
Indexing DNA Sequences Using q-grams

Xia Cao, Shuai Cheng Li, and Anthony K. H. Tung
{caoxia,lisc,atung}@comp.nus.edu.sg

Department of Computer Science, National University of Singapore

Abstract. We have observed in recent years a growing interest in similarity
search on large collections of biological sequences. Contributing to the interest,
this paper presents a method for indexing the DNA sequences efficiently based
onq-grams to facilitate similarity search in a DNA database and sidestep the need
for linear scan of the entire database. Two level index – hash table and c-trees –
are proposed based on theq-grams of DNA sequences. The proposed data struc-
tures allow the quick detection of sequences within a certain distance to the query
sequence. Experimental results show that our method is efficient in detecting sim-
ilarity regions in a DNA sequence database with high sensitivity.

1 Introduction

Similarity search on DNA database is an important function in genomic research. It is
useful for making new discoveries about a DNA sequence, including the location of
functional sites and novel repeatitive structures. It is also useful for the comparative
analysis of different DNA sequences. Approximate sequence matching is preferred to
exact matching in genomic databases due to evolutionary mutations in the genomic se-
quences and the presence of noise data in a real sequence database. Many approaches
have been developed for approximate sequence matching. The most fundamental one
is the Smith-Waterman alignment algorithm [14] which is a dynamic programming ap-
proach that seeks the optimal alignment between a query and the target sequence in
O(mn) time,m andn being the length of the two sequences.

However, these methods are not practical for long sequences in the megabases
range. Effort to improve the efficiency falls into the common idea of filtering by dis-
carding the regions with low sequence similarity. A well known approach is to scan the
biological sequences and find short “seed” matches which are subsequently extended
into longer alignments. This method is used in program like FASTA [13] and BLAST
[1] which are the most popular tools used by biologists. An alternative approach is to
build index on the data sequences and conduct the search on the index. Various index
structure models [2, 4, 7, 17] have been proposed for this purpose.

Our method is based on the observation that two sequences share a certain number
of q-grams if the edit distance between them is within a certain threshold. Moreover,
since there are only four letters in the DNA alphabet, we know that the number of all
combinations of q-grams in a DNA sequence is4q.

In this paper, we propose two level index to prune data sequences that are far away
from the query sequence. The disjoint segments with the lengthω are generated from
the sequence. In the first level, the clusters (called qClusters) of similarq-grams in

DNA sequence are generated; then a typical hash table is built in the segments with
respect to the qClusters. In the second level index, the segments are transformed into
the c-signatures based on their q-grams; then a new index called thec-signature trees
(c-trees) is proposed to organize the c-signatures of all segments of a DNA sequence
for search efficiency.

In the first level of search, the sliding segment of query sequence is generated and
encoded into the key in terms of the coding function, and then the neighbors of this
key will be enumerated. Thus a set of candidate segments will be extracted from the
buckets pointed by the key and its neighbors, and be put into the second index structure
c-trees for future filtering. In the second level of search, we only access the tree paths in
c-trees that include possible similar data sequences in their leaf nodes. We also propose
a similarity search algorithm based on the c-trees for query segments.

The rest of paper is organized as follows. In Section 2, we define the problem of
similarity search in DNA sequence databases and briefly review related work. In Sec-
tion 3, the concept of qClusters and c-signature is presented. The filter principle based
on q-grams is also described. In Section 4, we propose two-level index scheme con-
structed on theq-grams for DNA sequences. In Section 5, an efficient similarity search
algorithm is presented based on the proposed index structure. The test data and experi-
mental results are presented in Section 6. Section 7 summarizes the contribution of this
paper.

2 Problem Definition and Related Work

In this section, we formalize the similarity search problem in a DNA sequence database
and describe the related existing work.

2.1 Problem Definition

The problems of approximate matching and alignment are the core issues in sequence
similarity search. To process approximate matching, one common and simple approxi-
mation metric is callededit distance.

Definition 1. Edit Distance
The edit distance between two sequences is defined as the minimum number of edit operations
(i.e., insertions, deletions and substitutions) of single characters needed to transform the first
string into the second.ed(S, P) is used to denote the edit distance between sequenceS andP .

