BROOM: Buffer Replacement using Online Optimization by Mining

Anthony K. H. Tung
Dept. of Computer Science

Y.C. Tay
Dept. of Mathematics

Hongjun Lu
Dept. of Computer Science

National Univ. of Singapore National Univ. of Singapore National Univ. of Singapore

tungkh@acm.org

Abstract

Buffer replacement is a classic research problem in
database management. It has been extensively stud-
ied, and new strategies continue to be proposed. While
existing strategies (e.g. LRU, LFU) use heuristics to
determine which page to replace when there is a page
fault, this paper presents a different approach, called
BROOM, that is based on two ideas: for robust perfor-
mance (e.g. regardless of buffer size), the replacement
policy must (1) “know” something about the patterns
of page references, and (2) imitate the optimum offline
policy.

BROOM requires that historical reference streams
be mined periodically to extract knowledge about cur-
rent patterns in page access. It then uses this knowledge
for online buffer replacement by imitating the optimum
strategy. Simulation results are presented to show that
BROOM sometimes has the best hit rates, but seldom
the worst, over a wide range of system configurations
and reference patterns.

1 Introduction

Since fetching data from disk takes much longer than

from RAM, most database management systems (DBMSs)

use a main-memory area as a buffer to reduce disk ac-
cesses. Generally, the buffer space is subdivided into
frames of the same size, and each frame can contain
a page from secondary storage. When a page is refer-
enced by a transaction and is not found in the buffer, a
page fault is said to have occurred, and the referenced
page must be read from secondary storage into an un-

occupied frame. If all frames are occupied, one of them

is selected for replacement by the referenced page. The
problem of selecting a frame is called the buffer replace-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CIKM 98 Bethesda MD USA
Copyright ACM 1998 1-58113-061-9/98/11...85.00

tay@acm.org

luhj@comp.nus.edu.sg

ment problem.

Much research has been done on the buffer replace-
ment problem (one early survey was done by Effels-
berg and Haerder [3]). The simplest and most popular
buffer replacement policy is Least Recently Used (LRU),
in which the page in the buffer that is least recently ac-
cessed is replaced. Another well-known policy is Least
Frequently Used (LFU) [10]. With LFU, a reference
count is used to monitor the number of times each page
is accessed; when a page fault occurs, the page with the
lowest reference count is replaced.

More recently, O’Neil et al present a variant of the
LRU algorithm, called LRUk [9]. LRU¥K keeps track
of the times for the last k references to a page, and
the page with the least recent last k-th reference will

_then be replaced. Thus, for k¥ = 2, LRU2 replaces the

page whose penultimate access is the least recent among
all penultimate accesses. Experiments show that LRU2
outperforms LRU significantly, sometimes by as much
as 40%. Later, Johnson and Shasha present a 2Q algo-
rithm [7] that behaves as well as LRU2 but with con-
stant time overhead.

Inspired by the recent development in data mining
techniques, and observing that LRUk and 2¢) outper-
form other policies because they use more information
about the reference stream, Feng et al initiated a study
on the use of data mining for buffer management [4].
Their basic idea is to mine the database access histories
to extract knowledge for the management of buffers in
a distributed database. They show that this approach
improves the hit rate significantly. Encouraged by this,
we develop the idea further and introduce here a new
replacement policy — Buffer Replacement using Online
Optimization by Mining (BROOM). While Feng et al fo-
cused on a special problem (placement and replacement
for public buffers), BROOM is developed as a generic
replacement policy usable in any DBMS.

The development of BROOM is mainly motivated
by two factors. The first factor is the existence of an

* optimal offline algorithm [2]. If all page references are

known in advance, the optimal page replacement policy
is to replace the page whose next use is furthest in the

185

future. The second factor is the existence of reference
patterns in the database transactions [8]. If these pat-
terns could be extracted (offline) from the database ac-
cess histories, we could then match these patterns with
current page references to predict (online) when a page
will next be referenced; when a page fault occurs, the
page that is most unlikely to arrive in the near future
will then be replaced.

