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ABSTRACT
Extracting dense sub-components from graphs efficiently is
an important objective in a wide range of application do-
mains ranging from social network analysis to biological net-
work analysis, from the World Wide Web to stock market
analysis. Motivated by this need recently we have seen sev-
eral new algorithms to tackle this problem based on the (fre-
quent) pattern mining paradigm. A limitation of most of
these methods is that they are highly sensitive to parameter
settings, rely on exhaustive enumeration with exponential
time complexity, and often fail to help the users understand
the underlying distribution of components embedded within
the host graph.

In this article we propose an approximate algorithm, to
mine and visualize cohesive subgraphs (dense sub compo-
nents) within a large graph. The approach, refereed to as
Cohesive Subgraph Visualization (CSV) relies on a novel
mapping strategy that maps edges and nodes to a multi-
dimensional space wherein dense areas in the mapped space
correspond to cohesive subgraphs. The algorithm then walks
through the dense regions in the mapped space to output a
visual plot that effectively captures the overall dense sub-
component distribution of the graph. Unlike extant algo-
rithms with exponential complexity, CSV has a complexity
of O(V 2logV ) when fixing the parameter mapping dimen-
sion, where V corresponds to the number of vertices in the
graph, although for many real datasets the performance is
typically sub-quadratic.

We demonstrate the utility of CSV as a stand-alone tool
for visual graph exploration and as a pre-filtering step to
significantly scale up exact subgraph mining algorithms such
as CLAN [33].
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1. INTRODUCTION
Technological advances have made the collection of vast

amounts of data possible in many domains. Computational
simulations, astronomical observations, medical imaging, and
World Wide Web often involve very large amounts of data.
Extracting useful information from such data, often con-
cisely represented as a graph, is vital.

A graph is an intuitive abstraction that naturally captures
data entities as well as the relationship among those entities.
Data entities are represented as vertices in the graph and
edges capture the binary relationships between data atoms.
Although on-going research in different domains may create
the need to capture non-binary relationships (similar cases
occur in traditional DBMS, where non-binary relationships
are resolved via table joins), we can still use several graphs to
decompose those non-binary relationships into binary ones.
Graph representations are indeed extremely flexible and can
be used to model data from a number of domains.

Graphical representations are widely used in domains such
as proteomics, bibliometric and social relationship analysis,
and the World Wide Web. For example, in the domain of so-
cial relations, a social network can be represented as a graph
whose vertices represent people and an edge connects two
vertices if two corresponding people have certain relation-
ships. The Digital Bibliography & Library Project (DBLP)
network is an instance of a bibliographic network in the form
of an academic publication community in computer science.
DBLP records relations such as co-authorship and article-
reference for further citation and referencing purposes.

Interconnections in these domains, and the size of the
graph representations grow larger and more complex with
time and with advances in technology. Accordingly, it be-
comes more difficult to abstract information from those graphs.
Researchers have thus invented various graph mining algo-
rithms that aim to discover interesting information(eg. pat-
terns or subgraphs) efficiently and accurately.

Among classes of interesting subgraphs, highly-cohesive
subgraphs have often proven to be useful in different do-
mains. For example, the identification of cohesive sub-
graphs in PPI networks is important since such subgraphs
may aid in functional annotation [17, 5]. In the domain of
stock market analysis, the phenomenon of strong correla-
tions among a small group of stocks is fairly common [7].
Analysts often make trading decisions of one stock based on
a group of highly correlated stocks, which can be modeled



as a cohesive subgraph.
Despite the range of applications discussed above, to the

best of of our knowledge an effective tool for visualizing the
distribution of cohesiveness within a graph does not exist.
Such visualization is important as it allows users to gain im-
portant insights about the task on hand. A key challenge
in achieving efficient visualization lies in the inherent dif-
ficulty of cohesive subgraphs detection. The extreme case
of this problem is clique detection, which is known to be
NP-hard and very difficult to even approximate[30]. More-
over, existing cohesiveness measures in graph theory such as
k-connectivity are computationally prohibitive (e.g., the ex-
act algorithm to decide subgraph vertex-connectivity is #P-
complete [11]). This makes research on cohesive subgraph
mining and visualization a challenging topic. In this paper,
we propose an algorithm called CSV1 to visualize and mine
cohesive subgraphs. The main contributions of our work are
summarized below:

1. We propose a novel algorithm called CSV which can
compute an ordering on the vertices of graph G and
create a density plot based on the ordering such that
cohesive subgraphs within G can be visualized based
on the plot.

2. As CSV needs to detect cliques within the graph which
will result in exponential running time, we propose a
method to speed up the algorithm by computing an
upper bound on the size of cliques within the graph in-
stead. Our method makes use of a novel mapping that
transforms graph elements (vertices and edges) into
high-dimensional points and preserves graph elements’
connectivity relations. The transformation embodies
the desirable property that existing spatial indices such
as the R-tree can be applied to the transformed data
for more efficient mining of cohesive subgraphs.

3. We evaluate our algorithm on real datasets drawn from
stocks correlation networks and DBLP co- authorship
networks. The results show that our algorithm is espe-
cially suitable for locating subgraphs quickly. We also
experimentally prove the algorithm’s effectiveness and
efficiency by comparing it with other state-of-the-arts
algorithms.

4. In addition to using CSV as a stand-alone tool for vi-
sual exploration of dense sub-components within large
graphs we find that it can also be effectively used as a
pre-filtering step to significantly speed up exact clique
finding algorithms such as CLAN[33].

2. RELATED WORK
Mining graphs for interesting patterns has been a subject

of much study recently [20, 37, 5, 33, 17, 35, 25, 22, 36].
Below we briefly describe the work that is most relevant to
the current work.

One approach to mining interesting patterns can be achieved
by graph partitioning along a minimum cut. Ng and col-
leagues[25], use spectral methods to interrogate large com-
plex networks in order to find cohesive subgraphs. Since the
eigenvectors of a graph depict its topological information,
their approach relies on spectral graph partitioning using

1CSV stands for Cohesive Subgraph Visualization

the second eigenvector of a graph’s Laplacian (also known
as the Fiedler vector). The algorithm recursively bisects the
graph until the desirable number of partitions is achieved.
By its nature, this algorithm aims to discover highly con-
nected subgraphs inside a graph. However, the use of graph
eigenvectors during partitioning incurs high computational
cost. METIS [22] is an algorithm for graph partitioning, a
related but different problem to ours. The algorithm com-
prises three stages: a coarsening step where tight groups of
vertices are replaced with super nodes; a partitioning step
where the resulting coarsened graph is partitioned; and a re-
fining step where the original vertices are added back to the
graph and the partitions are refined accordingly. The ap-
proach is quite scalable but METIS targets a different task
– graph partitioning, and moreover tends to favor balanced
partitions and does not always effectively identify dense sub-
graphs of interest[5].

