
Mining Top-k Covering Rule Groups for Gene Expression
Data∗

Gao Cong †

School of Informatics
University of Edinburgh

gao.cong@ed.ac.uk

Kian-Lee Tan Anthony K.H.Tung ‡ Xin Xu
Dept. of Computer Science,

National University of Singapore

{tankl, atung, xuxin}@comp.nus.edu.sg

ABSTRACT
In this paper, we propose a novel algorithm to discover the top-
k covering rule groups for each row of gene expression profiles.
Several experiments on real bioinformatics datasets show that the
new top-k covering rule mining algorithm is orders of magnitude
faster than previous association rule mining algorithms.

Furthermore, we propose a new classification method RCBT.
RCBT classifier is constructed from the top-k covering rule groups.
The rule groups generated for building RCBT are bounded in num-
ber. This is in contrast to existing rule-based classification meth-
ods like CBA [19] which despite generating excessive number of
redundant rules, is still unable to cover some training data with
the discovered rules. Experiments show that the RCBT classifier
can match or outperform other state-of-the-art classifiers on several
benchmark gene expression datasets. In addition, the top-k cover-
ing rule groups themselves provide insights into the mechanisms
responsible for diseases directly.

1. INTRODUCTION
Microarray technology makes it possible to measure the expres-

sion levels of tens of thousands of genes in cell simultaneously
and has been widely used in post-genome cancer research stud-
ies. Meanwhile, mass spectrometry technology is also increasingly
being used in cancer research by measuring the mass/charge ra-
tios of molecular proteins in tumor tissues. Both technologies typi-
cally generate only tens or hundreds of very high-dimensional data.
The generated high-dimensional datasets naturally require power-
ful computational analysis tools to extract the most significant and
reliable rules, which reveal the important correlation between gene
expression patterns and disease outcomes and translate the com-
plex raw data into relevant and clinically useful diagnostic knowl-
edge. In this paper, we focus on gene expression profiles while our
proposed techniques are also applicable to data generated by mass
spectrometry technology.
∗Dedicated to the late Prof. Hongjun Lu, our mentor, colleague and
friend who will forever be remembered.
†Work done while at the National University of Singapore
‡Contact Author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

Considering the above requirements, we define a rule as a set of
items, or specifically a set of conjunctive gene expression level in-
tervals (antecedent) with a single class label (consequent). The
general form of a rule is: gene1[a1, b1], ..., genen[an, bn] →
class, where genei is the name of the gene and [ai, bi] is its ex-
pression interval. For example, X95735 at[−∞, 994] → ALL is
one rule discovered from the gene expression profiles of ALL/AML
tissues.

Recent studies have shown that such association rules themselves
are very useful in the analysis of gene expression data. Due to their
relative simplicity, they can be easily interpreted by biologists, pro-
viding great help in the search for gene predictors (especially those
still unknown to biologists) of the data categories (classes). More-
over, it is shown in [6, 9, 18] that classifiers built from association
rules are rather accurate in identifying cancerous cell. This is excit-
ing because classification is one of the most important applications
of microarray technology. Unfortunately, two challenges remain.

First, it has been shown in [6, 7] that huge number of rules will be
discovered from the high-dimensional gene expression dataset even
with rather high minimum support and confidence thresholds. This
makes it difficult for the biologists to filter out rules that can encap-
sulate very useful diagnostic and prognostic knowledge discovered
from raw datasets. Although recent row-wise enumeration algo-
rithms like FARMER [6] can greatly reduce the number of rules by
clustering similar rules into rule groups, it is still common to find
tens of thousands and even hundreds of thousands of rule groups
from gene expression dataset, which are rather hard to interpret.

Second, the high dimensionality together with the huge number
of rules results in extremely long mining process. Rule mining al-
gorithms using column enumeration (combinations of columns are
tested systematically to search for rules), such as CHARM [31] and
CLOSET+ [30], are usually unsuitable for gene expression datasets
because searching in the huge column enumeration space results in
extremely long running time. Although FARMER efficiently clus-
ters rules into rule groups and adopts an anti-monotone confidence
pruning with a delicate row ordering strategy, it is still very slow
when the number of rule groups is huge.

These two challenges greatly limit the application of rules to an-
alyze gene expression data. It will be ideal to discover only a small
set of the most significant rules instead of generating a huge num-
ber of rules. To address this basic problem, we propose to discover
the most significant top-k covering rule groups (TopkRGS) for
each row of a gene expression dataset. We will illustrate this with
an example.

EXAMPLE 1.1. TopkRGS
For the running example shown in Figure 1(a), given minsup = 2,
the top-1 covering rule group for rows r1 and r2 is {abc → C}
with confidence 100%, the top-1 covering rule group for row r3 is

dcstunga
Text Box
Binary executable of RCBT is now available at http://nusdm.comp.nus.edu.sg/resources.htm

http://nusdm.comp.nus.edu.sg/resources.htm

i ri class
1 a, b, c, d, e C
2 a, b, c, o, p C
3 c, d, e, f, g C
4 c, d, e, f, g ¬C
5 e, f, g, h, o ¬C

(a) Example Table

ij R(ij)
C ¬C

a 1, 2
b 1, 2
c 1, 2, 3 4
d 1, 3 4
e 1, 3 4, 5
f 3 4, 5
g 3 4, 5
h 5
o 2 5
p 2

(b) TT |∅ (or TT)

ij R(ij)
C ¬C

a 2
b 2
c 2, 3 4
d 3 4
e 3 4, 5

(c) TT |{1}

ij R(ij)
C ¬C

c 4
d 4
e 4, 5

(d) TT |{1,3}

Figure 1: Running Example

{cde → C} with confidence 66.7%, and the top-1 covering rule
group for rows r4 and r5 is {fge → ¬C} with confidence 66.7%.
The support values of the above top-1 covering rule groups are all
2, which is equal to minsup.