In general, this problem of sequence search can be described formally as follow:

Problem 1. Given the lengthl and edit distanceϑ, find all subsequencesS in D which have
length|S| ≥ l anded(S, Q′) ≤ ϑ for subsequenceQ′ in query sequenceQ.

Since with high possibility there exists a similar segment pair(s, q), s ∈ S, q ∈ Q′

if S is similar toQ′, we instead solve the following problem.

Problem 2.Given the lengthω and edit distanceε, find all the segmentssi with length
ω in D which meeted(si, qj) ≤ ε for the query segmentsqj with lengthω in Q.

2.2 Related Work

A great amount of work has been done to improve search efficiency and effectiveness in
DNA sequence databases. BLAST[1] is a heuristic method for finding similar regions
between two genomic sequences. It regards the exact match ofW contiguous bases as
candidates which are then extended along the left side and the right side to obtain the
final alignments. Unfortunately, BLAST faces the dilemma of DNA homology search:
increasing the seed sizeW decreases sensitivity while decreasing the seed size results
in too many random results. PatternHunter [8] is an improvement on BLAST both in
speed and sensitivity through the use of non-consecutivek letters as model. In essence,
PatternHunter’s basic principles are similar to those of BLAST.

Researchers have also proposed indices for sequence databases. The suffix tree fam-
ily is a well-studied category of indices to resolve string-related problems [16, 9, 2,
11, 10]. QUASAR [2] applies a modification ofq-gram filtering on top of a suffix ar-
ray. However, its performance deteriorates dramatically if the compared sequences are
weakly similar. Also, the resulting index structure based on the suffix array and suffix
tree is large compared to the size of the sequence database. Even if the suffix tree is used
without links as proposed in [5], the suffix tree structure index is still nearly 10 times
the size of the sequence database. Oasis [10], a novel fast search algorithm is driven by
a suffix tree and it also suffers the large size of index structure.

In [15], theed-tree is proposed to support probe-based homology search in DNA
sequence databases efficiently. But the size of the tree-structure index is larger than the
sequence database and also it is very time-consuming to build theed-tree for sequences.
Recently, some attempts [7, 12] have been made to transform DNA sequences into nu-
merical vector spaces to allow the use of multi-dimensional indexing approaches for
sequence similarity search. Though these methods avoid false dismissals and offer very
fast filtering, their drawback is that the approximation of edit distance is not sufficiently
tight, which increases the cost of refining results for final output.

SST [4] has been shown to be much faster than BLAST when searching for highly
similar sequences. Unfortunately, since the distance between sequences in vector space
does not correspond well with the actual edit distance, a larger number of false dis-
missals may occur if the similarity between the query sequence and the target sequence
is not sufficiently high. Williams et al. [17] proposed a search algorithm in a research
prototype system, CAFE, which uses an inverted index to select a subset of sequences
that display broad similarity to the query sequence. The experiments show that CAFE
is faster but also less sensitive than BLAST when searching for very similar sequences.

3 Notations

Although the edit distance is a simple but fairly accurate measure of the evolutionary
proximity of two DNA sequences, the computation complexity isO(mn), m andn
being the length of the two sequences. To speed up approximate sequence matching,
filtering is an efficient way to quickly discard parts of a sequence database, leaving the
remaining part to be checked by the edit distance. Our proposed approach to sequence
similarity search is based on q-grams, where the q-gram similarity is used as a filter.

3.1 Preliminaries

Before we defineqClusters andc-signature, we shall briefly review q-grams and q-
gram based filter. The intuition behind the use of q-grams as a filter for approximate
sequence search is that two sequences would have a large number of q-grams in com-
mon when the edit distance between them is within a certain number.

Definition 2. q-gram of Sequence
Given a sequenceS, its q-grams are obtained by sliding a window of lengthq over the characters
of S. For a sequenceS, there are|S| − q + 1 q-grams.

