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Abstract. Constrained clustering—finding clusters that satisfy user-specified
constraints—is highly desirable in many applications. In this paper, we intro-
duce the constrained clustering problem and show that traditional clustering
algorithms (e.g., k-means) cannot handle it. A scalable constraint-clustering
algorithm is developed in this study which starts by finding an initial solution
that satisfies user-specified constraints and then refines the solution by per-
forming confined object movements under constraints. Our algorithm consists
of two phases: pivot movement and deadlock resolution. For both phases, we
show that finding the optimal solution is NP-hard. We then propose several
heuristics and show how our algorithm can scale up for large data sets using
the heuristic of micro-cluster sharing. By experiments, we show the effective-

ness and efficiency of the heuristics.

1 Introduction

Cluster analysis has been an active area of research in computational statistics and
data mining with many algorithms developed. However, few algorithms incorporate
user-specific constraints in cluster analysis. Many studies show that constraint-based
mining is highly desirable since it often leads to effective and fruitful data mining by
capturing application semantics [NLHP98 KPR98, LNHP99]. This is also the case in

cluster analysis.

Formally, the unconstrained clustering problem can be defined as follows.
Unconstrained Clustering (UC): Given a data set D with n objects, a distance function
df : D x D — R, and a positive integer k, find a k-clustering, i.e., a partition of D into k
disjoint clusters (Cly, ..., Cly) such that DISP = (Zle disp(Cl;, rep;)) is minimized.

The “dispersion” of cluster Cl;, disp(Cl;, rep;), measures the total distance be-
tween each object in Cl; and the representative rep; of Cl;, i.e., disp(Cl;, rep;) is
defined as ZpeCl, df (p, rep;). The representative of a cluster Cl; is chosen such that
disp(Cl;, rep;) is minimized. Finding such a representative for each cluster is gener-
ally not difficult. For example, the k-means algorithm uses the centroid of the cluster

as its representative, which can be calculated in linear time.



The constrained clustering problem can be defined as follows.
Constrained Clustering (CC): Given a data set D with n objects, a distance function
df : D x D — R, a positive integer k, and a set of constraints C, find a k-clustering
(Cly,...,Clg) such that DISP = (Ele disp(Cl;, rep;)) is minimized, and each cluster Cl;
satisfies the constraints C, denoted as Cl; |=C.

A fundamental difference between the UC and CC problems is that the uncon-

strained clustering algorithms are designed to find clusterings satisfying the nearest
rep(resentative) property (NRP), defined below, whereas for the CC problem, the
NRP may conflict with constraint satisfaction.
The Nearest Rep(resentative) Property (NRP): Let (Cly, ..., Cli) be the k-clustering
computed by the algorithm, and let rep; denote the representative of cluster Cl;, 1 <1 < k.
Then a data object p € D is placed in a cluster Cl; iff rep; is the closest to p among all the
representatives, i.e., (Vp € D)(V1 < j < k) [p€ Cl; & (Vi# j)df(p,rep;) < df(p,repi)].

In this paper, we study the CC problem. A taxonomy of constraints useful in
applications is presented in Section 2. In Section 3, we review works related to the
CC problem, and in Section 4, we analyze the major challenges of CC. In Section
5, we develop an algorithm for CC under an existential constraint. In Section 6,
we study how to scale up our algorithm by micro-cluster sharing. The experiments
evaluating the effectiveness of the proposed heuristics are reported in Section 7.
Section 8 discusses the handling of other SQL aggregate constraints, and Section 9

concludes the paper.
2 A Taxonomy of Constraints for Clustering

Depending on the nature of the constraints and applications, the CC problem can

be classified into the following categories.

1. Constraint on individual objects: This constraint confines the set of objects to be
clustered, e.g., cluster only luxury mansions of value over one million dollars. It
can be easily handled by preprocessing (e.g., performing selection using an SQL
query), after which the problem reduces to an instance of the UC problem.

2. Obstacle objects as constraints: A city may have rivers, bridges, highways, lakes,
mountains, etc. Such obstacles and their effects can be captured by redefining
the distance functions df() among objects. Once that is done, the problem again
reduces to an instance of the UC problem.