The remainder of this paper is organized as follows.
Section 2 examines the reference patterns that are likely
to occur in a database system and describes a system
model for these patterns. Section 3 describes how a
(training) reference stream is mined for knowledge, while
Section 4 explains how the extracted knowledge is used
to implement the replacement policy. Section 5 de-
scribes the simulation model in our study, and the ex-
perimental results are presented in Section 6. Section
7 concludes the paper by discussing some issues on the
use BROOM.

2 System Model

The buffer replacement problem can be studied at dif-
ferent levels. For example, operating systems usually
maintain buffers for user processes, and some appli-
cation programs maintain their own buffers as well.
This paper focuses on buffer management within the
database system.

Most DBMSs do not rely on the buffer management
provided by the underlying operating systems. Instead,
a buffer pool is maintained for database users. From
the viewpoint of buffer management, we simplify the
environment as follows: Users issue transactions from
some terminals; two terminals may run similar transac-
tions at the same time, but each terminal has only one
active transaction at any time. Transactions are pro-
cessed by a database server that uses a main memory
buffer (shared by all transactions) to keep frequently
referenced pages and thus reduce disk accesses.

2.1 Assumptions

One basic assumption of our work is that, although
there are random differences among transactions run
from different terminals, database accesses do have cer-
tain patterns. ‘For instance, there are so-called hot pages
that are more frequently accessed than others. Exam-
ples of hot pages include the system catalog pages and
the top levels of B-tree index pages. '

In an early study, Kearns and DeFazio {8] demon-
strated that the database reference patterns exhibited
by a transaction change very little over time. Another
assumption of our work is that users in a database sys-
tem have relatively stable access patterns. That is, the
access patterns presented in two traces of page accesses
obtained at different times would have similar charac-
teristics.

186

With the above assumptions, we formulate the min-

‘ing approach to buffer replacement problem as follows:

Given a (training) reference stream of database accesses
from concurrent transactions that is recorded over a pe-
riod of time, our task is to discover (offline) some knowl-
edge from this stream, so that an online policy can use
this knowledge to determine the page to be replaced in
the buffer when a page fault occurs.

We now analyze in greater detail reference patterns
in DBMSs. Specifically, we point out (1) the sources for
the patterns — namely, the database system and user
behavior, and (2) the two types of patterns — namely,
sequential and locality patterns [8]. In a sequential pat-
tern, page accesses are not repeated; these pages need
not be in ascending (numerical) order (unlike the model
by Kearns and Defazio). On the other hand, a locality
pattern contains pages that are repeated a number of
times.

In our model of the multiuser environment, these
two types of patterns are mixed with random accesses
to form transactions that are, in addition, interleaved.

2.2 Reference Patterns Induced by Database System

A database system affects reference patterns in many
ways; For example, if a sequential scan is often done on
a relation, pages that are in that relation will often be
accessed close to each other and hence come together
to form a reference pattern. The following are some
additional examples:

1. Index scan using clustered index:

2. Index scan using non-clustered index:
3. Page accesses during joining operation:
4. Execution plans of query language:

While reference patterns that are induced by database
system can be detected by carefully analysing the struc-
ture of the database. Such analysis are often tedious
and data mining provide a way to automate this task.

2.3 Reference Patterns Induced by User Behavior

While database objects induce patterns within a trans-
action, different transactions may share patterns or form
patterns. For example, a bank officer who needs to ap-
prove a loan may first access a client’s financial infor-
mation to make her decision, then proceed to enter her
decision into another relation. These two transactions
may then form one reference pattern between the in-

_ dices of the two relations (whether it is sequential or

locality depends on the behavior of the application).
Furthermore, the frequency of the reference patterns

is also affected by user access behavior. For example,

if a user’s routine task is to generate report from a set

of selected data records, a certain data page (and index
pages) will be accessed repeatedly.

Generally, reference patterns induced by user behav-
ior are much harder to detect by human observation;
they therefore form a natural target for data mining.

3 BROOM: Mining the Training Stream (Offline)

Based on the observations described above, we develop
anew approach to buffer replacement for database envi-
ronments: Buffer Replacement using Online Optimiza-
tion by Mining (BROOM). As the name suggests, the
approach has two characteristics: (1) using data min-
ing techniques to discover patterns in page references
from transactions; and (2) imitating the offline optimal
solution to the problem.