While formal definition will be given later, we summarize the
task of finding top-k covering rule groups as essentially doing the
following:

• Define an interestingness criterion that ranks the rule groups
in certain order.

• Based on the ranking, for each row r in the dataset, find the
k highest ranked rule groups of the same class as r such that
the antecedent of the k rule groups are all found in r (i.e. r
is covered by these k rule groups).

The top-k covering rule groups are beneficial in several ways, as
listed below:

• TopkRGS can provide a more complete description for each
row. This is unlike previous proposal of interestingness mea-
sure like confidence which may fail to discover any interest-
ing rules to cover some of the rows if the mining threshold
is set too high. Correspondingly, information in those rows
that are not covered will not be captured in the set of rules
found. This may result in the loss of important knowledge
since gene expression datasets have small number of rows;

• Finding TopkRGS helps us to discover the complete set of
useful rules for building a classifier while avoiding the ex-
cessive computation adopted by algorithms like the popular
CBA classifier [19]. These algorithms first discover a large
number of redundant rules from gene expression data most
of which will be pruned in the later rule selection phase. We
will prove later that the set of top-1 covering rule group for
each row contains the complete set of rules required to build

the CBA classifier while avoiding the generation of huge re-
dundant rules;

• We do not require users to specify the minimum confidence
threshold. Instead only the minimum support threshold and
the number of top covering rule groups, k, are required. Such
an improvement is useful since it is not easy for users to set
an appropriate confidence threshold (we do not claim that
specifying minimum support is easy here) while the choice
of k is semantically clear. In fact, the ability to control k
allows us to balance between two extremes. While rule in-
duction algorithms like decision tree typically induce only
1 rule from each row and thus could miss interesting rules,
association rule mining algorithms are criticized for finding
too many redundant rules covering the same rows. Allow-
ing users to specify k gives them control over the number of
rules to be generated.

• The number of discovered top-k covering rule groups is bounded
by the product of k and the number of gene expression data,
which is usually quite small.

In addition to building CBA classifier with top-1 covering rule
groups of each row, we try to address an open problem of CBA.
When the generated CBA classifier does not cover a test data, CBA
uses a default class to classify test data. Such case happens quite
often for CBA on gene expression data. In fact, discussion with
biologists has revealed that they are usually reluctant to believe in
the classification made by selecting a default class which is done
without giving any deciding factors. In this paper, we try to refine
the classification of such test data by building standby classifiers.
We also improve CBA by aggregating the discriminating powers of
a subset of rules.

In this paper, we develop an efficient algorithm to mine the top-
k covering rule groups for each row of the gene expression data.
We build CBA classifier from the set of top-1 covering rule groups
and develop a new classifier called RCBT. We identify our main
contributions as follows.

First, we propose the concept of top-k covering rule groups for
each row of a gene expression dataset, which is useful as discussed
above.

Second, we design an efficient algorithm to discover the top-
k covering rule groups for each row. Extensive experiments on
real-life gene expression datasets show that our algorithm can be
several order of magnitudes better than FARMER, CLOSET+ and
CHARM which uses diff-sets.

Third, we propose a new classification technique using top-k
covering rule groups. Experiments on several gene expression datasets
show that our classifier outperforms or is competitive with CBA
[19], IRG classifier [6], SVM [15], and C4.5 family algorithms
[27] (single tree, bagging and boosting) on real-life datasets. Fur-
thermore, we show that our method does provide knowledge of bi-
ological significance.

The rest of this paper is organized as follows: in the next section,
we will introduce the concept of top-k covering rule groups for each
row and its application in building CBA classifier. The proposed
algorithm will be presented in Sections 3 and 4. Section 5 will
present our classification methods. To illustrate the performance of
our proposed algorithm and our classifier, experimental results will
be given in Section 6. Section 7 reviews some related work. We
will conclude our discussion in Section 8.

2. PRELIMINARY
TopkRGS and RCBT work on discretized gene expression data.

Dataset: the gene expression dataset (or table) D consists of a set
of rows, R={r1, ..., rn}. Let I={i1, i2, ..., im} be the complete set
of items of D (each item represents some interval of gene expres-
sion level), and C = {C1, C2, ..., Ck} be the complete set of class
labels of D, then each row ri ∈ R consists of one or more items
from I and a class label from C .

As an example, Figure 1(a) shows a dataset with 5 rows, r1,...,r5,
the first three of which are labelled C while the other two are la-
belled ¬C . To simplify the notation, we use the row id set to rep-
resent a set of rows and the item id set to represent a set of items.
For instance, “134” denotes the row set {r1, r3, r4}, and “cde”
denotes the itemset {c, d, e}.

As a mapping between rows and items, given a set of items I ′ ⊆
I , we define the Item Support Set, denoted R(I′) ⊆ R, as the
largest set of rows that contain I ′. Likewise, given a set of rows
R′ ⊆ R, we define Row Support Set, denoted I(R′) ⊆ I , as the
largest set of items common among the rows in R′.

EXAMPLE 2.1. R(I′) and I(R′)
Consider again the table in Figure 1(a). Let I ′ be the itemset
{c, d, e}, thenR(I ′) = {r1, r3, r4}. Let R′ be the row set {r1, r3},
then I(R′)={c, d, e} since this is the largest itemset that appears
in both r1 and r3.

Based on our definition of item support set and row support set,
we can redefine the association rule.
Association Rule: an association rule γ, or just rule for short,
from dataset D takes the form of A → C , where A ⊆ I is the
antecedent and C is the consequent (here, it is a class label). The
support of γ is defined as the |R(A ∪ C)|, and its confidence is
|R(A ∪ C)|/|R(A)|. We denote the antecedent of γ as γ.A, the
consequent as γ.C , the support as γ.sup, and the confidence as
γ.conf .