By applying special encoding techniques, some solutions
convert the dense graph mining problem into a traditional
data mining algorithm, so that an Aprior-style algorithm[2],
can be directly applied [21, 24, 34, 17]. Of these the most
germane to the current work is CODENSE[17]. CODENSE
mines frequent coherent cohesive subgraphs across a collec-
tion of massive graphs. A coherent subgraph is a graph
where all edges exhibit correlated occurrences in the collec-
tion of graphs. The density of a graph is defined by the
ratio of graph edge count in the graph to the same-sized,
complete graph’s edge count. CODENSE performs clus-
tering on two meta-graphs summarizing the graphs to be
mined. CODENSE can discover overlapping clusters. This
is important in biological applications since under different
conditions, one gene may serve different roles and be in-
volved in different functional groups [4]. Aside from density,
in [35], studies are also done on efficiently finding interesting
subgraphs through combining connectivity constraints with
column or row enumeration methods [26, 14, 12, 27, 13].

The above algorithms do not provide any visual cue for
graph exploration. Osprey [9] is a system for visualization
and analysis of complex protein interaction networks with
no mining ability embedded. Visant [36] leverages stan-
dard graph theory methods to visually identify cohesive sub-
graphs within larger networks. However, it does not include
any functionality for exploring the hierarchical structure nor
for viewing the density/connectivity of the subgraph.

In summary, there are no existing algorithms or systems
that can provide efficient density subgraph algorithms to-
gether with visualization capabilities. If we can derive an
approach that can visualize mining results, users of a min-
ing tool can identify graph structural features concretely.
We next describe our algorithm, CSV, to provide such vi-
sual graph mining capabilities.

3. PRELIMINARIES AND PROBLEM DEF-
INITION

A graph is represented as G = {V, E} where V is a set
of distinct vertices {v1, ..., v|V |} and E is a set of edges
{e1, ..., e|E|}. A graph G′ = {V ′, E′} is a subgraph of G
if V ′ ⊆ V , E′ ⊆ E and all end-vertices of edges in E′ are in
V ′.

In this paper, we define the distance between two vertices
vi and vj as the number of edges on the shortest path con-
necting vi and vj . To simplify discussion, we assume G is



a connected graph. If G consists of a set of unconnected
components, the visualization technique in this paper can
be applied to each component individually.

To determine the cohesiveness of a subgraph, two mea-
surements are often used: density [1, 17] and connectivity
[35].

Definition 1. Density of G′, γ(G′)
The density of a graph G′ = {V ′, E′} is defined as:

γ(G′) =
2 ∗ |E′|

|V ′| ∗ (|V ′| − 1)

�

Definition 2. Connectivity of G′,κ(G′)
The connectivity of a graph G′ is defined as κ(G′) = k,
where k is the largest integer such that there exists no k − 1
vertices whose removal disconnect the graph. We also call
G′ a k-connected graph. �

Intuitively, inside a k-connected graph, there are at least k
independent paths from any vertex to any other vertex. The
exact algorithm to decide vertex connectivity is not trivial(
[11] proves that this problem is #P-complete).

Although the above two measurements of cohesiveness are
inherently different, both are however maximized when the
graph is a clique. In this paper, we will mostly focus on
finding this special type of highly cohesive subgraphs (i.e.,
cliques) due to space consideration.

Given a graph G = {V, E}, we want to compute an order-
ing of vertices in G and generate a density plot based on the
ordering such that:
Problem 1: All cliques with size greater than k can be
identified based on visualizing the density plot. �

While our focus in this paper will be on solving Problem
1, we will provide explanation during the course of discus-
sion on how our solution to Problem 1 can in fact provide a
solution to Problem 2 and 3 below:

Problem 2: All subgraphs with density greater than γmin

and graph size greater than sizemin can be identified based
on visualizing the density plot. �

Problem 3: All subgraphs with connectivity greater than
k can be identified based on visualizing the density plot. �

4. ALGORITHM CSV
Our CSV algorithm is an OPTICS [3] style plot which

walks through the vertices of the graph based on two local
density measures: maximum participated clique size
and maximum co-clique size.

Definition 3. maximum participated clique size, ζmax(v)
The maximum participated clique size of a vertex v, denoted
as ζmax(v) is the size of the biggest complete subgraph(i.e.,
a clique) in G that includes v. �

Intuitively, ζmax(v) is analogue to the notion of spatial
density in density-based clustering [15, 3]. Unlike spatial
density, graph density must take into account the number of
both vertices and edges. The definition of ζmax(v) naturally
takes this into account.

Algorithm 1: CSV
Input: Graph G={V,E}
Output: Density plot for visualizing cohesive
subgraphs
Method:

1. HEAP=∅;
2. FOR all v ∈ V
3. v.ηmseen=0;
4. WHILE ∃v unvisited
5. IF HEAP=∅
6. v=randomly selected unvisited vertex from V ;
7. ELSE
8. v=next vertex on HEAP;
9. plot v.ηmseen;
10. FOR all v′ directly connected to v;
11. IF (v′ ∈ HEAP )
12. v′.ηmseen = max(v′.ηmseen, ηmax(v, v′));
13. reorder HEAP;
14. ELSE
15. compute ζmax(v′);
16. v′.ηmseen=ηmax(v, v′);
17. add v′ into HEAP;
18. ENDIF;
19. ENDWHILE;

Figure 1: CSV Algorithm Skeleton

Given a vertex vi, we also want to estimate how densely
it is connected to another vertex vj . For this purpose, we
introduce another definition: maximum co-clique size.

Definition 4. maximum co-clique size, ηmax(vi, vj)
The maximum co-cliques size for two vertices vi and vj de-
noted as ηmax(vi, vj) is the size of the biggest complete sub-
graph(i.e., a clique) that contains both vi and vj. �

The CSV algorithm is shown in Figure 4. The algorithm
maintains a heap for storing visited vertices that have not
been output. Vertices stored in the heap are maintained in
sorted order based on ηmseen and then by ζmax. The variable
v.ηmseen maintains the highest ηmax(v, v′) value between v
and any visited vertex v′ known so far. Intuitively, sorting
the vertices based on ηmseen means that vertices that are
strongly connected to previously visited vertices will be out-
put first. Among those that have the same value for ηmseen,
vertices with higher value of ζmax are ranked in front as
they are more likely to lead the walk towards the region
with higher graph connectivity.