The approach consists of two components: (1) min-
ing (offline) a historical reference trace to obtain rules
that reflect the relationships among database objects
and transactions; and (2) applying the rules online to
determine the pages that should be replaced. The min-
ing process should be carried out periodically to make
sure that the rules reflect changes in database structure
and transactions. In this section we describe BROOM’s
first component (mining).

3.1 Mining Basic Rules

Given an offline reference stream, the optimum page re-
placement strategy is to swap out the page that occurs
furthest down the styeam when there is a page fault [2].
If we use a rule P,——P; to denote the fact that there
are D;; expected page references between two consec-
utive occurrences of a physical page P;, the optimum
strategy suggests the following heuristic: swap out the
page P in the buffer with the largest Di.

Existing replacement policies such as LFU, LRU and
LRU2 more or less use such a strategy. Because future
references are unknown, these strategies estimate Dj; in
various ways. In LRU, D;; is estimated by the number
of references between when P; was last accessed and
when a pageout is required; thus, the page that has the
largest D;; (i.e. the least recently used) is chosen for
replacement. LRU2 and LFU can similarly be viewed
as strategies that are based on (different) estimates of
D;; . '

For an online strategy to imitate the optimum be-
havior, we can first extract from the historical reference
trace some knowledge about when a page will appear
further down a reference stream. This leads to the first
set of rules mined in BROOM — Basic Rules of the
form -

P,'—-—-)P,' .

Basic rules are mined and stored for every data pages
and the mining process is straightforward.

187

3.2 The ldea Behind Advanced Rules

Using basic rules to predict the future is too simplistic,
as we are only relying on an occurrence of P; to provide
hints on the next occurrence of P;. For example, when
several transactions run concurrently, the next occur-
rence of P; is not only determined by the access pattern
of a transaction itself, but also the number of interleav-
ing active transactions. Thus, an occurrence of P; may
not provide a good hint on the next occurrence of P;. To
overcome this problem, BROOM uses Advanced Rules,
of the form: D,
;2 p,

where S; is a set of pages {P;,,....., P;,} and Dj; is the
expected number of page accesses between {P;,, ..., P;, }
and the next occurrence of P;. (We explain what “be-
tween” means in Section 3.3.1.) To see the idea behind
advanced rules, consider the reference stream

Py, Pso, Py, Pz, Py, Pp1, P33, Pi1, Pie, Pso.

Intuitively, we have {Ps, Pgo}—3—>Pg,
{Pg, P4, Pu}—l—)P33 and {Pg}——é-—)Pgs 3 where
the distance (4) in the last rule is the average of two
distances (6 and 2). If S; consists of h pages, we call
S; an h-item set.

3.3 Mining Advanced Rules: Parameters

Since a reference stream may contain many thousands
of page accesses, the number of possible rules is pro-
hibitive. In BROOM, we tackle the problem in three
ways, with the help of some parameters:

3.3.1 Window Size W

First, we use the concept of a window. By moving the
window over the reference stream, the stream is trans-
formed into a set of records, each of which contains the
pages covered by the window. Thus, with a window of
size W, a reference stream of length £irainis transformed
into Lyrain—W + 1 records of W accesses each, and item
sets have maximum size W. By using windows, we
restrict advanced rules to only those whose S; appears
in windows. Clearly, a W that is too large would admit
spurious S;’s that are irrelevant to the underlying ref-
erence patterns. On the other hand, if W is too small
to contain meaningful S;’s, we may lose some useful
advanced rules.

I Nterminalis the number of terminals and A ay is the
maximum size of frequent sets, then we set
W =nterminal X hmax This choice of W is large enough
that — with the interleaving of references from the
transactions — there are, on average, Amax references
from each terminal in every window. The choice of Amax
is very much like the choice of k in LRUk algorithm. We
increase it as long as it causes a significant improvement
in performance.

We can now explain what we mean by the distance
between S; and P; in an advanced rule: it is the number
of references between P; and a window containing S;.
We will however ignore repeated occurrance due to the
same pages.