As discussed in the introduction, in real biological applications,
biologists are often interested in rules with a specified consequent
C , which usually indicates the cancer outcomes or cancer status.

2.1 Top-k Covering Rule Groups (TopkRGS)
The rule group is a concept which helps reduce the number of

rules discovered by identifying rules that come from the same set
of rows and clustering them conceptually into rule groups.

DEFINITION 2.1. Rule Group
Let D be the dataset with itemset I and C be the specified class
label. G = {Ai → C|Ai ⊆ I} is a rule group with antecedent
support set R and consequent C, iff (1) ∀Ai → C ∈ G, R(Ai) =
R, and (2) ∀R(Ai) = R, Ai → C ∈ G. Rule γu ∈ G (γu:
Au → C) is an upper bound of G iff there exists no γ ′ ∈ G
(γ′:A′ → C) such that A′ ⊃ Au. Rule γl ∈ G (γl: Al → C) is
a lower bound of G iff there exists no γ ′ ∈ G (γ′: A′ → C) such
that A′ ⊂ Al.

LEMMA 2.1. Given a rule group G with the consequent C and
the antecedent support set R, it has a unique upper bound γ (γ:
A → C).

Based on lemma 2.1, we use upper bound rule γu to refer to a
rule group G in the rest of this paper.

EXAMPLE 2.2. Rule Group
Given the table in Figure 1(a). R({a}) = R({b}) = R({ab}) =
R({ac}) = R({bc}) = R({abc}) = {r1, r2}. They make up
a rule group {a → C, b → C, ..., abc → C} of consequent C,
with the upper bound abc → C and the lower bounds a → C and
b → C .

It is obvious that all rules in the same rule group have the same
support and confidence since they are essentially derived from the
same subset of rows. Based on the upper bound and all the lower
bounds of a rule group, it is easy to identify the remaining mem-
bers. Besides, we evaluate the significance of rule groups consis-
tently with the individual rule ranking criterion.

DEFINITION 2.2. Significant
Rule group γ1 is more significant than γ2 if (γ1.conf > γ2.conf)∨
(γ1.sup > γ2.sup ∧ γ1.conf = γ2.conf).

The top-k covering rule groups, as defined below, encapsulate
the most significant information of the dataset while enabling users
to control the amount of information in a significance-top-down
manner.

DEFINITION 2.3. Top-k covering Rule Groups (TopkRGS)
Given the database D and a user-specified minimum support minsup,
the top-k covering rule groups for a row ri is the set of rule groups
{γrij} (1 < j < k), where γrij .sup ≥ minsup, γrij .A ⊂ ri

and there exists no rule group γ ′ γ′ /∈ {γrij} such that γ′ is more
significant than γrij . For brevity, we will use the abbreviation Top-
kRGS to refer to top-k covering rule groups for each row.

2.2 Usefulness of TopkRGS in Classification
In this subsection, we prove that the set of top-1 covering rule

groups for each row contain the set of rules required to build CBA
classifier. The basic idea of CBA classification method can be sum-
marized as the following steps:

Step 1: Generate the complete set of class association rules CR
for each class that satisfy the user-specified minimum sup-
port and minimum confidence.

Step 2: Sort the set of generated rules CR according to the re-
lations ”≺”. Given two rules, ri and rj , ri ≺ rj if and
only if one of the following three conditions is satisfied (1)
ri.conf > rj .conf ; (2) ri.conf = rj .conf ∧ ri.sup >
rj .sup; or (3) ri.conf = rj .conf ∧ ri.sup = rj .sup and
ri is discovered before rj . Because CBA discovers rules in
breadth-first manner, this implies that CBA will select the
shortest one when several rules have the same support and
confidence.

Step 3: Select rules from sorted rule set CR. For each rule r in
CR, if it can correctly classify some training data in D, we
put it into classifier C ′, remove those training data covered
by r and continue to test the rules after r in CR. Meanwhile,
we select the majority class in the remaining data as the de-
fault class and compute the errors made by current C ′ and
default class. This process continues until there are no rules
or no training data left.

Step 4: Locate the rule r in C ′ that results in the least errors and
discard those rules in C ′ after r to get the final classifier C .

As can be seen, in CBA, the rule generation scheme using fixed
support and confidence thresholds at Step 1 and the rule selection
scheme based on coverage test at Step 3 are simply NOT compati-
ble with each other. Because of the extremely high dimensionality
of gene expression data, even when the confidence threshold is set
as high as 95%, CBA cannot finish running at Step 1 in several
days. It is even more ridiculous that most of the time spent is used
to generate redundant rules which will eventually be pruned away
at Step 3. The following lemma proves that the rules selected by
CBA for classification are actually a subset of rules of TopkRGS
with k = 1.

LEMMA 2.2. Given a minimum support. Let Ψ be the set of dis-
covered top-1 covering rule groups for each training data, Ψs be
the set of shortest lower bounds of Ψ, and C ′ be the set of rules
selected at Step 3 of CBA method. We get C ′ ⊆ Ψs.
Proof: For each rule r ∈ C ′, it must correctly classify some train-
ing data. Because of the sorting at step 2 of CBA method, r must
be the top-1 covering rule of a training data if it correctly classifies
the training data. This means that r must be in Ψs. We get the
proof.

Note that mining top-1 covering rule group does not require a
minimum confidence threshold while CBA algorithm needs one when
generating rules at Step 1. Setting too high a confidence threshold
will result in some rows not being covered by the discovered rule
while lowering the confidence threshold will result in substantial
increase in running time. This is unlike our approach which will
still find the most significant top-1 covering rule for each training
data without specifying the appropriate confidence threshold in ad-
vance.

2.3 Problem Statement
The first problem that we address is to efficiently discover the

set of top-k covering rule groups for each row (TopkRGS) of gene
expression data given a user specified minimum support minsup.