The algorithm starts by either picking the next vertex v
from the heap or a random vertex v if the heap is empty. The
value v.ηmseen (which have a value of 0 if it is the starting
vertex) will then be output. All vertices v′ that are directly
connected to v are retrieved. For vertex v′ which is already
in the heap, v′.ηmseen is updated depending on whether the
original value of v′.ηmseen or ηmax(v, v′) is higher. The heap
is then reordered based on the updated value. For a vertex
v′ which has not been visited, v′.ηmseen is set to ηmax(v, v′))
and ζmax(v′) is computed. After that, v′ is inserted into the
heap. The process is repeated until all vertices have been
visited and its v.ηmseen has been output.

To see how the density plot output by CSV (henceforth
referred to as the CSV plot) can be used to visualize the



distribution of cliques, we will first prove the follow theorem.

Theorem 4.1. Let v′
1,...,v

′
k be the vertices of a size k clique

in G and assume that they are already sorted based on the
ordering computed by CSV. We claim that for any vertex v
(not necessary those in the clique) that fall between v′

1 and
v′

k (excluding v′
1 but including v′

k), v.ηmseen ≥ k.

Proof. : Any vertex v that falls within v′
1 and v′

k is either
part of the size k clique or it is not.

If v is part of the clique, v.ηmseen ≥ k. This is because:
(i) v′

1 has been output, (ii) all vertices v′
i in the clique are

directly connected to v′
1 with ηmax(v′

1, v
′
i) ≥ k, and (iii) Line

12 of CSV in Figure 4 will update v.ηmseen for all vertices v
that directly connects to v′

1 to the maximum of the original
v.ηmseen or ηmax(v′

1, v).
If v is not part of the clique, there must exist some i,

1 < i ≤ k such that v.ηmseen ≥ v′
i.ηmseen in order for v to

be output before v′
i in the heap. Since v′

2,...,v
′
k must be in the

heap once v′
1 is output, their corresponding value for ηmseen

must be equal or larger than k. Since v.ηmseen ≥ v′
i.ηmseen,

it must be that v.ηmseen ≥ k. �
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Figure 2: CSV plot correctness proof

Based on Theorem 4.1, it is easy to see that any clique
with a size larger than or equal to k must fall into a region
of the CSV plot in which there exists a continuous set of
more than k− 1 vertices with ηmseen ≥ k in the plot. As an
example, Figure 2 highlights regions in the CSV plot that
potentially contain cliques of size larger than k. To be more
precise, the CSV algorithm orders the graph vertices into a
CSV plot such that the following theorem can be inferred:

Theorem 4.2. The highest ηmseen value between two ver-
tices v and v′ on the CSV plot is an upper bound on the
maximum clique size that can be found on the subgraph that
is induced by considering all the vertices between v and v′ in
the CSV plot. �

For a clique mining algorithm such as CLAN [33], the
CSV plot provides a good exploratory tool that can high-
lights regions of interest for mining and also guide parame-
ter settings such as minimum clique size for the algorithm.2

Later on in our experimental section, we will show that by

2The minimum clique size setting in CLAN is used to fil-
ter off all cliques that are of a size smaller than a certain
threshold

using the CSV plot as a filtering method, we can speed up
the efficiency of CLAN by up to 80% while finding exactly
the same set of cohesive subgraphs that the original CLAN
algorithm finds.

Finding Cohesive Subgraphs Based on Density
We will next discuss how the CSV plot can be used to pro-
vide a solution for Problem 2 which is to find all subgraphs
G’ such that |G′| ≥ sizemin and γ(G′) ≥ γmin. We will
make use of Turan’s theorem [32, 8] from extremal graph
theory for this purpose.

Theorem 4.3. Turan’s Theorem
Let G = (V, E) be a graph that contains no clique of size
larger or equal to k; then

|E| ≤ (k − 2)|V |2
2(k − 1)

�

Based on Turan’s theorem, we can now infer that sub-
graphs which exceed a certain size and density must contain
at least one clique exceeding a certain size. As an example:

Example 1. Let us assume that sizemin = 10 and γmin =
0.8. Let G′ be a subgraph that just satisfies that criteria i.e.,
it has 10 vertices and 36 edges (thus ensuring γ(G′) = 0.8).
Based on reasoning from Turan’s theorem, such a subgraph
should contain at least one clique of size 4 and above. It is
also easy to see that larger graphs that satisfy the density
threshold must contain cliques of even larger size. �

As can be seen, the solution to Problem 1 which helps to
identify and visualize cliques of a certain size can be used
to provide markers for Problem 2. Any regions in the CSV
that do not contain cliques of a sufficiently large size will
not contain any subgraphs of interest in Problem 2. Note
that this approach of using cliques in a subgraph to measure
its cohesiveness is widely accepted in social network analysis
[29].

Finding Cohesive Subgraphs Based on Connectivity
We next examine the usefulness of the CSV plot in handling
Problem 3. Note that Problem 3 can be converted to a
special instance of Problem 2 by observing the following:

1. A k-connected graph must contain at least k vertices.

2. A k-connected graph must contain at least 	(kn/2)

edges since each vertex must connect to at least k-1
other vertices.

Based on these observations, we can reduce an instance of
Problem 3 into an instance of Problem 2 where sizemin = k
and the minimum density, γmin is set to 2�(kn/2)�

k∗(k−1)
. The CSV

plot can thus be applied to solve Problem 3 as it is applied
to solve Problem 2.

4.1 Multi-Dimensional Mapping
As ζmax(v) and ηmax(vi, vj) is computational expensive

due to the clique detection, in this section, we propose a
multi-dimensional mapping which computes an upper bound
of these two functions.

Given the graph G, we achieve multi-dimensional map-
ping by first selecting n vertices as pivots based on the
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Figure 3: An Example of Graph Mapping

shortest path distance. Various methods for selecting these
pivots exist [16, 28, 10]. Here, we adopt a simple strategy of
incremental selection. We iterate n rounds and select a ver-
tex that is furthest away (based on average distance) from
pivots selected from previous rounds.