3.3.2 Minimum Support Level MinSup

Second, while basic rules are kept for all pages, ad-
vanced rules are only kept for S; and P; with a sup-
port level higher than a predetermined minimum sup-
port level MinSup. The support level of S; and P; are
defined as follows:

number of windows containing S;

s t(S;) =
upport(S;) number of windows

number of windows containing P;

support(P;) =
pport(F:) number of windows

We use different support levels for frequent sets of dif-
ferent sizes. Hence if hAmax = 3, then we must determine
three values MinSup,, MinSup, and MinSups which
are used as minimum support levels for 1-item sets, 2-
item sets and 3-item sets respectively. These values
are obain by generating a (uniformly) random reference
stream, extracting the records, and taking the average
frequency of a randomly generated h-item set;

To further reduce the number of rules, note that
there is no point in trying to predict the arrival of a
page that is rarely referenced. We therefore restrict our
rules to only those whose P;’s satisfy a minimum sup-
port level MinSupZ.

3.3.3 Significance Level o

Third, to remove redundancy between basic and ad-
vanced rules (and thus reduce the number of rules), an
advanced rule that hints at the arrival of a page P; is
kept only if the hint is significantly stronger than that
provided by a basic rule; in other words, an advanced
rule S; —P; is kept only if Dj; is significantly less than
D;; in the basic rule P;i—5PF; ; the decision is made
with a standard statistical test with significance level
a =0.99.

3.4 Mining Advanced Rules: Algorithm

The process of mining advanced rules can be separated
into two parts:

(a) Identifying Frequent Sets
This can be further divide into two steps:

i) Divide the training stream into records, then
remove repetitions from these records.
ii) Use Apriori algorithm [1] to extract frequent

sets from these records.

188

MineAdvanced() // how advanced rules are mined
for each frequent set S; {
for each page P; {
if (Foccurrences of P; in reference stream > MinSupZ){
scan reference stream {
if (incoming page result in window containing S; } {
find distance between window and following P; occurrence;
m ¢« number of such S;-P; distances;
D;; « average distance;
oj + standard deviation of distances; } } }
m, ¢ #toccurences of P; in reference stream;

o2, o2,
if ((D;j - D]j)/ ot < —70.01)
D L.
output advanced rule: Sg—'—J>Pj;
/* z0.01 is the 99-percentile for standard normal variate

the test here checks whether distance between S; and P;
is significantly smaller than distance between consecutive P;'s

*/
B

Figure 1: Mining advanced rules.

(b) Identifying Closely Related Pages

After identifying the frequent sets, we use MineAd-
vanced() in Figure 1 to identify those pages P; that
follow these frequent sets at a distance which is signifi-
cantly closer than the distance D;; hinted by a previous
occurrence of P;.

4 BROOM: Applying the Rules to Online Stream

We now describe BROOM’s second component (replace-
ment policy).

4.1 Data Structures

BROOM uses a variable StreamPtr to count the number
of arrivals; thus, StreamPtr is incremented every time
a page reference arrives, and is reset to zero when it
overflows. The distances D;; for basic rules are stored
in an array, while advanced rules are stored in a two-
dimensional list structure — space constraint prevents
us from describing this structure in detail.

In addition, BROOM uses four arrays to predict
page arrivals. When a frequent set is detected inside
a window, it is a hint that certain pages will be arriving
at certain later times. To give room for error, we use two
arrays Earlyl[l..ngppage] and Latel[l..ngppage] to store
each page’s earliest and latest predicted arrivals. When
a page P; arrives, the StreamPtr will be checked to see
whether its value is between EarlyI[P;] and Latel[P;].
If this is so, P; is treated as the page that is predicted
to have arrived. We must then update Earlyl[P;] and
Latel[P;] to predict the next arrival of P;. This up-
date is straightforward if we predict two arrivals at a
time, i.e. the next arrival is already predicted with an-
other two arrays, Early2[P;] and LateZ[P;] — we then