In addition to applying the top-1 covering rule groups to build
CBA classifier, we also propose a refined classification method
based on TopkRGS (RCBT). RCBT improves CBA method in two
aspects:

• RCBT reduces the chance that a test data is classified based
on a default class;

• RCBT uses a subset of rules to make a collective decision.

3. EFFICIENT DISCOVERY OF TOPKRGS

{o}{c}{c}

{abcop}

{e}{e}{cde}

{e}

{e}{cde}{cde}{abc}

{abcde}

245

1345

134

34
35 45

235

25

234{c}

{efgho}{cdefg}

{efg}{efg}

{efg}

{cdefg}

{cdefg}

{}12345

{c}1234 1235{} {}1245

124{c} 125 {}{c}

{}

{}{}145
123

2423151413

135

{}

2345

345

5432

12

1

Figure 2: Row Enumeration Tree.

We first give a general review of how row enumeration takes
place using the (projected) transposed table first proposed in [6]
before proceeding to our TopkRGS discovery strategies. Imple-
mentation details will then be discussed.

Figure 1(b) is a transposed version TT of the table in Figure 1(a).
In TT , the items become the row ids while the row ids become the
items. The rows in the transposed tables are referred as tuples to
distinguish from the so-called rows in the original table. Let X be
a subset of rows. Given the transposed table TT , a X-projected
transposed table, denoted as TT |X , is a subset of tuples from
TT such that: 1) For each tuple t in TT which contains all the

row ids in X , there exists a corresponding tuple t′ in TT |X . 2) t′

contains all rows in t with row ids larger than any row in X . As an
example, the {13}-projected transposed table, TT |13, is shown in
Figure 1(d).

A complete row enumeration tree will then be built as shown
in Figure 2. Each node X of the enumeration tree corresponds to
a combination of rows R′ and is labelled with I(R′) that is the
antecedent of the upper bound of a rule group identified at this
node. For example, node “12” corresponds to the row combina-
tion {r1, r2} and “abc” indicates that the maximal itemset shared
by r1 and r2 is I({r1, r2}) = {a, b, c}. An upper bound abc → C
can be discovered at node “12”. The correctness is proven by the
following lemma in [6].

LEMMA 3.1. Let X be a subset of rows from the original table,
then I(X) → C must be the upper bound of the rule group G
whose antecedent support set is R(I(X)) and consequent is C .

By imposing a class dominant order order ORD on the set of
rows, FARMER [6] performs a systematic search by enumerating
the combinations of rows based on the order ORD. For exam-
ple, let “1 ≺ 2 ≺ 3 ≺ 4 ≺ 5” be the ORD order, then the
depth-first order of search in Figure 2 will be {“1”, “12”, “123”,
“1234”, “12345”, “1235”,...,“45”, “5”} in absence of any opti-
mization strategies. Ordering the rows in class dominant order is
essential for FARMER to apply its confidence and support pruning
efficiently. Class dominant order is also essential for efficient prun-
ing based on the top-k dynamic minimum confidence, as we will
discuss later.

DEFINITION 3.1. Class Dominant Order
A class dominant order ORD of the rows in the dataset is an
order in which all rows of class C are ordered before all row of
class ¬C .

Given the row enumeration strategies introduced above, a naive
method of deriving the top-k covering rule groups is to first obtain
the complete set of upper bound rules in the dataset by running
the row-wise algorithm FARMER [6] with a low minimum confi-
dence threshold and then picking the top-k covering rule groups for
each row in the dataset. Obviously, this is not efficient. Instead,
our algorithm will maintain a list of top-k covering rule groups for
each row during the depth-first search and keep track of the k-th
highest confidence of rule group at each enumeration node dynam-
ically. The dynamic minimum confidence will be used to prune the
search space. That is, whenever we discover that the rule groups
to be discovered in the subtree rooted at the current node X will
not contribute to the top-k covering rule groups of any row, we im-
mediately prune the search down node X . The reasoning of our
pruning strategies is based on the following lemma.

LEMMA 3.2. Given a row enumeration tree T , a minimum sup-
port threshold minsup, and an ORD order based on specified
class label C , suppose at the current node X , R(I(X)) = X , Xp

and Xn represent the set of rows in X with consequent C and ¬C
respectively, and Rp and Rn are the set of rows ordered after rows
in X with consequent C and ¬C respectively in the transposed ta-
ble of node X , TT |X . Then, we can conclude that the maximal set
of rows that the rule groups to be identified in the subtree rooted at
node X can cover is Xp ∪ Rp.
Proof: As R(I(X)) = X , the maximal antecedent support set of
the rule groups to be identified at the subtree rooted at node X is
(X ∪Rp ∪Rn). In addition, as the rule groups are labelled C , the
maximal set of rows covered by these rule groups is (Xp ∪ Rp).

Combined with Definition 2.2, we compute minconf and sup,
the cutting points of the TopkRGS thresholds for the rows in (Xp∪
Rp), where minconf is the minimum confidence value of the dis-
covered TopkRGS of all the rows in Xp ∪ Rp, assuming the top-k
covering rule groups of each row ri is ranked in significance such
that γri1 ≺ γri2 ≺ ... ≺ γrik,

minconf = min
ri∈(Xp∪Rp)

{γrik.conf}, (1)

and sup is the support value of the corresponding covering rule
group with confidence minconf ,

sup = γrck.sup, where γrck.conf = minconf. (2)

According to the definition of the top-k covering rule groups
(Definition 2.3), we can further obtain Lemma 3.3 below.

LEMMA 3.3. Given the current node X , minconf and sup com-
puted according to Equations 1 and 2, if the rule group identi-
fied inside the subtree rooted at node X is less significant (ac-
cording to Definition 2.2) than γrck (γrck.conf = minconf and
γrck.sup = sup), then the rule group cannot become a rule group
in the top-k covering rule group list of any row.