3. Clustering parameters as “constraints’: Some “constraints” may serve as the pa-
rameters in a clustering algorithm, e.g., the number of clusters, £. Such parame-
ters, though specifiable by users, are not considered as constraints in our study.

4. Constraints imposed on each individual cluster: This is the theme of our study.

Within this class, we focus on constraints formulated with SQL aggregates.



Let each object O; in the database D be associated with a set of m attributes
{A1,..., An}. The value of an attribute A; of an object O; is denoted as O;[A;].

Definition 1 (SQL Aggregate Constraints). Consider the aggregate functions
agg € {maxz(), min(), avg(), sum()}. Let § be a comparator function, i.e., § € {<,<
,#,=,>,>}, and ¢ represent a numeric constant. Given a cluster Cl, an SQL aggre-
gate constraint on C1 is a constraint in one of the following forms: (1) agg({0;[4;] | O; €
Cl1}) 6 c; or (ii) count(Cl) 6 c. O

In this paper, we mainly focus on one type of constraints, called existential con-

straints:

Definition 2 (Existential Constraints). Let W C D be any subset of objects.
We call them pivot objects. Let ¢ be a positive integer. An existential constraint
on a cluster Cl is a constraint of the form: count({0;|0; € Cl,0; € W}) > c. O

Pivot objects are typically specified via constraints or other predicates. For example,
in a market segmentation problem, pivot objects might be frequent customers. See

Section 8 for a discussion on the generality of existential constraints.
3 Related Work

Cluster analysis has been an active area in computational statistics and data min-
ing. Clustering methods can be categorized into partitioning methods [KR90,NH94],
hierarchical methods [KR90,ZRL96], density-based methods [EKSX96], grid-based
methods [WYM97,AGGRI§], and model-based methods [HaKa00]. However, none

of the existing methods incorporates user-specified constraints.

A problem somewhat similar to the C'C' problem is the facility location problem
[STA97], mostly studied in operational research and theoretical computer science. It
tries to locate k facilities to serve n customers such that the traveling distance from
the customers to their facility 1s minimized. However, the only type of constraints
they studied are constraints on the capacity of the facility, i.e., each facility can only
serve a limited number of customers. If we assume that customers cannot be “split”
between two facilities (as we do for CC), the resultant solution will require an increase
both in the number of facilities and in the capacity of these facilities. However, if the
customers can be “split”, only the number of facilities needs to be increased. Such
an increase in number of facilities and capacity is inappropriate for the CC problem

as we treat user’s constraints as hard constraints.

Since CC is a kind of constrained optimization problem, mathematical program-
ming naturally comes to mind. Our concern, however, is its scalability with respect
to a large database. To cluster n customers into k clusters, a mathematical pro-
gramming approach will involve at least k£ x n variables. As n can be as large as

a few millions, it is very expensive to perform mathematical programming. As can



be seen later, our solution for handling a very large dataset involves a novel con-
cept called micro-cluster sharing. This may correspond to dynamic combining and
splitting of equations in a mathematical program, which has not been considered in
mathematical programming but could be an interesting future direction for perform-

ing mathematical programming in large databases.

4 The Nearest Representative Property (NRP)

We first consider the theoretical implication of adding constraints to clustering, by
examining the popular k-means algorithm although the discussion generalizes to other

algorithms, such as the k-medoids algorithm.
Given a set of constraints C, a “solution” space for the CC problem is defined as,
CISp(C,k, D) ={(Cl,...,Clg) |[V1<14,j<k:0CCL CD&ClL EC&
UCL =D& CL;NCl; =0, for i # j}

We refer to CISp(C, k, D) as the (constrained) clustering space. Clusterings found by
the k-means algorithm satisfy the NRP. Accordingly, the constrained mean solution
space 1s defined as:

MeanSp(C, k, D) = {(Cly,...,Cly) | (Cly,...,Cly) € CISp(C, k, D)
&V1<j<kVeeD:(qeCly & (Vi#j:df(q,p;) <df(q,p:))}

where p; is the centroid of cluster C1;. It should be clear by definition that the mean
space MeanSp() is a strict subset of the clustering space C1Sp(). To understand the
role played by the NRP, let us revisit the situation when the set of constraints C
is empty. The k-means algorithm does the smart thing by operating in the smaller
MeanSp() space than in the CISp() space. More importantly, the following theorem
says that there is no loss of quality. Unless stated otherwise, proofs of the results in
this paper can be found in [TNLH00] but are omitted here for lack of space.
Theorem 1. A clustering /CL is an optimal solution to the UC problem in the
space C1Sp(B, k, D) iff it is an optimal solution to the UC problem in the mean space
MeanSp(0,k, D). a

Like virtually all existing clustering algorithms, the k-means algorithm does not
attempt to find the global optimum. This is because the decision problem corre-
sponding to k-clustering is NP-complete even for k = 2 [GJ79]. Thus, the k-means
algorithm focuses on finding local optima. Theorem 1 can be generalized from the
global optimum to a local optimum.

The point here is that MeanSp(#, k, D) contains the “cream” of CISp(0, k, D),
in that the global and local optima in C1Sp(, k, D) are also contained in the smaller
MeanSp(0, k, D). This nice situation, however, does not generalize to the CC prob-

lem. For example, suppose there are only four customers with three located close



to each other at one end of a highway, and the fourth at the other end. If the CC
problem is to find two clusters with (at least) two customers in each, it is easy to see

that it is impossible to satisfy the constraint and the NRP simultaneously.

To resolve this conflict, we adopt the policy that the user-defined constraints take
precedence over the NRP. Specifically, the algorithm to be presented next regards
the set C to be hard constraints that must be satisfied. The NRP, on the other hand,
is treated as a “soft” constraint in the sense that it is satisfied as much as possible
by the minimization of (Ele disp(Cl;,rep;)). But there is no guarantee that every

object is in the cluster corresponding to its nearest center.

5 Clustering without the Nearest Representative Property

In this section, we will develop an algorithm to perform C'C' under an existential
constraint. An important difference of our method from the UC algorithms is that
our algorithm tries to find a good solution by performing cluster refinement in the
constraint space, C1Sp(C, k, D), which we represent using a clustering locality graph,
G = (V,€&), described as follows:
— The set V of nodes is the set of all k-clusterings. More precisely, it is the uncon-
strained clustering space C1Sp(®, k, D). Nodes which satisfy existential constraint

(EC) are called wvalid nodes, and those that do not are called invalid nodes.
— There is an edge e between two nodes CL1, CL5 in the graph iff they are different

by only one pivot object, i.e., CLy of the form (Cly,...,Cl;,...,Cl;, ..., Cly),
whereas CLy of the form (Cly,...,Cl; — {p},...,Cl; U{p},...,Cl) for some
pivot object p € Cl; & j #i. If anode CLy is connected to CL; by an edge, then
CL5 is called a neighbor of CL; and vice versa.
With such a graph, a naive algorithm to solve the CC problem given k& and EC
is to first pick a valid node in the locality graph and move to a valid neighboring
node which gives the highest decrease in DISP. Intuitively, such a node movement
is a cluster refinement process similar to the k-means algorithm which tries to refine
the clustering by moving objects to the nearest center to reduce DISP. The cluster
refinement process terminates when no node of lower DISP is found. The algorithm
will then output CL as the solution. However, this is a generate-and-test algorithm
which is inefficient since the number of neighbors of a node is potentially large. To

improve its efficiency, the number of nodes to be examined needs to be restricted.

5.1 Cluster Refinement Under Constraints
To derive a more efficient algorithm for CC, we first define a set of unstable pivots

given a valid node CL = (Cly, ...Cly).