BROOM(P;,)
// updates predicted arrivals for buffer pages
// and selects buffer page for replacement

if (B, not in buffer) {
// update estimates only when page fault occurs
for each page B; in buffer {
// update estimates for pages in buffer
if (StreamPtr > Late2[Bi]) {
// both estimates obsojgte, revise estimates
// using Dp, from B;—B;
Earlyl1[B;] + StreamPtr +0.5Dp;
Latel[B;] + StreamPtr +1.5Dp,;
Early2[B;] + Latel[B;] +0.5Dp,;
Late2[B;] + Latel[B;] +1.5Dpg_;
} else if (StreamPtr > LateI[B.‘j)
// 1st arrival estimate wrong and obsolete
PushUp(B,); // replace by 2nd arrival estimate }
find page By in buffer with maximum Latel{B;];
replace By by By, ; }
if (StreamPir > Early2[Pn 1) {
// both estimates obsolete
// update estimates for incoming page
Early1[R,] ¢ StreamPtr 4+0.5Dp, ;
Late1[Ry]| + StreamPtr +1.5Dp,_;
Early2[Ry, | + Latel[Py] 40.5Dp, ;
Late2[Py, | + Latet[Py | +1.5Dp_ ;
} else if (StreamPtr > Earlyl{Py]3
// 1st arrival estimate obsolete
// replace by 2nd arrival estimate
PushUp(R,);

Figure 2: BROOM’s page replacement policy.

simply move this second prediction into EarlyI[P;] and
Latel[P;] and calculate the new values for Early2[P;]
and Late2[P,).

4.2 Replacement Policy

BROOM’s online actions can be divided into two sep-
arate parts. The first part monitors and triggers the
advanced rules. When an advanced rule § —4,Pis acti-
vated, the values of EarlyI[P], Latel[P], Early2[P] and
Late2[P] are updated by a function Update() that will
adjusts the predicted arrival time of page P accordingly.

The second part of BROOM decides which page to
remove from the buffer and updates the expected arrival
times by activating basic rules. The algorithm for this
part is described in Figure 2.

5 Simulation :

We experimented with BROOM by generating synthetic
patterns and reference streams. As described in Section
2, a reference stream may have a mixture of sequential
or locality patterns. For both types of patterns, 80%
of the pages are hot and 20% of the pages are cold.
Thus, if pages 0 to 19 are hot and 20 to 99 are cold,
and pattern length is £irain=10, then an example of a
sequential pattern is { 14, 12, 18, 28, 11, 17, 16, 15, 90,
13} (recall that a sequential pattern has no repetitions)

189

and an example of a locality pattern for g = 2 is { 14,
28, 14, 16, 90, 11, 16, 17, 17, 14}.

To generate the reference streams (for both training
and test streams) recall first that patterns are embed-
ded in transactions with other random accesses or other
patterns that occur infrequently. We model this by in-
troducing a random mode for terminals — it sends a
random page request while in this mode. When a ter-
minal is not in random mode, it will have an active
pattern.

6 Experiments

We now use our simulator to compare BROOM’s hit
rate against LFU, LRU and LRU2. (It has been shown
that the hit rate for LRUk, where k > 2, is only marginally
higher than that for LRU2 [9].) Along the way, we will
comment on the relative performance of the four poli-
cies and draw conclusions on BROOM’s behavior.

Figure 3 shows the range of values used for the pa-
rameters in our experiments. Space and time constraint
prevent us from fully exploring all combinations of all
parameters, so some parameters are fixed at default val-
ues during the experiments.

BROOM needs some space in main memory to store
its data structures (e.g. for the rules); therefore, to be
fair to the other policies, we give them a number of extra
buffer frames equal to the space needed by BROOM.
Thus, in an experiment that compares the policies for
a buffer size of npugpages, if BROOM needs s pages
for data structure, then LFU, LRU and LRU2 are each
given npug+s pages of buffer space. The value of s is
measured in each experiment after BROOM’s mining
phase, and it is usually about 5 (8Kbyte pages).

6.1 Small Buffers, Large Buffers

We first make one general observation: our experiments
show that the hit rate for LRU2 is lower than for LFU
when 7fipuft /Rabpagels small, but higher when the ratio
is large. We use this observation to give an operational
definition of buffer size: A buffer is small if LRU2 has
a significantly higher hit rate than LFU; it is medium
if their hit rates are about the same; and it is large if
LFU has significantly higher hit rate than LRU2.

