
numbers like {r2, r3, r4} as ”234”. Likewise, a set of items
like {a, c, f} will also be represented as acf . Given a set of
items I ′, the number of rows in the dataset that contain I ′ is
called the support of I ′. A set of items I ′ ⊆ I is called a
closed pattern if there exists no I ′′ such that I ′ ⊂ I ′′ and
the set of rows containing I ′′ is not the same as the set of
rows containing I ′. A set of items I ′ ⊆ I is called a fre-

1The submission date of the paper [5] is 1 month after that of [2].

i ri

1 b,d,e,f
2 a,c,e,f
3 a,c,d,e
4 a,b,c,d,e,g
5 a,b,c,d,e,f

Figure 1. Example
Table

ij rows containing ij

a 2,3,4,5
b 1,4,5
c 2,3,4,5
d 1,3,4,5
e 1,2,3,4,5
f 1,2,5
g 4

Figure 2. Trans-
posed Table

quent closed pattern if (1) the support of I ′ is higher than
a minimum support threshold, minsup; (2) I ′ is a closed
pattern.
Problem Definition: Given a dataset D which contains
records that are subset of a set of items I , the problem is to
discover all frequent closed patterns with respect to a user
given support threshold minsup. In addition, we assume
that the database satisfies the condition |R| << |I|.
Preliminary: CARPENTER is designed based on two ba-
sic concepts. One is (projected) transposed table and the
other is row enumeration. Table in Figure 2 is a transposed
version of table in Figure 1. Let X be a subset of rows.
Given the transposed table TT , a X-projected transposed
table, denoted as TT |X , is a subset of tuples from TT such
that: 1) For each tuple x in TT , there exists a corresponding
tuple x′ in TT |X . 2) x′ contains all rows in x with row ids
larger than any row in X . A complete row enumeration tree
on table in Figure 2 is shown in Figure 3.

{de}{de}

{e}

{e}

{e}
1235

{e}
1234

{ef}{e}{e}
125123

24{ace}23{bdef}{bde}{de} 151413

{de}

{abcdeg}

{ace}245

1345

134

1245

{acde}

{acde}
34 {acde}

35
{abcde}
45

{ace}235{ace}

{ace}

{acef}{ace} 25

234{bde}145

{ef}

{abcdef}{acde}{acef}{bdef}

12345

135

{}

2345

345

5432

124

12

1

Figure 3. The row enumeration tree.

3. Algorithm RERII

In RERII, each node X in Figure 3 will be
represented with a three-element group X =
{itemlist, sup, childlist}, where itemlist is the closed

pattern corresponding to node X , sup is the number of
rows at the node and childlist is the list of child nodes of
X . For example, the root of the tree can be represented with
{{}, 0, {1, 2, 3, 4, 5}} and the node ”12“ can be represented
with {{1, 2}, 2, {3, 4, 5}}.

Given a node X in the row enumeration tree, we will
perform an intersection of the itemlist of node X with the
itemlists of all its sibling nodes after X . Each intersection
will result in a new node (Note that the intersection may
be pruned as discussed later) whose itemlist is the inter-
section, whose sup is X.sup + 1 and whose childlist will
be available at next level intersection. And each new node
will be intersected with its afterward siblings. In this way,
the row enumeration tree will be recursively expanded in a
depth-first way.

Lemma 3.1 Let Xri and Xrj be two sibling nodes, where
Xri < Xrj . The following five properties will hold:

1) If Xri.itemlist ∩ Xrj .itemlist = ∅, nothing needs
to be done.

2) If Xri.itemlist = Xrj .itemlist, Xrj will be inte-
grated into Xri, i.e. Xri.sup = Xri.sup + 1 and any
further expansion below Xrj will be pruned.

3) If Xri.itemlist ⊂ Xrj .itemlist, Xri.sup =
Xri.sup + 1 and Xrj will not expand Xri.

4) If Xri.itemlist ⊃ Xrj .itemlist, any further expan-
sion below Xrj will be pruned and Xrj will become a can-
didate extension of Xri. (Note that whether Xrj will be a
true extension of Xri is pending other checking introduced
later.)

5) If Xri.itemlist �= Xrj .itemlist, Xrj will become a
candidate extension of Xri.

{abcdef}

24{ace}23 {ace}

1

12

{bdef}

{ef} 13 14{de} {bde}

123 {e} {e}124

{abcdeg}

45 {abcde}

{acde}2 3 4 5

{}

{acef}

Figure 4. The pruned row enumeration tree.

Example 1 We now illustrate the Lemma 3.1 with the ex-
ample table in Figure 1. Suppose minimum support = 1, let
us look at how to apply Lemma 3.1 to prune the complete
row enumeration tree shown in Figure 3. Consider node 1,
its itemlist is a subset of that of node 5 (case 2) while the
intersection of its itemlist with the others satisfies the case
5. As a result, we increase the support of node 1 by 1 and
extend node 1 with nodes 2, 3 and 4 to get three child nodes.
Next we process the node 12, the intersection of the itemlist

of 12 with the itemlist of 13 and 14 satisfies the case 5 and
we extend 12 with 13 and 14. At the node 123, the intersec-
tion of its itemlist with that of 124, i.e. e satisfies with case
2. In this way, we get a close pattern {e} with support=4.
Next we proceed to node 13 and the intersection of its item-
list with that of node 14, i.e. {de}, satisfies case 3. Thus
we get a closed pattern de with support =3. The extension
is done in a depth-first way. The nodes that are actually
checked are shown in the Figure 4.