Definition 3. (Unstable Pivots) A set of unstable pivots, S, with respect to CL is
a collection of all pivots in D such that each s € S belongs to some Cl; in CL but s

is nearer to a representative of some Cl;, j # ¢. a



Using S, we form a subgraph of G, viz., SG = (8V, S), where the set of nodes
SV is defined as follows: (1) (base case) the initial node CL, representing the chosen
valid clustering is in SV; (2) (inductive case) for any node CL in SV, if (i) there is an
object s in Cl; whose nearest cluster representative is in Cl;, and (ii) CL is of the form
(Cli,...,Cl;, ... ,Clg), then the node CL' of the form (Cly,...,Cl; — {s},...,Cl; U
{s},...,Clg) is also in SV; and (3) there is no other node in SV. Intuitively, once
S is defined, the subgraph 8G includes all the nodes that are reachable from CL via
the movements of some s € S to their nearest cluster. Let us denote the DISP of

any node v with respect to a set of representatives REP as DISPrpp(v).

Theorem 2. DISPrep (CL') < DISPrpp(CL) for any nodes CL,CL' in SG as
above, REP and RE P’ being the set of representatives for CL and CL' respectively.
Proof: Let REP = (reps,...,reps) and REP' = (repi, ..., rep}). The dispersion of
CL’ calculated with respect to REP will be DISPrpp(CL') = (Zle disp(ClL, rep;)).
We first observe that

DISPrrp(CL') < DISPrep(CL)

This is because the set of representatives is the same on both sides of the inequality
and since CL' can be obtained by moving some s € S to their nearest representative
in REP, the reduction in dispersion will result in the above observation. On the
other hand, since REP’ is a set of representatives for CL’, by definition they will
minimize the dispersion for C!},...,C1}, we thus have the following inequality,

DISPrgp (Cﬁl) < DISPrgp (C[:/)
By combining these two inequalities together, we have

DISPrgp (C[,/) < DISPrgp (C[,/) < DISPrgp (C[,) O

By Theorem 2, we conclude that our clusters can in fact be refined just by search-
ing SG. There are two advantages to doing this. First, our efficiency improves because
the number of nodes to be searched is reduced, and the movement always leads to
progressive refinement in clustering quality. This in itself does not guarantee the cho-
sen neighbor is valid. Second, instead of considering only neighbors, SG allows us to

consider nodes that are many steps away.

Given 8§G, we adopt the steepest descent approach and plan a path along the valid
nodes of 8SG which leads to a new valid node C£’ with minimized dispersion in 8G.
We call this problem the Best Path (BP) Problem. To plan the path, only unstable
pivots in a surplus cluster (cluster which have more objects than required by EC')
can be moved. We call such an object, a movable object. To gain more insight into
the BP problem and to derive an algorithm for solving it, we introduce a concept

called pivot movement graph which can be used to represent the state of clustering

in each node of SG.
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Fig. 1. A Pivot Movement Graph Fig. 2. The Actual Situation.

Definition 4. (Pivot Movement Graph) A pivot movement graph is a directed graph
in which each cluster is represented by a node. An edge from CI; to Cl; indicates
that there is at least one unstable pivot object in Cl; that has Cl; as its nearest
center. These objects are represented as labels on the edge. The reduction in DISP
when an unstable object is moved to its nearest center 1s shown next to each of these
objects. a

Figure 1 shows an example of a pivot movement graph which is under the con-
straint “Vi, count(Cl;) > 50”. As such, the surplus clusters at this instance are Cly,
Cls and Cls5. Figure 2 shows the actual situation depicted by the pivot movement
graph in Figure 1. For clarity, only the unstable pivots and the cluster representatives
(marked by a “x”) are shown. Given a pivot movement graph, a Pivot Movement
(PM) problem is the problem of computing a schedule of movements for the unstable

objects in the graph such that the total reduction in DISP is maximized.

Theorem 3. The BP problem is equivalent to the PM problem.