The idea behind this definition is that, while one
might speak informally about a buffer being “too small”
or “too large” when explaining a policy’s hit rate, one
cannot give a formal definition in terms of the many
parameters (Ndbpages Mbuff, Pterminal, ...). Our opera-
tional definition avoids this difficulty, and we shall see
that BROOM's performance can be described in terms
of whether the buffer is small, medium or large.

With our operational definition, one cannot tell —
in practice — whether the buffer for a system is small
or large unless LRU2 and LFU are implemented for the
system and their hit rates measured. However, there is

parameters for the database

Ndbpage number of physical pages in the database, fixed at
1000

Tipuff number of pages in BROOM's buffer, varies (20-300),
default=100

Thot number of hot pages, fixed at 200
(so there are 800 cold pages)

PageSize page size, fixed as 8Kbytes

parameters for reference patterns

Lpattern length of a pattern, uniformly distributed (60-100)

Tupattern number of patterns, varies (40-160), default=100

Tiseq number of sequential patterns, varies (0~100),
default=>50

Tocal number of locality patterns, njocal =Npattern —Taeq

Nappear average number of times a page appears in a locality

pattern, varies (2-10), default=8

parameters for reference streams

Crain length of training stream, varies (10000-100000),
default=100000

Liest length of testing stream, fixed at 150000

Niesminal number of terminals, fixed at 5

ratio of number of random pages to length of
reference stream, varies (0.1-0.8), default=0.5

Trandom

Figure 3: Values of parameters in the experiments.

08

o2y

LAR

Figure 4: Hit rates for varying buffer sizes

no need to: We shall see that, unlike LRU2 and LFU,
BROOM’s hit rate is seldom the worst whatever the
buffer size, and sometimes the best. BROOM is there-
fore robust in the following sense: Although we may
not know in practice whether the buffer is “too small”
today or “too large” tomorrow (because of changing cir-
cumstances), we are assured that BROOM will give a
hit rate that is either the best, or better than the worst.

6.2 The Effect of System Parameters on BROOM's Hit
Rate

We now study how BROOM’s hit rate is affected by
changes in the various parameters. Due to space con-
straint, we are only able to present the graphs that are
obtained from varying npugand Tipagtern- For the other
parameters, we will only give the observations here and
present the graphs in [11].

190

6.2.1 The effect of buffer size: Changing npuf /Ndbpage

Figure 4 shows the hit rates for BROOM, LFU, LRU
and LRU2 when npufr/ndbpagevaries (and other param-
eters are kept at default values). This graph illustrates
three observations that hold true for the rest of our ex-
periments:

(B1) For small buffers, LRU2 has a higher hit rate than
BROOM, and BROOM has a higher hit rate than LFU.

(B2) For medium buffers, BROOM has the highest hit
rate.

(B3) For large buffers, BROOM and LFU have similar
hit rates (which are higher than LRU2).

To understand these three observations, we must
first understand the relative performance of LRU2 and
LFU. LFU relies entirely on frequencies, and has no con-
cept of “position” in the online stream. For example,
two pages P; and P; may have the same frequencies, but
P;’s may be evenly spaced out, whereas P;’s are clus-
tered together. LFU treats P; and P; equally, whereas
LRU2’s hit rate for P; will be higher than for ;. When
the buffer is so small that not all hot pages can be kept
in main memory, this causes LFU’s hit rate to be ‘worse
than LRU2’s. On the other hand, when the buffer is
large enough to keep all hot pages, LFU outperforms
LRU2, because it avoids replacing hot pages.

As for BROOM, when buffers are small, BROOM
uses the distances in its rules to keep track of position
in the online stream, and thus (like LRU2) outperforms
LFU — this explains (B1). For large buffers, BROOM’s
basic rules contain similar knowledge as frequencies, so
BROOM performs like LFU — we thus get (B3). These
strengths that the rules give to BROOM also hold up
its hit rate for medium buffers as LRU2 and LFU both
begin to suffer from their weaknesses; hence (B2).

These observations suggest that BROOM’s perfor-
mance should be studied in three separate regions (viz.
small, medium and large buffers), and the following ex-
periments are presented accordingly.