Lemma 1. Filter based on q-grams (Jokinen and Ukkonen [6])
Let an occurrence ofQ[1 : w] with at mostε edit or hamming distance end at positionj in
sequence databaseS. Then at leastw + 1 − (ε + 1)q of the q-grams inQ[1 : w] occur in the
substringS[j − w + 1 : j]. In another word, there are at mostεq q-grams inQ[1 : w] which
do not occur inS[j − w + 1 : j], and vice versa. So obviously, the number of different q-grams
betweenQ[1 : w] andS[j − w + 1 : j] is at most2εq.

3.2 The qClusters and c-Signature

The alphabet of the DNA sequence comprises four letters:Σ = {A,C, G, T}. It means
there are in all|Σ|q = 4q kinds of q-grams, and we may arrange them according to the
lexicographic order, and useri to denote theith q-gram in this order. All the possible
q-grams are denoted as:< = {r0, r1, . . . , r4q−1}. The q-gram clusters(qClusters) can
be defined below:

Definition 3. q-gram Clusters (qClusters)
All the possible q-grams,< = {r0, r1, . . . , r4q−1} are divided intoλ clusters (denoted asqClusters)
{qCluster1, . . . , qClusterλ} by a certain principle. In this paper, we simply cluster them con-
tinuous q-grams{r(i−1)m, . . . , rim−1} together intoqClusteri, 1 ≤ i ≤ λ = d 4q

m
e.

The q-gram signature and c-signature of the DNA sequence are defined as follows:

Definition 4. q-gram Signature
The q-gram signature is a bitmap with4q bits where ith bit corresponds to the presence or
absence ofri. For a given sequenceS, theith bit is set as ‘1’ ifri ∈ < occurs at least once in
sequenceS, else it is set as ‘0’.

Definition 5. c-signature
Let sig1(S)=(a0, . . . , an−1) be a q-gram signature of the DNA segmentS with n=4q, then its

c-signature is defined as:sigc(S) = (u0, . . . , uk−1) wherek=dn/ce, andui =
∑(i+1)c−1

j=ic
aj .

Setaj = 0 whenn ≤ j < ck. For sequenceS andP , we define the distance betweensigc(S) =

(u0, . . . , uk−1) andsigc(P) = (v0, . . . , vk−1) asSDist(sigc(S), sigc(P))=
∑k−1

i=0
|ui − vi|.

For better understanding of the definition of q-gram signature and c-signature, we
consider the below example:

Example 1.For sequence P=“ACGGTACT”, its q-gram signature is(01 00 00 11 00 11 10 00)

with 16(=42) dimensions whenq = 2. In P , the q-gram ‘AC ’ occurs twice in position 0 and 5,
so we set the corresponding bit in position 1 in q-gram signature as ‘1’. As there is no occurrence
of ‘AA’ in sequenceP , the corresponding bit in position 0 in q-gram signature is set as ‘0’. For
c=2, the c-signature ofP is (10020210) with respect to the definition of the c-signature.

With the property|a| + |b| ≥ |a + b|, it is not difficult to obtain the following lemma for
filtering in terms of c-signature:

Lemma 2. Filter Based on c-signatures
Given a sequenceS, there is at mostε edit or hamming distance from another sequenceP with
|S| = |P |. Letsig1(S) = (a0, a1, . . . , an−1) andsig1(P) = (b0, b1, . . . , bn−1) be the q-gram
signatures generated for sequenceS andP respectively. Denote the c-signatures ofS andP as
sigc(S) = (u0, u1, . . . , uk−1) and sigc(P) = (v0, v1, . . . , vk−1), c > 1, respectively. Then∑k−1

i=0
|ui − vi| ≤

∑n−1

j=0
|aj − bj | ≤ 2εq.

Proof: In term of Lemma 1 and the definition of q-gram signature,
∑n−1

i=0
|ai − bi| ≤ 2εq

holds. According to the definition of c-signature,ui =
∑(i+1)c−1

j=ic
aj andvi =

∑(i+1)c−1

j=ic
bj .

The following formula holds:
∑k−1

i=0
|ui − vi| =

∑k−1

i=0
|∑(i+1)c−1

j=ic
aj −

∑(i+1)c−1

j=ic
bj | ≤∑k−1

i=0

∑(i+1)c−1

j=ic
|aj − bj |=

∑kc−1

j=0
|aj − bj |=

∑n−1

j=0
|aj − bj | ≤ 2εq.