Given a pivot pi, the distance of the shortest path of a
vertex v to pi is denoted as SDi(v). For an edge e in the
graph, we define SDi(e) as 1

2
× (SDi(v1) + SDi(v2)) where

v1 and v2 are the two vertices connected by e. We can now
define mappings of graph elements into n-dimensional space:

Definition 5. M(v), M(e)
Given a graph G = {V, E} and a set of pivots p1,...,pn, a
vertex v will be mapped into the point M(v) = (SD1(v), ...,
SDn(v)) while an edge e will be mapped into the point M(e) =
((SD1(v)+SD1(v

′))/2, ..., (SDn(v)+SDn(v′))/2) where e =
(v, v′). �

Figure 3 shows an example of how a graph is mapped
into two-dimensional space by picking two pivots v0 and
v3. The mapping essentially divides the n-dimensional space
into grid cells of unit length and vertices are mapped into
the intersection of the grid lines with integer coordinates.
Edges on the other hand are mapped exactly in between
the mapping of the two vertices that they connect. We will
use D∞(M(v1), M(v2)) to represent the distance between
M(v1) and M(v2) under L∞ norm, i.e.,

Definition 6. D∞(M(v1), M(v2))
D∞(M(v1), M(v2)) = maxi=1

i=n|SDi(v1) − SDi(v2)| �

Based on triangular inequality, it is possible to prove the
following lemma:

Lemma 4.1. Let the length of the shortest path between two
vertices v1 and v2 be D(v1, v2), then D∞(M(v1), M(v2)) ≤
D(v1, v2)

Proof. Assuming otherwise, then there exists a pivot pi

such that |SDi(v1) − SDi(v2)| > D(v1, v2). Without loss
of generality, SDi(v1) > D(v1, v2) + SDi(v2), which means
that SDi(v1) is not the shortest path distance to v1. This is
a contradiction. �

Theorem 4.4. Let G′ = {V ′, E′} be a clique of size k in
G, then G′ will be mapped into a unit grid cell C based on
our high dimensional mapping such that:

• There exist at least k vertices with a degree greater than
k − 1 in C.

Algorithm 2: Estimate ηmax and ζmax

Input: Mapping of graph G, an empty R-tree R
Output: Estimate ηmax(v, v′) and ζmax(v)
∀v, v′ ∈ G
Method:

1. set v.ζmax = 0 for all v ∈ G;
2. FOR each edge e ∈ G
3. construct set of cells C containing e;
4. FOR each cell c ∈ C
5. IF c is found in R
6. Add e into c;
7. ELSE
8. Add e into c;
9. Insert c into R;
10. ENDFOR
11. ENDFOR
12. FOR each vertex v ∈ G
13. Locate existing cells set C in R that contains v;
14. Add v into every cell c ∈ C;
15. ENDFOR
16. FOR each c in R
17. Est ηζ(c);
18. ENDFOR

Figure 4: Estimating ζmax and ηmax computation al-
gorithms

• There exist at least k(k − 1)/2 edges in C.

Proof. All vertices in a clique are one edge away from
each other. Combining this with Lemma 4.1, we know that
each pair of vertices v′

1, v′
2 ∈ V ′ will be mapped into n-

dimensional space such that D∞(M(v1), M(v2)) ≤ 1. Since
this must be true for all pairs, the only possibility is that all
vertices in the clique are mapped into the same grid cell of
unit length. Similarly, since edges are mapped between the
two points they connect, they must only be found in the same
grid cell. Furthermore, since the vertices belong to a clique
of size k, they must at least have degrees of k − 1 in order
to connect to all the other vertices in the clique. �

We will now explain how an upper bound for ζmax(v) and
ηmax(v, v′) can be computed for each vertex v and each of
it’s connecting vertices v′.

Referring to Figure 4, our algorithm first computes the
coordinates of all vertices and edges of the graph after map-
ping and then insert them into an R-tree3. Our R-tree stores
unit cells. Each cell has unit length in all dimensions and
stores a list of vertices and edges that are mapped into it.
To avoid introducing cells that contain only vertices but no
edges, we first insert edges into the R-tree and then sub-
sequently the vertices. Complexity arises when an edge is
mapped into the boundary of a cell. In that case, more than
one cells are added into the R-tree. This happens only when
the vertices at the two end of an edge are having the same
distance to one or more of the pivots. To minimize such
situation, we design the pivot selection method such that
the group of pivots are far apart from each other. Experi-

3Note that we use an R-tree as it is rather common and
readers should feel free to use other spatial indexes for this
purpose.



Algorithm 3:Est ηζ(c)
Input: A unit cell c
Output: Estimate ηmax and ζmax for vertices in
c,
update value of ηmax or ζmax when necessary
Method:

1. FOR every v mapped into c
2. IF c is sufficiently ”dense” to change ζmax(v)

or ηmax(v, v′)
3. V ′ = {v′|v′ directly connects to

v and v′ is mapped into c};
4. FOR each v′ ∈ V ′

5. V ′′ ={v′′|v′′ connects to both v,v′ ∧ v′′ ∈ V ′},
Let G′′ be subgraph induced from V ′′

6. Compute degree array DV ′′∀v′′ ∈ V ′′

such that DV ′′(v′′)=degree(v′′, G′′) + 1;
7. DV ′(v′)=η bound(DV ′′(v′));
8. ENDFOR
9. DV = η bound(DV ′);
10. FOR each v′ ∈ V ′

11. IF (ηmax(v, v′) < DV ′(v′))
12. (ηmax(v, v′) = DV ′(v′));
13. IF (ζmax(v′) < ηmax(v, v′))
14. ζmax(v′) = ηmax(v, v′);
15. END IF
16. IF (ζmax(v) < ηmax(v, v′))
17. ζmax(v) = ηmax(v, v′);
18. ENDIF
19. ENDIF
20. ENDFOR
21. ENDIF
22. ENDFOR

Figure 5: Algorithm to estimate η in c

ments on pivot selection methods in later part of this paper
support our choice.

After the insertion of all graph elements, the algorithm
will compute ηmax(v) and ηmax(v, v′) by processing each
cell using the algorithm in Figure 5.

Given a cell c, algorithm Est ηζ in Figure 5 will compute
an upper bounds for ηmax(v, v′) for every node v inside c
and updates ζmax(v) or ηmax(v, v′) for some v′ the upper
bound computed are found to be higher than their original
value. To achieve this, the algorithm iterates over all vertices
mapped inside c. We only start the estimation if c contains
enough edges and vertices such that c has potential to up-
date some ηmax or ζmax values that are relevant to v(i.e. c is
sufficiently ”dense”enough for v in line 2). For each neighbor
vertex v′ of v, we find V ′′ a set of vertices that are connected
to both v and v′ and which are also found within c (V ′′ also
contains v, v′). We induce a subgraph G′′ that contains all
vertices in V ′′ and all edges in the original graph that join
two vertices in V ′′ (line 5). Based on G′′, we compute an
array DV ′′ where DV ′′(v′′) stores the degree of v′′ within
G′′. This is the largest possible clique size v′′ can participate
in G′′. It is also a loose upper bound of ηmax(v′, v′′).