Proof: Given an optimized solution for BP, we follow the path given in the solution
and move the pivots in the corresponding pivot movement graph. This will give a
maximized reduction in dispersion. Similarly, if an optimized schedule is given for
PM, we can follow the schedule and move along a path where each node in the path
corresponds to a state of the pivot movement graph when the schedule is followed.
This will bring us to a node with minimized dispersion in §G. O
Given their equivalence, it suffices to focus on the PM problem.
Definition 5. (The PM Decision Problem) Given a pivot movement graph and an
existential constraint EC, the PM decision problem is to determine whether there
is a schedule of movements of objects around the clusters such that EC is satisfied
at all times and the total dispersion being reduced is > B where B is a numeric

constant. O



Two observations hint at the difficulty of this problem. (1) The movement of an
unstable pivot object could possibly trigger a series of movements of other unstable
pivot objects. For example, by moving O3 from Cl; to Cls, Cls now has 51 pivot
objects, and thus we could move Og from Cls to Cls. We refer to such a series of
triggerings as a movement path. (2) Given a surplus cluster with more than one
outgoing edge, the choice of the outgoing edge that minimizes DISP in the resultant
movement path is not obvious. Indeed we can show:

Theorem 4. The PM decision problem is NP-complete.

Proof: See [TNLHO00]. O
Furthermore, by using a result given in [KMR97], we can show that it is not possible
to compute in polynomial time a constant factor approximation for the PM problem.
Thus, an alternative is to use heuristics which could work well in practice and efficient
enough for handling a large dataset. The purpose of the heuristic is to iteratively pick
an edge in the pivot movement graph and move an unstable object on the edge to its

nearest representative thus forming a schedule of movements for the unstable pivots.

We experiment with two heuristics. The first is a random heuristic in which
a random edge is selected from those edges that originate from a surplus cluster;
whereas the second i1s a look-ahead [ heuristic which looks ahead at all possible
movement paths originating from a surplus cluster, of length up to I/, and selects
the best among them. The selected movement path is then activated, resulting in a
movement of up to [ objects depending on the length of the path. Since there are at
most k(k — 1) edges, there are at most O(k(k — 1)'*!) movement paths. While there
exist optimization strategies that can avoid examining all the qualifying movement
paths of length [, the worst case complexity of this heuristic remains O(k(k — 1)'*1).

Thus, the value of [ is designed to be a small integer.

Using these heuristics, our corresponding movement in §G will eventually reach
a node CL" where future movement is no more possible. We then repeat the process

and form a new subgraph SG for processing.

5.2 Handling Tight Existential Constraints
While the cluster refinement algorithm discussed earlier works well under most con-

straints, problem arises when the constraint FC'is tight, i.e., when it is nearly impos-
sible to be satisfied. For example, given k = 5, |D| = 100 and EC = {count(Cl;) >
20},1 < i < 5, our algorithm may get into a deadlock cycle. A sequence of clusters
(Cly,...,Clg, Cly) is said to be in a deadlock cycle of length k if (a) all the clusters
are non-surplus; and (b) there is an edge in the pivot movement graph from C!; to
Cliy1,1 <1<k —1 and one from Clj to Cly, respectively.

In terms of the graph, §G, a tight FC' means that SG contains a large number

of invalid nodes and refining the clusters by movement through only valid nodes is



not possible. In view of this, a deadlock resolution phase is added before computing
a new subgraph 8G. The objective of the deadlock resolution phase is to provide a
mechanism to jump over a set of invalid nodes by resolving deadlock in the pivot
movement graph. Similar to the PM problem, we can prove (in a way similar to that

for Theorem 4) that resolving deadlock optimally is NP hard.

Similarly, we can show that there is also no constant factor approximation algo-
rithm for the deadlock resolution problem which runs in polynomial time. Thus, we
resort to the following heuristic based on a randomized strategy. It conducts a depth-
first search on the pivot movement graph to find any deadlock cycle. Suppose the
deadlock cycle detected is (Cly, ..., Clg, Cly). Let n; denote the number of unstable
pivot objects appearing as labels on the edge from Cl; to Cl; 1. Then let nyq, de-
note the minimum n; value among the edges in the cycle, i.e., e = minlgisk{ni}.
This marks the mazimum number of unstable objects that can be moved across the
entire cycle without violating EC'. Once the ny,,q, value has been determined, the
heuristic would move the unstable pivot objects with the top-n,,4; highest reduction

in DISP across each edge of the cycle causing the cycle to be broken.