4 An Indexing Scheme for DNA Sequences

A two-level indexing scheme is proposed to organize the segments in DNA sequence
database and support the similarity search.

4.1 The Hash Table

In order to hash the DNA segments to a hash table with size2λ, it is necessary to encode
the segment into aλ-bit integer. Given a segments, we encode it into aλ bitmape =
(e1, e2, . . . , eλ) with respect to qClusters={qCluster1, qCluster2, . . . , qClusterλ}. If
there exists a q-gramgram in s which meetsgram ∈ qClusteri, we setei = 1, else
ei = 0, where1 ≤ i ≤ λ. Following the encoding principle, any DNA segments can
be encoded into aλ-bit integer(e1, . . . , eλ) by the coding function:

coding(s) =

λ∑
i=1

2i−1ei

The hash table has totally2λ buckets for the qClusters{qCluster1, . . . , qClusterλ},
and each segmentsi can be inserted into the corresponding bucket in the hash table with
the use of the hash functioncoding(si). Note thatλ is set as 15 and 22 forq=3 and 4
respectively in the experimental studies for better performance, and we will not declare
it again.

4.2 The c-trees

The c-trees are a group of rooted dynamic trees built for indexing c-signatures. The
height of the trees,̀ is set by the users. Given the c-signature of the segments, sigc(s)=
(v0, v1, . . . , vk−1), there areδ = dk

` e trees in total. We denote these trees asT0,...,Tδ−1.
Each path from the root to a leaf inTi corresponds to the c-signature stringsigc

i (s) =
(vi`, vi`+1, . . . , v(i+1)`−1). For ease of discussion, we shall assume without loss of gen-
erality thatk is divisible by` and thusTδ−1 also has a height of̀. For each internal
node of the tree, there are at mostc+1 children. Each edge in a tree of c-trees is labeled
with the respective value from 0 toc.

The DNA segments are transformed into the c-signatures in order to build the c-
trees on them. Note that it is not necessary to store the c-signatures themselves after the
trees are constructed. To further consolidate the definition of c-trees, we shall present a
straightforward algorithm to build c-trees for a group of c-signatures.

In Algorithm 1, label[〈Nx, Ny〉] denotes the label of edge〈Nx, Ny〉 in the c-trees.
For notation convenience, defineS − S

′
as a suffix ofS, whereS

′
is a prefix ofS, and

the concatenation ofS
′

andS − S
′

is S. ε is used to refer an empty string. AlsolNode
denotes the leaf node in the c-trees, andE0[lNode] is a group of segments inlNode of
the first treeT0. Note thatE0[∗] will be constructed only for the treeT0. For the other
trees, the link from the c-signature to the leaf node will be constructed instead.

Algorithm 1 Tree Construction
Input: c-signaturessigc(s0), . . . , sig

c(s|D|−ω) Output: c-trees(T0, T1, . . . , Tδ−1)

1: Ti ← NULL, 0 ≤ i < δ
2: for each c-signaturesigc(sj) do
3: for i ← 0 . . . δ − 1 do
4: TreeInsert(Ti, sigc

i (sj), sj)
5: end for
6: end for
7:
8: Function TreeInsert(Nx, sig, s)
9: if sig = ε then

10: insert(Nx, s, i) /*Nx is the leaf node*/
11: else ifthere exists an edge〈Nx, Ny〉 wherelabel[〈Nx, Ny〉] is a prefix ofsig then
12: TreeInsert(Ny, sig − label[〈Nx, Ny〉], s)
13: else ifthere exists an edge〈Nx, Ny〉 wherelabel[〈Nx, Ny〉] shares a longest prefixpf with

sig, pf 6= ε then
14: split 〈Nx, Ny〉 into two parts with a new nodeNz, such thatpf = label[〈Nx, Nz〉]
15: create a new leaflNode with edge labelsig-label[〈Nx, Nz〉] underNz

16: insert(lNode, s, i)
17: else
18: create a new leaf nodelNode underNx with edge labellabel[〈Nx, lNode〉]=sig
19: insert(lNode, s, i)
20: end if
21:
22: Function insert(lNode, s, i)
23: if i=0 then
24: E0[lNode] ← E0[lNode] ∪ {s}
25: else
26: build the link from c-signature ofs to lNode in Ti

27: end if

The c-signature stringssigc
i (s) are inserted into the growing treesTi 0 ≤ i < δ

one by one by executing the function TreeInsert(Ti, sig
c
i (s), s) recursively. We now

demonstrate the c-trees construction for DNA segments with the following example.