Since a clique of size k must contain k vertices each with
degree of k − 1, we will pass DV into a function called
η bound(DV ) in Figure 6 which will compute an upper
bound on the size of the biggest clique that could occur

Function 1: η bound(DV )
Input: DV : an array of η bounds
Output: a new array of tighter η bounds
Method:

1. ηnew = 0 ;
2. S = DV in descending order ;
3. FOR i=1 TO |DV |
4. IF (i ≥ S(i))
5. ηnew = S(i) ;
6. BREAK FOR LOOP ;
7. ENDIF
8. ENDFOR
9. FOR i=1 TO |DV |
10. IF (DV (vi) > ηnew)
11. DV (vi) = ηnew ;
12. ENDIF
13. ENDFOR
14. RETURN DV ;

Figure 6: Function η bound

within G′′. This is done by sorting DV in descending order,
storing it in an array S and going through S starting from
the first element until the ith element is greater or equal to
S(i). Once the condition is satisfied, i will represent the size
of the largest possible clique in G′′ and will be use to update
ηnew. Line 9-13 then update DV such that DV (vi) stores
the size of the largest clique that vi can participate in G′′.

Once the function is terminated, Line 8 of Algorithm
Est ηζ will update DV ′(v′) with the returned value from
function η bound.DV ′(v′) thus represent the biggest clique
that v and v′ can participate in. Our next step is based on
the observation that a vertex v that participate in a clique of
size k must have at least k− 1 direct neighbors that partici-
pate in a clique of size k. As such, we pass DV ′ to function
η bound in Line 10 of Algorithm Est ηζ to find the largest
k, such that are k vertices v′ which could participate with a
clique of size k together with v. Upon exiting from Est ηζ,
DV ′ could contains a better bound that DV ′′ on ηmax(v, v′)
for each v′ ∈ V ′. The values in DV ′ are then used to update
the value of ηmax and ζmax for v and v′ if the estimated up-
per bound is higher than the original value. Note that in
our algorithm description, we have certain redundancy in
that when v′ is being processed, the same subgraph G′′ will
again be induced for edge (v′, v). This can be easily avoid
by imposing an ordering on the vertices and we omit the
description to keep our discussion clean.

To illustrate how our algorithm in Figure 5 works, we
present an example in Figure 7. To estimate ηmax(a, f), we
locate the neighborhood of a and f , {a, b, c, d, e, f, g}. After
sorting the degree array in descending order, we have array
6(a), 6(f), 5(d), 4(b), 4(c), 4(e), 3(g) (here we attach the ver-
tex id to each degree value for easy interpretation). Function
η bound(DV ) infers from the sorted array that the upper
bound of ηmax(a, f) is 5. Similarly, we can estimate an upper
bound on ηmax between a and all its neighbors(ηmax(a, f) =
4, ηmax(a, c) = 4, ηmax(a, d) = 4, ηmax(a, e) = 5 and
ηmax(a, g) = 4) and store them in DV ′. After calling func-
tion η bound with DV ′ , we tighten the value of ηmax(a, f)
to be 4, which is in fact the correct value for ηmax(a, f).

Since ηmax(v, v′) and ζmax(v) are independent of CSV



Figure 7: Estimation η between a and its neighbors

traversing order, we can pre-compute them and access them
directly when computing the CSV plot. We store the values
of all ηmax(v, v′) inside a table of |E| entries and all values
of ζmax(v) inside a table of size |V |.

Note that since the spatial mapping overestimates the
clique size and our approximation computation of ηmax and
ζmax are also upper bound, Theorem 4.1 and 4.2 will ap-
ply here. Correspondingly, any CSV plot that is computed
based on our approximation method will still be useful for
solving Problem 2 and 3.
Complexity Analysis The execution of CSV consists of
three parts. The multi-dimensional mapping time, the tree
building time and the core algorithm running time.

The multi-dimensional mapping process is the process of
computing the shortest path distance between the n pivots
and the rest of the vertices. The standard heap implemen-
tation has overall time complexity of O((|V | + |E|) log |V |).

The R-tree that is built on the graph vertices and edges
has a complexity of O((|V |+ |E|)log(|V |+ |E|)) if each ver-
tex and edge is inserted once into the tree. The worst case is
when each edge is mapped into 2n grids and so does each ver-
tex. The complexity increase to O(((|V |+ |E|)2n)log((|V |+
|E|)2n)). For η estimation algorithm in figure 5, if a vertex
has degree dv, the first run of estimation requires dv rounds
of sorting dv vertices. the total complexity is O(d2

v log dv).
The next run of tightening the upper bound of η requires
O(dv log dv). The overall complexity for one vertex is thus
O(d2

v log dv). Due to the uncertainty of mappings, the dis-
tributions of the vertices vary. The worst case arises when
the graph is a |V |-clique. This |V |-clique are mapped to
2d grids identically. Inside each grid, there are |V | vertices
and |E| edges. the complexity is thus O(|V |2 log |V |2d). By
checking whether a cell is sufficiently “dense” (as mentioned
in algorithm in figure 4), the number of cells we actually
need to perform η estimation is greatly reduces.

The complexity of the core CSV algorithm depends on the
number of comparisons to decide which vertex should enter
the stack. Before any vertex is output, all its neighboring
vertices are checked. The total complexity is thus O(|E|).

Mapping O((|V | + |E|) log |V |)
Tree Building O(|V |2 log |V |2d)

CSV core O(|E|)
Table 1: CSV components complexity

The time complexity for each components of CSV are
listed in Table 1. Note that the above scenarios are ex-

treme cases that occurred for extreme graphs. Experiments
on SMD datasets and DBLP datasets shows the number of
grid cell are far below the extreme case. Thus our algorithm
achieves better performance for real scenarios.

Example Output

To give an example on how the output from CSV looks
like, we generate a synthetic graph with four cliques of size 8,
remove 30% of the edges and then embed the cliques into a
random graph. Figure 8(a) shows the generated graph with
60 vertices. The numbers shown on the vertices indicate the
order of DENSUE’s walk on the graph, and the correspond-
ing plot using five pivots for mapping is shown in Figure
8(b). Instead of being cliques of size 8, they now become
an overlapping set of cliques of size 6 or 7. However, since
their connectivity is still higher than the vertices outside the
cliques, their presence can still be discerned.