Naturally our top-k pruning will proceed in the following way:

• If the upper bound of the confidence value of the rule groups
to be identified in the subtree rooted at node X is below
minconf which is dynamically calculated at node X , then
prune the search down node X;

• If the upper bound of the confidence value of the rule groups
to be identified in the subtree rooted at node X is equal to
minconf which is dynamically calculated at node X and
the upper bound of the support value of the rule groups to
be identified in the subtree rooted at node X is smaller than
sup, then prune the search space down node X .

The reasoning of our TopkRGS discovery is clearly that the rule
groups to be discovered down node X will not contribute to the
TopkRGS of any row. The top-k pruning strategy introduced above
can be perfectly integrated with the backward pruning, loose and
tight upper bound pruning of confidence or support values of FARMER,
which further speeds up our mining process. The following is an
example.

EXAMPLE 3.1. Discovery of Top-1 Covering Rule Groups
For the running example in Figure 1(a) where k = 1, specified
class is C , and minsup = 2, when the depth-first traversal comes
to node {1, 2}, the top-1 covering rule group for both r1 and r2

is dynamically updated to abc → C (conf:100%, sup:2). At node
{1, 3}, when Xp = {1, 3} and Rp = ∅, as the identified top-1 cov-
ering rule group for r1 has confidence 100% while no top-1 cover-
ing rule group of r3 has been discovered yet, we get minconf = 0
and sup = 0. Since the rule group cde → C identified at node
{1, 3} has confidence 66.7% and support 2, which is above the
minconf and minsup thresholds, it is output to update the top-1
covering rule group of r3. The estimated upper bound of the con-
fidence values of the sub-level nodes down node {1, 2} and {1, 3}
are all below the corresponding minconf and are simply pruned.
The consequent search down node {2} and {3} is pruned using the
backward pruning because of the rule groups down these nodes are
identified already in previous enumerations.

4. ALGORITHM
Our algorithm performs a depth-first traversal of the row enumer-

ation tree, where each node X will be associated with X-projected
transposed table. As an example, when visiting node 1 in the enu-
meration tree, the 1-projected transposed table will be formed as
shown in Figure 1(c). Also, it is important to note that the pro-
jected transposed table at a node can in fact be computed from the
projected transposed table of its parent node. To compute the 13-
projected transposed table as shown in Figure 1(d), we can simply
scan TT |1 and extract those tuples in TT |1 that contain r3. Since
the enumeration order is such that parent node will always be vis-
ited before the child node, this gives rise naturally to a recursive
algorithm where each parent node will call its children passing the
relevant projected transposed table to the children nodes.

Formally, the algorithm is shown in Figure 3. There are four
input parameters of the algorithm, the original dataset D, class la-
bel C, the minimum support minsup and k. The algorithm will
scan through the dataset D to count the frequency of each item and
remove infrequent items from each row in D. D will then be trans-
formed into the corresponding transposed table. At the same time,
the top-k covering rule groups for each row ri with consequent C
denoted as ζri =[γri1, ..., γrik] will be initialized. Then the pro-
cedure Depthfirst() is called to perform the depth-first traversal of
row enumeration tree.

The procedure Depthfirst() takes in six parameters at node X:
TT ′|X , Xp, Xn, Rp, Rn, and minsup. TT ′|X is the X-projected
transposed table at node X . Xp and Xn represent the the set of
rows in X with consequent C and ¬C respectively. Rp is the set
of candidate enumeration rows with consequent C that appear in
TT ′|X and Rn is the set of enumeration candidate rows with ¬C
appearing in TT ′|X . Among the steps in Depthfirst(), only steps
10, 12 and 14 are necessary if no pruning strategies are adopted.
Step 10 scans the projected table TT ′|X and computes freq(ri),
the frequency of occurrence of each row ri in TT ′|X . Based on
freq(ri), rows that occur in all tuples (i.e. freq(u) = I(X)) of
TT ′|X are found. These rows will appear in all descendant nodes
of X and are thus added directly into X . Correspondingly, Xp and
Xn are updated based on the consequent of these rows and they are
removed either from Rp or Rn at step 12. Step 14 moves on into
the next level enumerations in the search tree by selecting each row
ri that is either in Rp or Rn, creating a new {X ∪ {ri}}-projected
transposed table and then passing the updated information to an-
other call of MineTopkRGS.

Note that Step 14 implicitly does some pruning since it is pos-
sible that there is no row available for further enumeration, i.e.
Rp ∪ Rn = ∅. It can be observed from the enumeration tree that
there exist some combinations of rows, X , such that I(X) = ∅.

4.1 Pruning Strategies
In MineTopkRGS, top-k pruning is the main pruning strategy,

and other pruning techniques first introduced in [6] are the supple-
mentary pruning that we have seamlessly combined with our top-k
pruning.

We first briefly introduce how to estimate the support upper bounds
at an enumeration node X . At Step 9, it is obvious that the sup-
port of any rule groups enumerated along X cannot be more than
|Xp| + |Rp|. The maximal number of rows with consequent C ,
denoted as mp(mp ≤ Rp), among all the branches under node X
can be obtained at Step 10. As a result, we can get a tighter support
upper bound at Step 11, i.e. |Xp| + mp.

The estimation of confidence upper bounds is a bit complicated.
For a rule γ discovered in the subtree rooted at X , its confidence is
computed as |R(γ.A∪C)|/(|R(γ.A∪C)|+|R(γ.A∪¬C)|). This

Algorithm MineTopkRGS (D, C, minsup, k)

1. Scan database D to find the set of frequent items F and remove the
infrequent items in each row ri of D;

2. Let Dp be the set of rows in D with consequent C and Dn be the
set of rows in D without consequent C;

3. Convert table D into transposed table TT |∅;

4. Initiate a list of k dummy rule groups with both confidence and sup-
port values of 0, ζri =[γri1,, γrik], for each row ri in Dp;

5. Call Depthfirst (TT |∅, ∅, ∅, Dp, Dn, minsup);

6. Return ζri for ∀ri ∈ Dp.

Procedure: Depthfirst(TT ′|X , Xp, Xn, Rp, Rn, minsup)

7. Backward Pruning: If there is a row r′ that appears in every tuple
w.r.t I(X) and does not belong to X, Then return.

8. Threshold Updating: Check the kth covering rule group γrik for
each row ri ∈ Xp ∪ Rp to find the lowest confidence minconf
and the corresponding support sup.