Example 2.Consider the five DNA segmentss0=“ACGGT”, s1=“CTTAG”, s2=“ACGTT”, s3=“TAAGC”
and s4=“GACGT”. When we setq=2 andc=2, the c-signatures are:sig2(s0)=(1001 0200),
sig2(s1)=(0101 0011), sig2(s2)=(1001 0101), sig2(s3)=(1100 1010), sig2(s4)=(1001 1100).
If ` = 4, we get4

q

c`
=2 trees. The first treeT0 is constructed from the c-signature stringssig2

0(si),

0 ≤ i ≤ 4, and the treeT1 is constructed fromsig2
1(si), 0 ≤ i ≤ 4. The c-trees(T0, T1) for the

five DNA segments are shown in Fig. 1.

0

1

1

0

0

s3(s0,s2,s4)s1

T0

0

1

1

0

1

1

11

0

2

0

01

0

0

T1

s2s1 s4s3s0

1

0

1

0

1 0

0

0

Fig. 1. The c-trees for the DNA segments

5 Query Processing

In this section, we present how to use the two-level index to get the candidates by
pruning data segments that are far away from the query sequence. Then the dynamic
programming is conducted to obtain the final alignments with high alignment score
between the candidates and query sequence. This phase is a standard procedure, so we
just skip the details about it in this paper. Before sequence similarity search begins, a
hash tableHT and the c-trees are built on the DNA segments. The query sequenceQ
is also partitioned into|Q| − ω + 1 sliding query patternsq1, . . . , q|Q|−ω+1.

5.1 The First Level Filter: Hash Table Based Similarity Search

The query patternqi is first encoded to a hash keyhi, which is aλ bit integer. Then all
the encoded neighborsngbr of the hash keyhi are enumerated, and the neighbors are
thoseλ bit integers encoded from the segments which are within a small edit distance
from qi. In [3], an approach has been proposed to enumerate a segment’s neighbors.
The main idea is also applicable for our current case, but the difference is that we need
to consider the impact on the q-grams to get the encoded neighbors when some edit
operations are conducted on the segment.d edit operations on segments will result in
at mostdq q-grams which are different from those ins, and the new neighboring key
will be computed in terms of the new group of q-grams by using the coding function.
In our case,d is set as 3.

Once an encoded neighborengbr of qi is enumerated, the segments in the bucket
HT [engbr] of the hash structureHT will be retrieved as candidates and stored into the
candidate setCht.

5.2 The Second Level Filter: The c-trees Based Similarity Search

The candidate segmentsCht generated from the first level filter will be further verified
by the c-trees. According to the c-trees structure, the c-signaturesigc(q) of queryq is

divided intoδ c-signature strings which aresigc
i (q), 0 ≤ i < δ. Algorithm 2 shows

how to retrieve the segments which satisfies the range constrainted(q, s) ≤ ε for a
query segmentq. For clarity, thresholdγ in Algorithm 2 is set as2qε, whereq is the
q-gram length andε is the edit distance allowed between the DNA data segment and
query segment.

In Algorithm 2, wi[lNode] is used to denote the distance betweensigc
i (q) and

the path labelpl = label[〈rooti, lNode〉] from the respective rootrooti to lNode in
Ti, namelywi[lNode] = SDist(sigc

i (q), pl). We usescore[s] to denote the partial
distance for segments during similarity search. Also for notation simplicity, we use
sigc

i (s) as its corresponding path label for a leaf node inTi, 0 < i < δ, since each
sigc

i (s) can only be mapped to one path or one leaf node inTi.