In conclusion, unlike existing “blackbox” algorithms for
finding cohesive subgraphs, our visualization plot goes be-
yond highlighting them to showing their distributions and
how they interact with other components in the graph.

5. EXPERIMENT
Our experiments are evaluated on a Windows-based ma-

chine. The machine has P4 3GHz CPU, 1G RAM and 75GB
hard disc with Windows XP installed.

We use DBLP 10 years’ co-authorship dataset and Stock
Market(SMD) data used in algorithm evaluation in [37] to
evaluate the effectiveness and efficiency of CSV. The DBLP
data set covers co-authorships across year 1997 to 2006.
Each graph vertex represents an author and two authors
are connected by an edge if they co-authored in at least one
publication within a year. We consider the co-authorship
relations is significant only when the two researchers work
together for at least two years. The compound DBLP 10-
year co-authorship graph contains 2819 vertices and 4808
edges.

The SMD data is a collection of three sets of 11 graphs
from [37] which are named SMD-95, SMD-93 and SMD-90
respectively. Here, 0.95, 0.93 and 0.90 are correlation thresh-
olds and an edge exists between two stocks in the graphs if
their correlation is found to be above the correlation thresh-
old. Table 2 shows the statistics of these three sets of graphs.
For each set of 11 graphs, we create a summary graph in
which an edge exists between two stocks if it is found in
more than a certain number of graphs. Depending on the
threshold applied to each of the datasets, the final summary
graphs’ size varies. For all our evaluation, the number of
pivots are set to 4 unless otherwise stated. We abstract the
largest connected component from each data set and per-
forms CSV and CLAN on it.

Datasets # Graphs Avg. # of Avg. #
vertices edges

Stock Market 0.95 11 1683 20074
Stock Market 0.93 11 2618 68608
Stock Market 0.90 11 3636 206747

Table 2: Stock Market Datasets (SMD) statistics

5.1 Effectiveness of CSV Plot
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Figure 8: An Example of CSV Plot

Sup. SMD-95 SMD-93 SMD-90
V E V E V E

1 4264 132359 5323 403190 6008 1064133
2 3409 55945 4617 200882 5498 613823
3 2373 16462 3809 88301 4931 314421
4 1600 6893 2968 35892 4263 150692
5 425 1680 2148 14368 3587 69412
6 237 756 669 1771 2760 31462
7 84 315 361 723 1024 5611
8 65 183 219 364 635 3032
9 45 99 93 504 450 1681
10 13 20 214 409 356 1009
11 10 12 123 230 242 522

Table 3: Statistics of Largest Connected Com-
ponents for Stock Market Datasets’ Summary
Graphs(SMD)

In this section, we will look at the effectiveness of the CSV
plot.4

5.1.1 DBLP Plot
We first test CSV on the DBLP dataset. As an instance

of social networks, DBLP data set reflects various social
processes such as information processing, distributed search
and diffusion of social influence [23]. We experiment on the
largest connected component of the compound ten years’
DBLP co-authorship data and show it’s CSV plot in Figure
9.

As an example to show how the distribution of cliques
are depicted by the CSV plot, we show subgraph sg1 in

4In support of the SIGMOD’2008 experimental repeatabil-
ity requirement, the ordering of the DBLP (Figure 9) and
stock(Figure 14) datasets together with their ηmseen values
are made available at:
http://www.comp.nus.edu.sg/˜atung/publication/cri.zip
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Figure 9: CSV Plot for DBLP 97-06 Co-authorship Graph

Figure 10: Cliques joined by 2 co-authors in sg1

Figure 11: A large clique in sg2

Figure 12: Small clique in sg3

No. Size Order Members
sg4 14 0-13 J. Miller, S. Sudarshan, M.

Nemeth, Rajeev Rastogi, Jerry
Baulier, Abraham Silberschatz,
Peter McIlroy, P. P. S. Narayan,
Henry F. Korth, A. Khivesera,
C. Gupta, Philip Bohannon, S.
Joshi, S. Gogate

sg5 9 153-161 Volker Markl, Rudolf Bayer,
Timos K. Sellis, Roland
Pieringer, Klaus Elhardt, Frank
Ramsak, Robert Fenk, Aris
Tsois, Nikos Karayannidis

sg6 7 352-358 Mitch Cherniack, Michael Stone-
braker, Ugur Ccediletintemel,
Anurag Maskey, Stanley B.
Zdonik, Nesime Tatbul, Donald
Carney

sg7 7 1131-1137 Bernhard Schoumllkopf, Thomas
Navin Lal, Wolfgang Rosenstiel,
Michael Schroumlder, N. Jeremy
Hill, Thilo Hinterberger, Niels
Birbaumer

sg8 7 1162-1168 Peter M. G. Apers, Martin L.
Kersten, Henk Ernst Blok, Roelof
van Zwol, Willem Jonker, Milan
Petkovic, Menzo Windhouwer

Table 4: Large Cliques in DBLP

Figure 10 which consist of vertices ordered from 264 to 277
in the CSV plot. As can be seen from the plot, there are
multiple small peaks rising from an otherwise flat region.
These are in fact small cliques that are joined together by
some co-authors from each clique. In this case, sg1 contains
three cliques that are joined together by 2 authors, namely,
Dennis Shasha and Daniela Florescu. Here, Dennis Shasha
is a member of two of the cliques while Daniela Florescu is a
member of the remaining clique with all three cliques having
a size of 5.

Next, we will show an example of a highly connected sub-
graph marked as sg2 in Figure 9 and displayed in Figure
11. Since the peak of sg2 seems to featured prominently
in a neighborhood with low cohesiveness, we also abstract
some partial neighbors of sg2 to confirm our suspicion. As
can be seen from Figure 11, sg2 in fact represent a group
whose member are Russell Greiner, Duane Szafron, Brett
Poulin , David S. Wishart, Roman Eisner, Alona Fyshe and
Brandon Pearcy. Within the CSV plot, they are ordered
consecutively from 2013 to 2020. From the snippet in Fig-



ure 12, we can identify a “hub” person: Russell Greiner who
is ordered as the first person within sg2. Indeed he is a well-
known researchers in areas such as Bayesian Networks and
leads several research groups which explains his important
role in linking up part of the DBLP co-authorship graphs.
In general, a sudden raise in the CSV plot usually indicates
a key vertex which removal may greatly affects the density
distribution of the graph. Note the “sparseness” in other
part of the graph in Figure 11 which corresponds to the low
density region around sg2 in the CSV plot.