Algorithm RERII(D, minsup)

1. Scan database D to find the set of frequent items F
2. Remove the infrequent items in each row ri of D
3. Each ri forms a node in the first level of row enumeration tree and let
N be the set of nodes
4. RERIIdepthfirst(N, FCP)
5. Let CF be the set of closed items in F , FCP = FCP ∪ CF and
return FCP

Procedure: RERIIdepthfirst(N, FCP)

6. for each node ni in N
7. Ni = null
8. if the left row enumeration cannot be frequent return
9. for each nj in N , where nj > ni

10. compute the frequency of items to do support pruning
11. d = ni.itemlist ∩ nj .itemlist
12. if |d| > 1
13. if ni.itemlist = nj .itemlist
14. remove nj from N
15. increase ni.sup and n′.sup (n′ ∈ Ni) by 1
16. if ni.itemlist ⊂ nj .itemlist
17. increase ni.sup and n′.sup (n′ ∈ Ni) by 1
18. if ni.itemlist ⊃ nj .itemlist
19. remove nj from N
20. if ni.itemlist ∪ d is not discovered before
21. add n′ (n′.sup = ni.sup + 1, n′.itemlist = d) to Ni

22. if (ni.itemlist �= nj .itemlist)
23. if ni.itemlist ∪ d is not discovered before
24. add n′ (n′.sup = ni.sup + 1, n′.itemlist = d) to Ni

25. end for
26. if ni.sup ≥ minsup, add ni.itemset to FCP
27. if Ni �= ∅ and Ni satisfies support pruning
28. call RERIIdepthfirst(Ni, FCP)
29. end for

Figure 5. Algorithm RERII

We give the pseudo code of algorithm RERII in Figure
5. We further optimize the algorithm RERII using three
techniques that will be explained as follows.

Single Item Pruning. RERII has already discovered the set
of frequent single items by scanning the database once, we
only need to discover those frequent closed patterns longer
than 1. Therefore, if RERII finds that an enumeration node
cannot result in pattern longer than 1, that node will be
pruned. Algorithm RERII applies such an optimization at
line 3 and line 12.

Support Pruning. RERII tries to utilize support pruning at
three levels.

Level 1. This pruning is done at line 8 of RERI-
Idepthfirst(). Given a node X with k child nodes
Xr1,Xr2, ...,Xrk, for any child node Xri, if Xri.sup +
k− i < minsup, there is no need to do any further enumer-
ation below node Xri.

Level 2. This pruning is done at line 10 of RERI-
Idepthfirst(). Given a node X with k child nodes
Xr1,Xr2, ...,Xrk, for any child node Xri, we compute
the supports for items in X.itemlist (= i1, i2, ...im) in all
nodes Xrj such that i ≤ j ≤ k. The counter support(il)
for each item il in X.itemlist is initialized with X.sup and
will be increased by 1 if the item is in Xrj .itemlist. On the
basis of single item pruning, we only need to discover pat-
terns longer than 1. We can derive the following two prun-
ing methods. First, if there are fewer than two items such
that il ∈ Xri and support(il) ≥ minsup, there is no need
to do any further enumeration below node Xri. Second, if
there are fewer than two items such that il ∈ X.itemset and
support(il) ≥ minsup, there is no need to do any further
enumeration below nodes Xrj (i ≤ j ≤ k).

Level 3. This pruning is done at line 27 of RERIIdepth-
first() after Ni is filled, i.e. the child nodes of ni are ob-
tained. The detailed approach is similar to that in Level 2.
Redundant Pruning. On the basis of the lemma 3.1, at a
node X , if pattern X.itemlist has already been discovered
in an earlier enumeration, we can prune node X and any
further enumerations below X .

4. Algorithm REPT

Like CARPENTER, algorithm REPT traverses the row
enumeration tree with the help of projected transposed ta-
ble. Its first main difference from CARPENTER is that
REPT represents (projected) transposed table with prefix
trees, which can help in saving memory and saving com-
putation in counting frequency. The second main difference
of REPT from CARPENTER lies in pruning method. The
prefix tree used to represent transposed table is similar to
the FP-tree used in [4] to represent original table. In FP-
tree, each node represents an item while the node of prefix
tree used in REPT represents a row. The algorithm details
are ignored here because of space limitation.

5. Performance Studies

In this section, we will evaluate RERII and REPT in
terms of both the efficiency and memory usage. All our
experiments were performed on a PC with a Pentium IV 2.4
Ghz CPU, 1GB RAM running Linux and a PC with Pen-
tium IV 2.6, 1 G RAM running Windows XP. Algorithms
were coded in Standard C. We compare RERII and REPT

against three other closed pattern discovery algorithms 2,
CARPENTER [2], CHARM [7] and CLOSET [4] on Linux
and against CLOSET+ [6] on Windows.