Algorithm 2 Similarity Search Algorithm
Input: The c-trees(T0, T1, ..., Tδ−1) onD, query c-signature(sigc

0(q), ..., sig
c
δ−1(q)), Candi-

date segmentsCht, distanceγ. Output: Candidate setC

1: C ← ∅
2: for lNode ∈ T0 do
3: if w0[lNode] < γ then
4: E

′
0[lNode] = E0[lNode] ∩ Cht; C ← C ∪ E

′
0[lNode]

5: for eachs ∈ E
′
0[lNode] do

6: score[s] ← w0[lNode]
7: end for
8: end if
9: return Search({T1, . . . , Tδ−1}, C)

10: end for
11:
12: Function:Search(TSet, C)
13: if TSet = ∅ then
14: return C
15: else
16: Ti ← first entry inTSet
17: for eachs ∈ C do
18: if wi[sig

c
i (s)] + score[s] ≤ γ then

19: score[s] ← wi[sig
c
i (s)] + score[s]

20: else
21: C ← C − {s}
22: end if
23: end for
24: return Search(TSet-{Ti}, C)
25: end if

During query processing, for each leaf nodelNode in the treeT0, the distance
w0[lNode]) between the path label oflNode andsigc

0(q) are computed. And the initial
candidate setC includes those segments inE0[lNode]∩Cht wherew0[lNode] ≤ γ. For
the trees{T1, . . . , Tδ−1}, candidates will be pruned based on the partial distance grad-
ually. For each candidates in C, we can find its corresponding leaf nodelNode with
labelsigc

i (s) in Ti(i 6= 0) in time O(1) with links constructed during tree construction,
and the partial distancescore[s] can be computed as well.

5.3 The Space and Time Complexity Analysis

In this section, the space and time complexity are analyzed for the two-level index
structure. For the space complexity of the hash table, we needO(2λ) for the table head.
For the bucket of the table, segments will contribute spaceΘ(|D|/ω). Thus, the total
space complexity for the hash structure will beO(2λ + |D|/ω). Each neighboring of
the segment can be generated with time amortized complexityO(1). Thus, the time
complexity for the query isO(|q|).

Essentially, the space complexity for the c-trees can be divided into two portions:
the c-trees themselves, and space occupied by theE0[∗] and links. According to the
algorithm,E0[∗] must be stored for the first tree; thus they requireO(|D|/ω) space. The
height of each tree is bounded byO(4q/(δc)), thus for each tree, the storage required
for the edge labels is bounded byO((c+1)4

q/(δc) log(c+1)) for each tree. Besides, we
also need to maintain the links for the other trees. The space required by links highly
depends on the data distribution. Note there are lots of zeros in c-signatures, thus a lot
of links will point to a dummy leaf (by dummy we mean that the path label is 0). So
we may just compress those links. The time complexity depends on the pruning rate
for each iteration. Suppose the filtering rate for each iteration isβ, then the total time

required to obtain the final candidate set isO(δ(c+1)4
q/(δc)+(|D|/ω) (1−β)(1−(1−β)δ)

β)
in the worst case. Note in practice, the algorithm is much more efficient since we do not
need to traverse the whole structure most of the time.

6 Experimental Studies

We evaluate the sensitivity, effectiveness and efficiency of our search method and com-
pare it to the latest version of BLAST(NCBI BLAST2). For BLAST, we set the length
of the seed as 11 in the experiment.

6.1 The Sensitivity Analysis

The key issue for the entire search approach is to find a trade-off between sensitivity
and effectiveness while maintaining search efficiency. Sensitivity can be measured by
the probability that a high score alignment is found by the algorithm. We define the
sensitivity analysis problem as: Given a pair of genomic sequences with lengthL and
the similarity ratiosim, compute the sensitivity or probability that they can be detected
by the search model.