5.3 Local Optimality and Termination
Having introduced our algorithm, we will now look at its formal properties by analyz-

ing the two main phases of the algorithm: piwot movement and deadlock resolution.
Our algorithm essentially iterates through these two phases and computes a new

subgraph SG at the end of each iteration.

Local Optimality Result. Having modeled our cluster refinement algorithm as a
graph search, we would like to establish that at the end of each iteration, the cluster-
ing obtained corresponds to a local minimum in the subgraph SG. However, since all
dispersion of nodes in 8G is actually computed with respect to the cluster represen-
tatives of CL, when there is a pivot movement, say object p moved from C1; to Cl;,
both the representatives of Cl; and that of Cl; change, and the set of unstable pivots
S can also change, which means that SG itself must be recomputed. This process is
time-consuming, especially for our look-ahead heuristic which must recompute G
every step it looks ahead. Because of this, we choose to freeze the representatives
of each cluster and avoid the recomputation of SG. As such, the cost of each node
CL in the subgraph SG is not the true dispersion but rather the “approximated”
dispersion, denoted as cﬁs\p(C[,), relative to the fixed representatives. Now we can
establish the following result. Intuitively, at the end of the pivot movement phase,
no surplus cluster in the pivot movement graph has an outgoing edge. Thus, it is not
possible to find a valid neighbor of the current one that has a lower dispersion.

Lemma 1. The clustering obtained at the end of the pivot movement phase is a
local minimum in the subgraph SG, where cost is based on approximated dispersion

disp(CL). o



Interestingly, a deadlock cycle of length & corresponds to a path (CLq,...,CLk41)
in 8G, such that the first node/clustering C£; and the last node CLg41 are valid, but
all the other nodes are not. This is a very interesting phenomenon because resolving
a deadlock cycle amounts to jumping from one valid node to another via a sequence
of invalid nodes in §G. In particular, if deadlock cycles are resolved after the pivot
movement phase as in our algorithm, then we jump from a valid local minimum to

another (which is not a neighbor) with a strictly lower value of dispersion.

Lemma 2. The clustering obtained at the end of the deadlock resolution phase is a

local minimum in the subgraph §G, where cost is based on approximated dispersion

disp(CL). O

Termination of the Algorithm. Since each move in the graph SG corresponds
to a reduction in the number of unstable pivot objects, and the number of unstable
pivot objects is finite, both the object movement phase and deadlock resolution phase
will terminate. Moreover, since we move to a node of lower DISP for every iteration,
and G is a finite clustering space, it is impossible to have the DISP value decreasing

forever. Thus, the algorithm terminates.

6 Scaling the Algorithm by Micro-Cluster Sharing

For clustering large, disk-resident databases, many studies have adopted a micro-
clustering methodology (e.g., [ZRLI6, WYM97, BFR98 KHK99]), which “compresses”
data objects into micro-clusters in a pre-clustering phase so that the subsequent
clustering activities can be accomplished at the micro-cluster level. To ensure that

not much quality is lost, a maximum radius on a micro-cluster is imposed.

By micro-clustering, in our cluster refinement, instead of moving one unstable
object across the edges of a pivot movement graph at a time, we have to move one
micro-cluster. However, since each micro-cluster can contain more than one pivot
object, it may not be possible to move a micro-cluster away from a surplus cluster
without invalidating the constraint. Similar complication arises when resolving dead-
lock since there is no guarantee that for each edge in a cycle, the total number of

pivot objects in the micro-clusters to be moved add up to exactly nmyqz.