9. Threshold Pruning: If prunable with the loose upper bounds of
support or confidence, Then return.

10. Scan TT ′|X and count the frequency, freq(ri), for each row, ri ∈
Rp ∪ Rn.
Let Yp ⊂ Rp be the set of rows such that freq(u) = |I(X)|, u ∈
Rp and Yn ⊂ Rn be the set of rows such that freq(u) =
|I(X)|, u ∈ Rn;
Xp = Xp ∪ Yp, Xn = Xn ∪ Yn and X = Xp ∪ Xn;

11. Threshold Pruning: If prunable with the tight upper bounds of sup-
port or confidence, Then return.

12. Rp = Rp − Yp, Rn = Rn − Yn.

13. c = |Xp|/(|Xp| + |Xn|); //compute confidence
If ((|Xp| ≥ minsup) ∧ (c > minconf)) ∨ ((c = minconf)∧
(|Xp| > sup)) Then

For each ri ∈ Xp Do
If ∃γrij ∈ ζri, j ≤ k such that

(γrij .conf < c) or
((γrij .conf = c) ∧ (γrij .sup < |Xp|)),

Then update ζri with I(X) → C;

14. For each ri ∈ Rp ∪ Rn Do
If ri ∈ Rp Then Rp = Rp − {ri}, Xp = Xp ∪ {ri};
If ri ∈ Rn Then Rn = Rn − {ri}, Xn = Xn ∪ {ri};
Depthfirst(TT ′|X∪ri

, Xp, Xn, Rp, Rn, minsup);

Figure 3: Algorithm MineTopkRGS

expression can be simplified as x/(x+y), where x = |R(γ.A∪C)|
and y = |R(γ.A∪¬C)|. This value is maximized with the largest
x and the smallest y. The smallest y is |Rn| at node X and the
largest x can be |Rp| or mp as we just discussed. Therefore, we
can get a loose confidence upper bound |Rp|/(|Rp|+ |Rn|) at Step
9 and a tight confidence upper bound mp/(mp + |Rn|) at Step 11.

4.1.1 Top-k Pruning
Step 8 is a very important step in our algorithm. In this step, the

minconf threshold is dynamically set for enumeration down X ,
which makes it possible to use the confidence threshold to prune the
search space at steps 9 and 11. The minconf threshold is obtained
according to Equation 1. Steps 9 and 11 perform pruning by uti-
lizing the user-specified minimum support threshold, minsup and
the dynamic minimum confidence threshold, minconf (generated
dynamically at step 8). If the estimated upper bound of either mea-
sure at X is below either minsup or minconf , we stop searching
down node X . At Step 9, we will perform pruning using the two
loose upper bounds of support and confidence that can be calcu-

lated without scanning TT ′|X . At Step 11, we compute the tight
upper bounds of support and confidence after scanning TT ′|X .

The corresponding support sup information is also recorded for
computation at Step 13. Note that sup ≥ minsup. Whenever a
new rule group I(X) → C is discovered at node X , a check is
made to see whether the new rule is more significant than one or
more rule groups in the list of top-k covering rule group for some
rows in Xp, the top-k covering rule groups of such rows will be
updated dynamically. This is done at Step 13.

Two additional optimization methods are utilized in our top-k
pruning.

• First, because we can easily know the confidence of the rules
whose antecedent is a single item at Step 1 of algorithm
MineTopkRGS, we use these confidence values to initiate the
confidence and support values of the list of TopkRGS at Step
4 instead of initiating them with zero. Such an optimization
may cause a problem. That is, if a single item is a lower
bound of an upper bound rule, the result set will not include
the upper bound rule because they have the same support and
confidence. We need to update the single item with the upper
bound rule by adapting step 13 of algorithm MineTopkRGS.
Another technical detail here is that we need ensure that any
two single items to be used to initiate the top-k rule groups
for one row cannot be the lower bounds of the same upper
bound rules.

• Second, we dynamically increase the user-specified minsup
threshold if we find that all TopkRGS have 100% confidence
and the lowest support value of the k rule groups is larger
than the user-specified one.

MineTopkRGS outputs the most significant information for each
row, as well as dramatically improves the efficiency and reduces
the memory usage, compared to FARMER.

4.1.2 Backward Pruning
Step 7 implements the backward pruning first introduced in [6].

If there exists a row r′ that appears in each prefix path w.r.t the set
of nodes contributing to I(X) and does not belong to row set X ,
the rule groups I(X) → C and all rule groups below X must have
already been discovered below some enumeration node containing
r′ as proved in [6]. The principle is the same but our integration
with the prefix tree makes TopkRGS more efficient. For example,
at node {2} in Figure 4 (b), we just need to do a back scan along
the corresponding pointer list of node {2} and can quickly find that
there exists no such r′.

In addition, in ORD, the rows from the same class are sorted in
the ascending order of the number of frequent items contained in
each row. This will improve the efficiency of algorithm MineTop-
kRGS.

4.2 Implementation
Next, we will illustrate how to represent (projected) transposed

tables with prefix trees. The transposed table in Figure 1(b) is rep-
resented with the prefix tree shown in Figure 4 (a) (corresponding
to the root node). The left head table in the figure records the list
of rows in the transposed table and their frequencies. At each node
of the prefix tree, we record row id and the count of the row in a
prefix path (separated by “:” in Figure 4 (a)). Additional informa-
tion recorded at each node but not shown in the figure is the set
of items represented at the node, such as items a, b, c, d and e at
node “1:5”. Such information will help to determine quickly the
rule group w.r.t. a projected transposed table.