6.2.2 The effect of number of patterns: Changing npattern

One expects that, as the number of patterns (npattern)
increases, BROOM would fail to distinguish among the
patterns and therefore have a lower hit rate. We can
check this with a simple calculation: With rrandom X £train
pages from the training stream generated by patterns,
and npatternpatterns of length £patern€ach, there are
Trandom X £erain/ (Ppattern X £pattern) activations of each pat-
tern in the training stream.

For our default values and average £pattern=80, each
pattern is activated 0.5x100000/(160x80)<4 times when
Lpattern=160. This is hardly enough for pattern discov-

H1 Ratlo

035

e e
oo - g Tt ——
028 |
i 02|
2 015 P
01 p
05 +
LFU —~—
LAY e
0 e n 1 ILM .
40 80 80 100 120 140 160
n_patiems

Figure 6: Varying npatternWith npug=100

045 |

04

..

035 |-

03

M Ratlo

025 |

02}

[RLY 3

04 F

i

005 +

BROOM
Y
LRy

LA

e

t

o
40

Figure 7: Varying npatternWith npug =200

ery, and we can see the deterioration of BROOM’s hit
rate for small and medium buffers in Figures 5 and 6.
We hence make.the following observation:

(B4) For small and medium buffers, BROOM’s hit rate

decreases when there are more patterns.

Of course, another way of looking at this is that, if
BROOM is to maintain its performance, then £;rsinmust
be longer if npatternincreases. However, there is a sub-
tler reason for the negative effect of increasing npattern,
and this effect is independent of fain. If a page oc-
curs only in one pattern, then it provides a very strong
hint for other pages that follow it in the pattern, even

191

if the training stream contains only a few activations
of this pattern. When npaiternincreases, the hot pages
appear in more and more patterns, and the hints grow
weaker, and this is another reason for BROOM’s drop-
ping hit rate when buffers are small and medium. For
large buffers, BROOM is insensitive to the number of
patterns (see Figure 7) since it — in effect — keeps all
the hot pages in the buffer. Since LRU, LRU2 and LFU
have no way of keeping track of patterns, their hit rates
are insensitive to the number of patterns for any buffer
size.

6.2.3 The effect of locality: Changing niocal/Mpattern

The mixture of sequential and locality patterns plays an
important part in determining the hit rate of a policy.

For a small buffer, if there is little locality in the
patterns {Riocal/Mpasternis small), then LRU and LRU2
have little advantage over BROOM and LFU. This is
because they rely on the past one or two accesses to
estimate the hotness of a page, and there is too little
locality for this estimate to be useful. As the locality
increases, however, the hit rates for LRU, LRU2 and
BROOM improve — with BROOM staying close to the
leader LRU2.

For a medium buffer, BROOM is comparable to the
best of the other three policies. We have following ob-
servation when we varied Niocal/Mpattern:

(B5) For small and medium buffers, BROOM has higher
hit rates when there is more locality.

6.2.4 The effect of repetitions: Changing Nappear

Another factor that affects hit rates is the number of
times (nappear) @ Page appears in a locality pattern.
For small buffers , LRU2 begins to break away from the
other policies as Nappearexceeds 4. When nappear= 8,
for example, LRU2 needs just 2 accesses to detect a hot
page and thus get a hit for the other 6 accesses. With
the knowledge mined, BROOM is able to stay close to
LRU2 as nappearincreases, unlike LRU and LFU.

For medium buffers , BROOM has enough space to
hold the pages that it knows are coming in, so it outper-
forms the other policies for a wide range of nappearvalues.
For large buffers , nappearhas negligible effect. We thus
have the following observation:

(B6) For small and medium buffers, BROOM has higher
hit rates when there are more repetitions in the patterns.

6.2.5 The effect of random references: Changing "random

Recall from Section 5 that patterns may be interspersed
with random references, and we model this by a proba-
bility Trandom, Which specifies the fraction of references

that are random. The following observation from is not
surprising;:

(B7) BROOM’s hit rate decreases when there are more
random references in the transactions.

The same is true for LRU, LRU2 and LFU because
they also assume certain rules hold for the references,
and these rules hold less and less as randomness in-
creases. What is interesting is that the relative perfor-
mance of the four policies remains unchanged for most
of the range up to 75% random accesses.