To resolve these problems, we introduce a novel concept called micro-cluster shar-
ing. Given a micro-cluster with n non-pivot objects and m pivot objects, the n
non-pivot objects will always be allocated to the nearest cluster, while the m pivot
objects can be shared among multiple clusters. For example, consider Figure 3 in
which micro-cluster me; is formed from 5 non-pivot objects and 6 pivot objects. It is
shared by three clusters, C'ly, C'ls and Cl3. Since Cls is the nearest to meq, it owns
all 5 of me;’s non-pivot objects and also 2 pivot objects from me;. Cly, on the other

hand, contains 3 pivot objects from mey, while Cls has 1 pivot object from me; .
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Fig. 3. An Example of Micro-cluster Sharing

To record the sharing or “splitting” of mc; into multiple clusters, we use the nota-
tion Cl;.mc; to represent the part of me; that is in Cl;. During the pivot movement
and deadlock resolution phases, if p objects of Cl;.mc; are to be moved to Cl;, the
algorithm calls a function MovePivot(Cl;, Cl;, mey, p) which updates the numbers
in Cl;.meq and Cl;j.me; accordingly. In Figure 3, MovePivot(Cly, Cls, meq, 1) moves

one pivot object from Cli.mecy to Clz.me;.

Given the MovePivot() function, the problem of being unable to shift micro-
clusters around the clusters is effectively solved since the micro-clusters can now be
dynamically split and combined to cater to the condition for swapping. Since the
number of objects in a micro-cluster is small enough for all of them to fit in main

memory, the above heuristic requires a minimum amount of 1/0.

The remaining issue that we need to address is at the end of clustering, how
to determine the actual objects in a micro-cluster mc that are to be assigned to
Cly, ..., Cl,, where these are all the clusters for which Cl;.mc is positive. We adopt
the following greedy heuristic: For all the non-pivot objects in mec, they are all as-
signed to the nearest center/cluster. This is to reduce DISP as much as possible.
Consider the set of distances defined as: {df(O,Cl;) | O is a pivot object in me,
and 1 < i < ¢}. Sort this set of distances in ascending order. Based on this order,
the pivot objects are assigned to the cluster as near as possible, while satisfying the

numbers recorded in Cly.me, ..., Cl;.me.

7 Performance Analysis

We report our performance study, which evaluates the efficiency and effectiveness
of the proposed heuristics. All the experiments were performed on a 450Mhz Intel
Celeron, with 64MB of main memory, and an IBM 7200 rpm disk-drive.

Two datasets were used in our experiments. The first, DS1, is a dataset of a courier
company for planning collection centers based on the locations of their frequent
customers (see [TNLHO0]). The second, DS2, is synthetic, generated following the
synthetic datasets used in [ZRL96]. For lack of space, we report our experiments on
DS2 only.



For the constraints, we made all data objects to be pivot objects in order to give
most vigorous tests to our algorithms. Micro-clustering in our experiments was done
using the CF-tree in the BIRCH algorithm [ZRL96] which only needs to scan through
the database once. Note that BIRCH is used here as a pre-processing step and it’s

data structure is not utilized in any part of our algorithm.

To separate the different heuristics used in our algorithms, we denote an algorithm
as RandLS if it uses the random heuristic in pivot movement and LAHLS-1 if look-
ahead-l heuristic. For the micro-cluster sharing version of the two algorithms, the
term “Micro” is added, i.e., MicroRandLS and MicroLAHLS-I.

Our synthetic dataset was generated using a modification of the synthetic dataset
from [ZRL96], with skewed density distribution for testing the scalability of our algo-
rithms and how constraints affect the clustering of a dataset. Essentially, there was a
M x M grid in which cluster centers were placed. The distance between neighboring
centers in the same row or column was set to 1. For a cluster centered at the coordi-
nate (row, column), ((row —1) x M 4 column) x 50 points were generated following
a 2-d normal distribution with center at (row, column) and variance 0.5%. By design,
the density of the synthetic data was skewed, being least dense at the top-left corner
of the grid and most dense at the bottom-right. The value of M was varied from 4
to 8, generating datasets with various sizes and numbers of clusters. Figure 5 shows

the parameters used for each dataset.

As shown in Figure 6(a), the order of effectiveness of the various algorithms
generally remains unchanged with LAHLS giving the best quality of clustering. The
running times of both MicroRandLS and MicroLAHLS-4 remain relatively low as
both |D| and & increase. For a dataset with 104000 tuples, the running times of
MicroRandLS and MicroLAHLS-4 were around 1100 and 1500 seconds respectively.