In the experiment, the sensitivity of the filter model is the probability that the two se-
quencesS andP with lengthL and similaritysim can be regarded as similar sequences
when the number of the common q-grams inS andP is at leastρ. Fig. 2(a) depicts how
the number of common q-gramsρ affects the sensitivity of the filter model forL=30,
sim=63% andq = 2, 3, 4, and compares the sensitivity to BLAST. Givensim=63%,
for q=4, it shows that our filter method can achieve higher sensitivity than BLAST as
long as the number of commonq-grams is no more than 9. Fig. 2(b) shows how the
sensitivity of our filter model varies with the similaritysim for L=30. In comparison
with BLAST, our filter method forq=3,4 achieves higher sensitivity.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

Se
ns

iti
vi

ty

The Number of Common q-grams

Sensitivity(sim=63%, L=30)

q=2
q=3
q=4

Blast11

(a) The Sensitivity vs The Number of Common q-grams

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Se
ns

iti
vi

ty

Similarity

Sensitivity(L=30)

q=3
q=4

Blast11

(b) The Sensitivity vs Similarity

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

Fi
lte

r
R

at
e(

%
)

The Parameter c

Filter Rate(w=30, edit distance=3)

q=3
q=4

(c) The Filter Rate vs The Parameterc

95

96

97

98

99

100

30 31 32 33 34 35 36 37 38 39 40

Fi
lte

r
R

at
e(

%
)

The Segment Length w

Filter Rate(q=4,c=3)

edit distance=3
edit distance=4

(d) The Filter Rate vs The Segment Lengthω

Fig. 2. Experimental Results for Sensitivity and Effectiveness

6.2 The Effectiveness Analysis
Two groups of experiments were conducted to measure the effectiveness of the pro-
posed two-level index structure by using the datasetecoli.nt. The filter rate used in the
experiment description is defined as the ratio of the total number of hits found to the
total number of segments in data sequence.

The first group of experiments measure how the parametersc andq affect the ef-
fectiveness of filtering when we fixω=30 andε=3, in the filter processing. The result
in Fig. 2(c) shows that whenc increasing, the filter rate drops down as the c-signature
representing the segment becomes inaccurate. On the other hand, largerq results in
better filter rate since the segment property can be captured more accurately by the c-
signatures. The filter rate is 99.9495% forq=4 andc=3. We will useq=4 andc=3 for
the efficiency analysis in the following experiment.

The second group of experiments evaluate the effectiveness of the index while vary-
ing the segment lengthω as well as edit distanceε. The filter rate for differentω andε is
shown in Fig. 2(d). Forω=30 andε=4, the filter rate can still be as high as 95.895%. All
the results show that the proposed index structure is effective for the similarity search.

6.3 The Efficiency Analysis
The five DNA datasets used in the experiments are: othergenomic(1.06GB), Patnt(702.1MB),
month.gss(286.2MB), yeast.nt(12.3MB) and ecoli.nt(4.68MB). All the datasets are down-
loaded from NCBI website.

We first evaluate the efficiency in data sequence preprocessing before performing
similarity search in terms of the proposed index structure. Fig. 3(a) shows that pre-

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200

T
im

e(
se

c)

Database Size(Mb)

Preprocessing Time

two-level index
Blast11

(a) Efficiency of Preprocessing

1.7

1.8

1.9

2

2.1

2.2

30 31 32 33 34 35 36 37 38 39 40

T
im

e(
se

c)

The Segment Length w

Efficiency(q=4,c=3,DB:Patnt)

edit distance=3
edit distance=4

(b) The Efficiency of the Index Structure

5

10

15

20

25

30

1000 1500 2000 2500 3000

T
im

e(
se

c)

Query Length

DB:Patnt

two-level index
Blast11

(c) The Efficiency vs Query Length(DB:Patnt)

0

5

10

15

20

25

30

200 400 600 800 1000

T
im

e(
se

c)

Database Size(Mb)

Query length=1000

two-level index
Blast11

(d) The Efficiency vs DBSIZE(|Q|=1000)

Fig. 3. Experimental Results for Efficiency

processing with our method is much faster than that with BLAST due to the efficient
algorithm for the hash table and c-trees construction.

The efficiency for searching a single segment is analyzed. The results of the effi-
ciency of segment searching are presented in Fig. 3(b) forq=4 andc=3. We conduct the
experiment by varying the segment lengthω from 30 to 40, and the edit distanceε from
3 to 4 for the datasetpatnt. The results show that better performance can be achieved
for ε = 3 since it causes better filter rate thanε = 4.