2

3

4

5

root

1

5:12:2

5:14:2

4:13:1

5:1

1:5

3:2

2:3

5

5

5

5

5

5:24:23:2

(a) PT |1

2

3

4

5

root

1

5:12:2

5:14:2

4:13:1

5:1

1:5

3:2

2:3

5

5

5

5

5

5:24:23:2

(b) PT |2

1

3

3

32

3

4

5

5:12:2

5:14:2

4:13:1

5:1

1:5

3:2

2:3

root

2

3

4

5

5:24:23:2

1

5

5

5

5

5

(c) PT |12

Figure 4: Projected Prefix Trees

EXAMPLE 4.1. Projected Prefix Tree
The part of nodes enclosed by dotted line in Figure 4(a) is the 1-
projected prefix tree, PT |1. Note that there are pointers linking
the child nodes of the root with the corresponding rows in the head
table. By following the pointer starting from row 1 of the header
table, we can get the PT |1. After PT |1 has been mined recursively,
the child paths of the node with label 1 will be assigned to other
rows of the header table after row 1 (i.e. rows 2, 3, 4 and 5) and
we get the 2-projected prefix tree, PT |2. In Figure 4(b), the part
enclosed by dotted line is PT |2. By following the pointer from row
2 in the header table, we can get PT |2.

5. USEFULNESS IN CLASSIFICATION
In this section, we will first explain how a CBA classifier can

be built from the set of discovered top-1 covering rule groups for
each row, then describe our proposed classification method, Re-
fined Classification Based on TopkRGS (RCBT).

5.1 Building CBA Classifier
In order to build CBA classifier, we need to discover one of the

shortest lower bounds for each top-1 covering rule group. [6] pro-
posed a method to discover all lower bounds of a rule group. How-
ever, in entropy-based discretized gene expression datasets, a rule
group may contain tens of thousands of lower bounds and discover-
ing all these lower bounds is not only unnecessary but also compu-
tationally expensive. Since we do not aim to discover all the lower
bounds, we give a straightforward but effective method to search
only a given number of lower bounds for classification purpose.

LEMMA 5.1. Rule γ′ is a lower bound rule of rule group G with
upper bound rule γ iff (1) γ ′.A ⊆ γ.A, (2)|R(γ′.A)| = |R(γ.A)|
and (3) there is no other rule member γ ′′ of G such that γ′.A ⊃
γ′′.A.

With Lemma 5.1, we derive the algorithm FindLB() in Figure
5. It takes in four parameters: training data D, the upper bound
rule γ, the set of rows covered by γ (denoted as rowset and can
be recorded when generating γ in algorithm MineTopKRGS), and
the number of required shortest lower bounds nl (nl=1 for CBA
classifier). At Step 1, we first rank genes based on their discrim-
inant ability in classification measured by entropy score [3], and

then rank the items in an upper bound rule based on the rankings of
their corresponding genes (one gene may be discretized into sev-
eral intervals, each represented by an item). In this way, we dis-
cover the shortest lower bound rules that contain items from the
most discriminant genes to build CBA classifier. At step 2, for a
candidate lower bound combination clb, we first test the condition
(3) in Lemma 5.1; if condition (3) is satisfied, we continue to test
condition (2), which is satisfied only if there does not exist a row
r ∈ D ∧ r /∈ rowset that clb is contained in r. If both (2) and (3)
are satisfied, clb is a lower bound. This process continues until we
get the nl lower bound rules.

Algorithm FindLB(D, γ, rowset, nl)

1. Rank the items in γ.A according to the descending order of
the entropy scores of the corresponding genes;

2. Perform a breadth-first search in the search space formed by
the list of items γ.A until we get nl lower bound rules;

Figure 5: Algorithm FindLB

Both dataset D and candidate lower bound combinations are rep-
resented with bitmap to speed up the containment test. The dis-
covered lower bounds usually contain 1-5 items while the upper
bounds usually contain hundreds of items in the data we tested. We
use one heuristic rule to speed-up the algorithm FindLB. Consider
two upper bound rules, γ1 and γ2. Let A′ = γ1.A ∩ γ2.A. The
lower bound rules of γ2 will contain at least one item in γ2.A−A′

if γ2.A − A′ �= ∅, and the lower bound rules of γ1 will contain at
least one item in γ1.A − A′ if γ1.A − A′ �= ∅. We can prune the
search space when we find that it will not generate a lower bound.

With the set of lower bound rules, we can build CBA classifier
using the method presented in Section 2.2. Note that a minimum
confidence threshold can be imposed on the set of lower bounds
to filter out rules that do not satisfy the threshold to be consistent
with CBA method in [19]. However, in this case, for some training
data, all the rules cover them may have confidences beneath the
specified confidence threshold and will be pruned off totally. So
some information will be lost.

5.2 RCBT
As discussed earlier, RCBT tries to reduce the chance of clas-

sifying test data based on the default class by building stand-by
classifiers to classify test data that cannot be handled by the main
classifier. Moreover, RCBT uses a subset of lower bound rules to
make a collective decision instead of selecting only one shortest
lower bound rule for classifier building like CBA. The subset of
lower bound rules are selected based on the discriminant ability of
genes.

Building Classifier: RCBT has two input parameters, k, the num-
ber of covering rule groups for each row and nl, the number of
lower bound rules to be used.