7 Conclusions

We conclude with some discussion on the overheads of
BROOM.

BROOM has two types of overheads: costs for min-
ing and for usage of rules in buffer replacement.

Since mining is done offline, memory requirement
is not an issue, as long as the time needed (including
disk accesses) to extract the knowledge is short. For
all of the tests in Section 6, mining the training stream
took less than 5 minutes on a SunSparc Ultra-1 pro-
cessor. An analysis of BROOM’s data structures shows
that mining takes O(nfreq X £train) time, where TNireqis the
number of frequent sets discovered. Thus, even with a
10-fold increase in NgreqOr £train, the mining time will be
less than an hour; this seems acceptable even if mining
1s done everyday.

A more important issue lies in the cost of using the
rules. We have already addressed (in Section 6) the is-
sue of extra runtime memory requirements by adding
extra buffers for LRU, LRU2 and LFU. BROOM’s per-
formance would be even better in the experiments if
the other policies do not have these extra buffers. In
practice, the situation could be better or worse.

If the number of patterns is huge, BROOM may
need much more memory to store the rules, thus mak-
ing BROOM less viable. On the other hand, we are
conservative in using 8Kbyte pages in our experiments.
This is expected to be too small for index page sizes
by the year 2005 [5], when 64 Kbytes pages may be
required for optimum performance. A larger page size
means that more rules can be stored inside one buffer
page, so BROOM will not need as many extra buffer
frames, and therefore perform better than indicated in
our experiments.

As for the extra time needed by BROOM to monitor
and activate rules during buffer management, we mea-
sured this in our experiments and found it to be (on
average) 1.5 times that of the other policies. Assum-
ing a 10.8ms disk access time [5], our calculations show
that this increase in processing time is still worth the
increase in hit rate, especially where (B2) is concerned.

192

References

[1] R. Agrawal, R. Srikant. Fast Algorithm for M-
ing Association Rule. In Proc. of the 20th Conf.
on Very Large Databases, pages 487-499, Santiago,
Chile, September 1994.

L.A. Belady. A study of replacement algorithms for
virtual storage computers. IBM Systems Journal,
5:78-101, 1966.

[2]

W. Effelsberg and T. Haerder. Principles of
database buffer management. ACM Transaction on
Database Systems 9(4):560-595, December 1984.

L. Feng, H. Ly, Y.C. Tay, K.H. Tung. Buffer Man-
agement in Distributed Database Systems: A Data
Mining-Based Approach. In Proc. of VI Int’l on
Extending Database Technology, Valencia, Spain,
March 1998.

[5] J. Gray and G. Graefe The Five-Minute Rule ten
years later, and other computer storage rules of
thumb. SIGMOD Record, Vol. 26, No. 4, Dec 1997,
pp. 63-68.

[6] J. Gray and G. F. Putzolu. The Five-Minute Rule
for trading memory for disc accesses, and the 10
Byte Rule for trading memory for CPU times. In
Proc. of the 1987 ACM SIGMOD Int’l Conf. on
management of data, June 1987, pp. 395-398.

(4]

[7] T.Johnson and D.Shasha. 2Q: A low overhead
high performance buffer management replacement
algorithm. In Proc. of the 20th Conf. on Very
Large Databases, pages 439-450, Santiago, Chile,
September 1994.

[8] J.P. Kearns and S. Defazio. Diversity in database
reference behavior. Performance Evaluation Re-
view, 17(1):11-19, May 1989.

[9] EJ. O'Neil, P.E. O'Neil and G. Weikum. The
LRU-K page replacement algorithm for database
disk buffering. In Proc of the 1993 ACM SIGMOD
Int’l Conf. on management of data, pages 297-306,
Washington D.C., USA, August 1993.

[10] J.T. Robinson and M.V. Devarakonda. Data cache
management using frequency-based replacement. In
Proc. of the 1990 ACM SIGMOD Int’l Conf. on
management of data pages 134-142, Brisbane, Au-
gust 1990.

[11] A. K. H. Tung, Y.C. Tay and H. Lu. Mining Based
Buffer Management Using BROOM. Submitted for
publication.