As we have stressed, the strength of the CSV plot is not
only on its ability to find cliques but to also present the
overall density distribution of a graph. As can be seen from
Figure 9, cliques of size 4 are in fact available in abundance
in the DBLP graph and a “blackbox” pattern mining algo-
rithm will have found many cliques of size 4 without knowing
their relationship with their neighborhood. From the CSV
plot however, we can see that the subgraph sg3 is promi-
nent within its neighborhood despite it being just one of the
many size 4 cliques in the graph. The subgraph sg3 (Figure
12) consists of vertices ordered from 1683 to 1686 in Fig-
ure 9 and researchers in the group include: Ronen Basri ,
Eitan Sharon, Achi Brandt and Meirav Galun. These four
researchers’ major research interests are in computer vision
and maths. Besides common research interests, they all cur-
rently work in Israel. Without prior background information
of these researchers, we will not identify this group of re-
searchers from other cliques of size 4 in the DBLP graph.

Finally, we show the remaining cliques that are of size 7
and above in Table 4. Among these cliques, sg7 and sg8
are the closest to each other on the CSV plot. This can
be explain by the fact that both groups essentially work in
Germany. However, gp7 consists of members who do re-
search in AI while gp8 consists of members who do research
in databases.
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Figure 14: 4D SMD95 CSV Plot with 45% Support
Threshold

To assess the accuracy of our estimation for ηmax and
ζmax, we also plot in red the actual ηmseen computed by
CLAN in Figure 9. As can be seen, our estimation of the
ηmax and ζmax are highly accurate resulting in plot that
show us the various interesting discoveries that we have dis-
cussed earlier.

5.1.2 Stock Market Data
We also run CSV on SMD-95 with a support threshold of

45% (i.e. 5 graphs) and generate a CSV plot shown in Fig-
ure 14. From the CSV plot, we identified two closely related

cliques which are at position 73 to 104. The subgraph in-
duced from the stocks within this region are shown in Figure
13. From the figure, we can see two distinct cohesive sub-
components that are yet closely related. Such form of nested
structures will not be easily detected by normal “blackbox”
pattern mining algorithm but is easily indicated in the CSV
plot. The larger components consists of 14 stocks partici-
pating in 10-cliques. Out of the 14 stocks, 5 stocks belong
to BlackRock Group: BlackRock Broad(BCT), BlackRock
Advantage Term Trust, Inc(BAT), BlackRock Global Invest-
ment Management (BGT), BlackRock Investment Quality
Term Trust(BQT), BlackRock Municipal Target Term Trust
(TTR). Anther well-known investment bank Merrill Lynch
(NBM) announced in Feb 2006 that it would combine with
BlackRock to form the World’s Largest Independent Invest-
ment Management Firms. The rest of the 8 stocks are in
areas of investment management as well. Two stocks in
fact are the same trust fund over different years(NGI and
NGF are 2003 and 2004’s national Government Income Term
Trust respectively). We thus infer that this large dense sub-
graph is formed mainly by BlackRock Group and Merrill
Lynch with other stocks in investment management field.
The other smaller component (9 stocks forming 8-cliques)
has four bank and financial service stocks: Fidelity Bancorp
(FFFL), Seacoast Financial (SCFS), Jacksonville Bancorp
(JXVL) and PennFed Financial (PFSB). Both the compo-
nents have interest in insurance and as such they are linked
by some health service stocks such as Davita (DVA). CSV
plot makes it possible to identify how closely related these
stocks are to each other without drilling down to individual
stocks.

Like in the DBLP case, we also indicated in red the actual
ηmax values in Figure 14. As can be seen, our estimation of
the clique sizes are rather accurate. We also investigate how
the CSV plot of SMD-95 is affected when varying the number
of pivots by computing the CSV plot with 6, 8, 10 and 12
pivots. However, due to the effectiveness of our bounding
method, these plots look mostly the same. As such we show
only the plot for 12 pivots here in Figure 15.
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Figure 15: CSV Plot with 12 pivots

5.2 Efficiency

5.2.1 Graph Size and Running Time
By applying CSV on a set of relevant graphs with different

sizes, we are able to see how the sizes of the graphs affect
the running time of CSV. Experiments are ran on three sets
of stock market data (SMD-90, SMD-93 and SMD-95) with



Figure 13: Two groups of highly cohesive stocks

different support thresholds to vary the size of the graphs.
Readers are referred to Table 3 for the size of the largest
connected component summary graphs. Note that the num-
ber of edges doubles for every decrease of 1 in the support
threshold.

Figure 16(a), 16(b) and 16(c) indicate the running time of
the three components of CSV on the three sets of SMD data.
In Figure 16(a), we show the spatial mapping time for the
three sets of data. As stated previously, the mapping is per-
formed on the largest connected components of the graph.
The mapping time ranges from 0.015 sec to 1.391 seconds for
graph with size 10 vertices and 13 edges to graph with 3409
vertices and 55945 edges. The mapping process only takes
up 0.25-1% out of total CSV running time for a large scale
graph. The major time consuming part of CSV algorithm
is the tree building process. Figure 16(b) shows the time
spent on building the R-trees on the same datasets. The
building time does not exceed 2500 seconds for the largest
graph that we have process (smd95sp2 with 3409 vertices
and 55945 edges). CSV core algorithm’s running time on
SMD datasets is shown in Figure 16(c). After building up
the tree structure, the exploration process is within a sec-
ond. Note that sometimes the running time of CSV is not
monotonically increasing with the graph sizes. The distribu-
tion of the edges inside a graph also determines the running
time. Graphs with similar number of vertices and edges may
be mapping into different number of grids. It is the num-
ber of grids and number of elements inside the grids that
determine the total running time of CSV algorithm.

We also compared the overall running time of CSV (Map-
ping + Tree Building + Core Algorithm) with that of CLAN
on SMD data sets. From Figure 17, CSV outperforms CLAN
both in terms of capability and efficiency. CSV is able to
handle graphs 2-4 times larger than CLAN while the running
time is only 10%-1% of CLAN when dealing with moderate
to large graphs. CSV proves itself to be a good density es-

timation tool compromising little accuracy with an order of
magnitude time savings over exhaustive mining algorithm
like CLAN.