An experiment is also carried out to investigate how the length of the query sequence
affects the performance of our method in comparison with BLAST. To do this, we
perform similarity search for query lengths of 1000, 1500, 2000, 2500 and 3000 on
patnt. Fig.3(c) shows our search speed is about twice faster than BLAST when the
query length is varied from 1000 to 3000. We performed a comparison of our search
method with BLAST on the five datasets as well. We setq=4, c=3, ω=30 andε=3. The
results of the comparison are shown in Fig. 3(d) when the query length is fixed as 1000.
The speed-up of the c-trees over BLAST ranges from 2 to 3 for the different size of
sequence datasets.

7 Conclusion

We have devised a novel two-level index structure based on q-grams of the DNA se-
quences which can support efficient similarity search in DNA sequence database. The
filter principle with respect to the index structure is presented and it can guarantee that
we can achieve efficient sequence searching while keeping the higher sensitivity. We

also carry out the experiments to evaluate the performance of our method in the sensi-
tivity, effectiveness and efficiency, and the results show that our method can efficiently
detect the regions in DNA sequence database which are similar to the query sequence
with high sensitivity.

References

1. S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. A basic local alignment search
tool. In Journal of Molecular Biology, 1990.

2. S. Burkhardt, A. Crauser, P. Ferragina, H. P. Lenhof, and M. Vingron. q-gram based database
searching using a suffix array (quasar). InInt. Conf. RECOMB, Lyon, April 1999.

3. X. Cao, S.C. Li, B.C. Ooi, and A. Tung. Piers: An efficient model for similarity search in
dna sequence databases.ACM Sigmod Record, 33, 2004.

4. E. Giladi, M. Walker, J. Wang, and W. Volkmuth. Sst: An algorithm for searching sequence
databases in time proportional to the logarithm of the database size. InInt. Conf. RECOMB,
Japan, 2000.

5. E. Hunt, M. P. Atkinson, and R. W. Irving. A database index to large biological sequences.
In International Journal on VLDB, pages 139–148, Roma, Italy, September 2001.

6. P. Jokinen and E. Ukkonen. Two algorithm for approximate string matching in static texts.
In Proc. of the 16th Symposium on Mathematical Foundataions of Computer Science, pages
240–248, 1991.

7. T. Kahveci and A. Singh. An efficient index structure for string databases. InProc. 2001 Int.
Conf. Very Large Data Bases (VLDB’01), Roma, Italy, 2001.

8. B. Ma, J. Tromp, and M. Li. Patternhunter: faster and more sensitive homology search.
Bioinformatics, 18:440–445, 2002.

9. U. Manber and G. Myers. Suffix arrays: a new method for on-line string search.SIAM
Journal on Computing, 22:935–948, 1993.

10. C. Meek, J.M. Patel, and S. Kasetty. Oasis: An online and accurate technique for local-
alignment searches on biological sequences. InProc. 2003 Int. Conf. Very Large Data Bases
(VLDB’03), pages 910–921, Berlin, Germany, Sept. 2003.

11. S. Muthukrishnan and S.C. Sahinalp. Approximate nearest neighbors and sequence compar-
ison with block operation. InSTOC,Portland, Or, 2000.

12. O. Ozturk and H. Ferhatosmanoglu. Effective indexing and filtering for similarity search in
large biosequence datasbases. InThird IEEE Symposium on BioInformatics and BioEngi-
neering (BIBE’03), Bethesda, Maryland, 2003.

13. W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison.Pro-
ceedings Natl. Acad. Sci. USA, 85:2444–2448, 1988.

14. T.F. Smith and M.S. Waterman. Identification of common molecular subsequences.Molec-
ular Biology, 147:195–197, 1981.

15. Z. Tan, X. Cao, B.C. Ooi, and A. Tung. The ed-tree: an index for large dna sequence
databases. InProc. 15th Int. Conf. on Scientific and Statistical Database Management, pages
151–160, 2003.

16. P. Weiner. Linear pattern matching algorithms. InProc. 14th IEEE Symp. On Switching and
Automata Theory, pages 1–11, 1973.

17. H.E. Williams and J.Zobel. Indexing and retrieval for genomic databases.IEEE Transactions
on Knowledge and Data Engineering, 14:63–78, 2002.