Our experiments are performed on 2 real-life datasets,
which are the clinical data on breast cancer (BC) 3 and ALL-
AML leukemia (ALL) 4. In the BC dataset, there are 97
tissue samples and each sample is described by the activity
level of 24481 genes. In the ALL dataset, there are 72 tissue
samples each described by the activity level of 7129 genes.
The datasets are discretized by doing a equal-width partition
for each column with 50 buckets.

10

100

1000

10000

5 6 7 8 9 10

R
un

tim
e(

s)

Minimum Support(%)

RERII
REPT

CARPETNER
CHARM
CLOSET

(a) Breast Cancer

1

10

100

1000

10000

4 5 6 8 9 10

R
un

tim
e(

s)

Minimum Support(%)

RERII
REPT

CARPETNER
CHARM
CLOSET

(b) ALL-AML leukemia

Figure 6. Runtime Performance

10

100

1000

10000

6 7 8 9 10

R
un

tim
e(

s)

Minimum Support(%)

RERII
REPT

CLOSET+

(a) Breast Cancer

1

10

100

1000

10000

5 6 8 9 10

R
un

tim
e(

s)

Minimum Support(%)

RERII
REPT

CLOSET+

(b) ALL-AML leukemia

Figure 7. Comparison with CLOSET+

Figure 6 shows the experimental results on our three
datasets. Note that the y-axes of these graphs are in log-
arithmic scale. At some points in Figure 6(b), the runtime
of CHARM is not shown because CHARM cannot finish by
reporting error after using up all available memory. We do
not give the runtime of CLOSET on all points because it
is too slow and showing them will make the differences in
runtime of other algorithms unclear in these graphs. Among
the five algorithms, we find that RERII is usually the fastest
while CLOSET is the slowest and has the steepest increases
in run time as minsup is decreased. CHARM is generally
1 order of magnitude slower than RERII and REPT at low
support. Compared to CARPENTER, RERII is usually 2-4
times faster and REPT is usually 1-2 times faster. These re-

2We are grateful to Dr. Mohammed Zaki for the Linux version source
code of CHARM and Dr. Jiawei Han and Dr. Jianyong Wang for the
executable code of CLOSET+ running on Windows

3http://www.rii.com/publications/default.htm
4http://www-genome.wi.mit.edu/cgi-bin/cancer

sults clearly show that the two proposed algorithms in this
paper are efficient.

Figure 7 shows the comparison results with CLOSET+.
CLOSET+ cannot finish by reporting error after using up all
available memory at minsup = 7% on BC. Figure 7 shows
that both RERII and REPT are usually 1 order of magnitude
faster than CLOSET+.

In our experiments, we also observe the memory usage,
which usually follows the following relation: CHARM >
RERII > CLOSET, CARPENTER, CLOSET+ > REPT.
REPT needs the least memory while CHARM is the most
memory consuming. It is also interesting to note that tree-
based schemes (e.g., CLOSET, REPT using FP-tree or pre-
fix tree) generally consume less memory, while non-tree-
based algorithms(e.g., CHARM, RERII) are typically more
efficient on the data that we use.

6. Conclusions

In this paper, we have proposed two new algorithms,
RERII and REPT, to discover frequent closed patterns.
Several experiments showed that the proposed algorithms
are faster than existing algorithms, including CLOSET,
CHARM, CLOSET+ and CARPENTER.

References

[1] C. Creighton and S. Hanash. Mining gene expression
databases for association rules. Bioinformatics, 19, 2003.

[2] F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. J. Zaki. CAR-
PENTER: Finding closed patterns in long biological datasets.
In Proc. ACM SIGKDD Int’l Conf. on Knowledge Discovery
and Data Mining(KDD), 2003.

[3] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering
frequent closed itemsets for association rules. In Proc. 7th Int’l
Conf. Database Theory (ICDT), 1999.

[4] J. Pei, J. Han, and R. Mao. CLOSET: An efficient algo-
rithm for mining frequent closed itemsets. In Proc. ACM-
SIGMOD Int’l Workshop Data Mining and Knowledge Dis-
covery (DMKD), 2000.

[5] F. Rioult, J.-F. Boulicaut, B. Cremileux, and J. Besson. Using
transposition for pattern discovery from microarray data. In
Proc. ACM-SIGMOD Int’l Workshop Data Mining and Knowl-
edge Discovery (DMKD), 2003.

[6] J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the
best strategies for mining frequent closed itemsets. In Proc.
ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining (KDD), 2003.

[7] M. J. Zaki and C. Hsiao. CHARM: An efficient algorithm for
closed association rule mining. In Proc. SIAM Int’l Conf. on
Data Mining (SDM), 2002.

[8] Z. Zhang, A. Teo, B. Ooi, and K.-L. Tan. Mining determin-
istic biclusters in gene expression data. In 4th Symposium on
Bioinformatics and Bioengineering, 2004.