To see the effect that an existential constraint has on the clustering, we look
at the output of MicroLAHLS-j in Figure 4 which shows a synthetic dataset with
M = 8. The clustering was done with the existential constraint of “count(Cl;) >
812” imposed. Since the actual clusters that were generated near the top-left corner
generally contained less than 812 points, there was a shift of cluster centers from the

top-left corner towards the dense region at the bottom-right corner.

To summarize, our experimental results show that the our algorithm is effective for
constrained clustering. Among the heuristics, micro-cluster sharing clearly delivers
good efficiency and scalability. The gain in efficiency far offsets the small loss in
quality. Finally, the look-ahead heuristic with small ! (e.g., 4) appears to be the best

candidate for pivot movement.
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Fig.5. Parameters for Synthetic Dataset.
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Fig. 6. Performance of Various Algorithms as |D| Varies.

8 Discussion: Handling Other SQL Aggregate Constraints

We have presented a cluster refinement algorithm which handles a single existential
constraint. In this section, we first examine how the algorithm can be extended to
handle constraints containing single SQL aggregate, where the constrains are classi-
fied into five classes (see Table 1) based on their behavior with respect to constrained
clustering: existential, existential-like, universal, averaging, and summation.

1. Universal constraints: These are constraints in which a specific condition must
be satisfied by every object in a cluster. For example, min({O;[4;]|0; € Cl;}) > ¢
requires that every object’s Aj-value be > ¢. This can be reduced to the UC problem
as discussed for constraints on individual objects in Section 2.

2. Existential-like constraints: These constraints are similar in nature to existen-

tial constraints, and our algorithm can handle them with simple modification. For



<or< | #* | = > or >

min existential existential-like| existential-like| universal

max universal existential-like| existential-like| existential

count || existential-like| existential-like| existential existential

avg averaging averaging averaging averaging

sum summation summation summation |summation

Table 1. A Classification of SQL Constraints

example, count(Cl;) < ¢ is an existential-like constraint. Instead of moving surplus
objects around, the objective here is to move “holes” around to achieve the maximum
reduction in DISP. If a cluster Cl; contains m objects, m < ¢, it has ¢ — m holes,
meaning that ¢ —m objects can still be moved into it. When an object is moved from
Cl; into Cl;, a hole is moved from Cl; into Cl;. Correspondingly, a hole movement

graph can be generated which could be used to guide movement in the locality graph.

3. Averaging and Summation constraints. For these kinds of constraints, even
computing an initial solution is an NP-hard problem similar to a bin-packing or
knapsack problem [GJ79]. Handling general averaging and summation constraints in

clustering is an interesting problem for future work.

Finally, we consider the situation when there are multiple conjunctive existential
constraints. The local search algorithm can easily be modified to handle existential
constraints when the sets of pivot objects for these constraints do not overlap. The
algorithm can then set up a different pivot movement graph for each constraint, and
move the pivot objects in different graphs independently. However, for situations
where the sets of pivot objects do overlap, again we can show even computing an ini-
tial solution is NP-hard. Handling multiple general existential constraints is another

interesting problem for future work.

9 Conclusions

In this paper, we introduced and studied the constrained clustering problem, a prob-
lem which arises naturally in practice, but barely addressed before. A (constrained)
cluster refinment algorithm is developed, which includes two phases of movement
in a clustering locality graph: piwot movement and deadlock resolution. Our exper-
imental results show that both phases are valuable. To scale up the algorithm for
large databases, we proposed a micro-cluster sharing strategy whose effectiveness is
also verified by our experiments. Our algorithm can also be extended to handle some
other kinds of constraints, however, handling general averaging and summation con-

straints, as well as handling general multiple existential constraints, are interesting



topics for future research. Thanks to a reviewer of this paper, we have come to know
of a recent study by Bradley et al. [BBD00] on a version of constrained clustering
problem similar to ours. Unlike us, their main motivation is using cardinality con-
straints for better quality clustering. Scalability and applicability to other types of
constraints are not addressed. Despite these differences, a quantitative comparison

between the two approaches would be an interesting future work.
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