5.2.2 Pivots Selection Algorithm and their Effect on
Running Time

Although the number of pivots does not affect the accu-
racy of the CSV plot significantly, we are still interested in
the cost when varying the number of pivots. Thus we in-
vestigate the effect of the number of pivots selected on the
running time over the same SMD-90 datasets. Figure 18
presents the total running time comparison of CSV algo-
rithm on 4D to 12D multi-dimensional points of SMD-90
datasets (with support from 8 to 11). As we increase the
number of pivots, the mapping dimension increases accord-
ingly, which results in exponential increase in the number
of non-empty grids. During the process of mapping, we are
only interested in grids with edges in it. A large portion of
grids thus become empty and CSV does not need to spend
time exploring those grids. The running time is thus not
exponentially increasing with number of pivots. This sug-
gests that future users should be cautious when choose more
pivots in the mapping process. Our suggestion here is not
to use more than 6 pivots.

The algorithm for selecting the pivots also affects the ef-
ficiency of CSV. Figure 19 shows three lines representing
three different approaches for selecting 4 pivots on the SMD-
95 dataset. The “Random”approach simply picks the pivots
randomly. The“Separated”approach is the one we discussed
in previous sections while the “Central” approach is to pick
the pivots with the minimum distance to its furthest vertex.
Instead of directly plotting the algorithm’s running time for
the three different approaches, we plot the number of non-
empty grid cells that are being handled in the algorithm.
This quantity better reflects the pivots’ quality. Results are
averaged over 5 runs to off-set the randomness of the first
approach. From Figure 19, the number of visited grids is
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(b) Tree Building Time
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(c) CSV Core Algorithm Running Time

Figure 16: CSV components Running Time on Stock
Market Datasets
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Figure 17: CSV vs CLAN Running Time
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Figure 19: Three Different Pivots Selections Scheme
and resulting #Grid

significantly reduced by carefully picking the pivots.
In conclusion, our experiments show that CSV is an ef-

ficient and effective tools for visual mining and exploration
of dense subgraphs. CSV provides a very useful alternative
to the “blackbox” and exhaustive enumeration approach of
other graph pattern mining algorithms [37, 33, 17, 35], which
often have more parameters to specified as well.

5.3 CSV as a pre-selection method
Since CSV provides a method to quickly estimate a graph’s

density distribution and CLAN is an exact algorithm com-
puting graph’s max closed cliques, we combine the two algo-
rithms in the hope to achieve fast and accurate computation
of graph density distribution. In this section, we first apply
CSV on the stock market data to obtained an estimation of
graph vertices density. After that, we select those vertices
that could potentially contain cliques of required size and
apply CLAN on the subgraphs that is induced by these ver-
tices. As expected, CSV does not miss any cliques based on
what we have proved earlier. Figure20 shows the running
time of such an approach compared with that of directly
applying CLAN on the data set. This set of experiments
are run on 11 sets of stock market data. The x-label of the
graph indicates the characteristics of the data set. For ex-
ample, ”90-11-5” denotes smd90 data with absolute support
11 and the minimum clique setting is set to 5 (i.e. we want
to find all cliques of size 5 and above). The results show
that running CSV as pre-selection method for CLAN saves
23% to 84% of the time compared to running CLAN alone.

Note that the same method here can be used to find the
top-k largest cliques in the graphs by iteratively selecting



the highest peak on the CSV plot and running CLAN on the
region around the peak. We plan to explore more towards
this direction in the future.
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Figure 20: Efficiency of CSV as a pre-selection
method

6. DISCUSSION
Next, we discuss further extensions that can be done to

CSV .

1. Pivots: The handling and use of pivots can be extended in
at least two directions. First, since the selection of the pivots
is done initially without a good understanding of the distri-
bution, refinement of pivots selection could be done after the
CSV plot is available. Intuitively, if a pivot is selected from a
highly connected region in the graph, it’s shortest path dis-
tances to other vertices in the highly connected region will
be short, making it difficult to separate these vertices apart
after the mapping. One can also take advantage of spectral
plots in this regard. As such, reselecting pivots from less
dense regions of the CSV plot could serve to improve the
quality of the plot. Second, as mentioned earlier, it may
make sense to add in additional pivots when there is a need
to hone in on smaller subgraphs.

2. Dynamic Graphs: In the case of dynamic graphs, edges
and vertices could be added and deleted dynamically over
time. Adapting CSV to monitor emerging or diminishing
high connectivity subgraph is both a challenging and in-
teresting problem. A naive extension for deleting/updating
vertices/edges is as follows.

• For vertex/edge deletion, the corresponding mapped
region in the high dimensional space can easily be up-
dated.

• For added vertex/edges, the shortest path distance to
the pivots can be approximated by the vertices or edges
in the old graph that it connects to and the mapped
region can be updated accordingly.

• For regions in which the order of CSV walk changes,
one needs to simply redraw the CSV plot.

Obviously, the above does not take into account the exact
changes in shortest path distance when edges and vertices
are added/removed. We conjecture however that since
cliques are closely connected, any error in the estimated
shortest path distance due to the updates will be propa-
gated to all vertices in the cliques, causing them to still map

to the same grid cell. This is a subject which is worth study-
ing in the future.

3. Handling Directed Graphs: The handling of directed
graph could be useful for some applications like keyword
search [18, 19, 6] where we want to measure the connectiv-
ity between keywords. Applying CSV on a directed graph
takes on additional complexity in the following respects.
First, vertices might not be reachable from the pivots se-
lected. This can be overcome by adding virtual root node to
the graph using techniques described in [31]. Second, after
mapping the edges into the high dimensional space, we must
record their directions within the grid cell (i.e. the vertex
it connects to) and take them into account when computing
connectivity. The details of such an approach will be ironed
out as part of our future work.

7. CONCLUSIONS
In this paper, we propose CSV , an algorithm for min-

ing and visualizing cohesive subgraphs. Existing approaches
to the problem typically perform an exhaustive enumera-
tion and output a set of cohesive subgraphs which are often
difficult to correlate and understand. CSV relies on a lo-
cally measurable notion of density coupled with novel map-
ping function to visualize and mine cohesive subgraphs. We
demonstrate the efficacy and efficiency of CSV on two real
datasets. As an algorithm that executes in polynomial time,
CSV can be useful as a tool for general exploration of a graph
before a region of interest can be selected for more detailed
analysis. Additionally we demonstrate that one can use the
CSV plot as a pre- filtering method, to speed up the effi-
ciency of clique mining algorithms such as CLAN by up to
80% while finding exactly the same set of cohesive subgraphs
as the original algorithm (CLAN) does.
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