Let RGj denote the set of rules groups that appear as a top-j rule
group in at least one of the training data. We will thus have k sets of
rule groups RG1,...,RGk . These k sets of rule groups are used to
build k classifiers CL1,...,CLk with CLj being built from RGj .
We call CL1 the main classifier and CL2,...,CLk backup classi-
fiers. For each rule group in RGj , RCBT will find the nl shortest
lower bound rules by calling algorithm FindLB(). The union of the
lower bound rules will be sorted and pruned (as in Step 3 of Section
2.2) to form CLj .

Besides both main and backup classifiers, we set a default class

like in CBA. This default class is set as the majority class of the
remaining training data after step 4 in Section 2.2.

Prediction: Given a test data t, we will go through CL1 to CLk in
that order to see if t can be handled by any of these classifiers. The
first classifier that has matching rules for t will determine its class.
If the test data cannot be handled by any of the classifiers, then the
default class will be used for the prediction.

Instead of predicting a test data with the class of the first match-
ing rule like in CBA classifier, RCBT tries to match all rules with
an individual classifier (the main classifier or individual standby
classifiers) and makes a decision by aggregating voting scores. We
design a new voting score for a rule γci by considering both confi-
dence and support as follows:

S(γci) = γci .conf ∗ γci .sup/dci .

where dci is the number of training data of the class γ.C , i.e. ci.
Note that 0 ≤ S(γci) ≤ 1. By summing up the scores of all rules
in each class ci, we get a score Sci

norm for normalization purpose.
Given a test data t, we suppose that t satisfies the following mi

rules of class ci: γ(t)ci
1 , γ(t)ci

2 , ...γ(t)ci
mi

,. The classification score
of class ci for the test data t is calculated as:

Score(t)ci = (
Pmi

i=1 S(γ(t)ci
i))/Sci

norm.

We make a prediction for t with the highest classification score.

6. EXPERIMENTAL STUDIES
In this section, we will look at both the efficiency of our algo-

rithm in discovering TopkRGS and the usefulness of the discovered
TopkRGS in terms of both CBA classifier and our proposed RCBT
classifier. All our experiments were performed on a PC with a Pen-
tium IV 2.4 Ghz CPU, 1GB RAM and a 80GB hard disk. Algo-
rithms were coded in Standard C.
Datasets: We use 4 popular gene expression datasets for experi-
mental studies. The 4 datasets are the clinical data on ALL-AML
leukemia (ALL) 1, lung cancer (LC)2, ovarian cancer(OC) 3, and
prostate cancer (PC) 4. In such datasets, the rows represent clinical
samples while the columns represent the activity levels of genes/proteins
in the samples. There are two categories of samples in these datasets.

We adopt the entropy-minimized partition 5 to discretize gene
expression datasets. The entropy discretization algorithm also per-
forms feature selection as part of its process. Table 1 shows the
characteristics of the four discretized datasets: the number of orig-
inal genes, the number of genes after discretization, the two class
labels (class 1 and class 0), and the number of rows for training
and test data. All experiments presented here use the class 1 as the
consequent; we have found that using the other consequent consis-
tently yields qualitatively similar results.

6.1 Efficiency
Algorithms: In term of efficiency, we compare algorithm Mine-
TopkRGS with FARMER, CLOSET+ and CHARM (which uses
diff-sets). But CLOSET+ is usually unable to run to completion
within reasonable time (for several hours without results) and CHARM
will report errors after using up memory on the entropy discretized
datasets. Therefore, we only report the runtime of MineTopkRGS
and FARMER in discovering the upper bounds of discovered rule

1http://www-genome.wi.mit.edu/cgi-bin/cancer
2http://www.chestsurg.org
3http://clinicalproteomics.steem.com/
4http://www-genome.wi.mit.edu/mpr/prostate
5the code is available at http://www.sgi.com/tech/mlc/

groups. The reported time here includes the I/O time. We should
point out that MineTopkRGS discovers different kinds of rules from
all these existing methods.

Figure 6 (a-d) shows the effect of varying minimum support
threshold minsup. The graphs plot the runtime for the two algo-
rithms at various settings of minimum support. Note that the y-axes
in Figure 6 are in logarithmic scale. We run algorithm MineTop-
kRGS by setting the parameter k at 1 and 100 respectively on all the
datasets. For FARMER algorithm, we run it by setting minimum
confidence minconf at 0.9 and 0 (which disables the pruning with
confidence threshold) on datasets ALL, and LC. Due to the rela-
tively large number of rows in the other two datasets, FARMER is
slow even when we set minconf at 0.9 and 0.95 respectively. For
dataset PC, the runtime curve of FARMER at minconf =0.9 is at
the upper right corner. We do not show the runtime of FARMER
on dataset OC because it cannot finish in several hours even at
minconf =0.95. To further show the effect of prefix tree structure
on the runtime and thus the improvement of top-k prunning alone
on the runtime, we also implemented FARMER with prefix tree
structure and the runtime curve is labelled as “FARMER+prefix”.
Note that the minimum supports shown in Figure 6 are absolute
values. We usually vary minimum support from 95% to 60% when
measured with a relative value. We begin with a high minimum
support in order to allow FARMER to finish in reasonable time.

Figure 6 (a-d) shows that MineTopkRGS is usually 2 to 3 or-
ders of magnitude faster than FARMER. Especially at low mini-
mum support, MineTopkRGS outperforms both FARMER+Prefix
and FARMER substantially. This is because FARMER discovers a
large number of rule groups at lower minimum support while the
number of rule groups discovered by MineTopkRGS is bounded.
This also explains why MineTopkRGS is not sensitive to the change
of minimum support threshold as shown in Figure 6. Besides, Fig-
ure 6 (a-d) demonstrates that the combination of row enumeration
and the prefix tree technique speeds up the mining process suc-
cessfully, by which, FARMER+prefix can improve the efficiency
of FARMER by about one order of magnitude.

Figure 6 (e) shows the effect of varying k on runtime. We ob-
serve similar tendencies on all datasets and report results on datasets
ALL and PC only. It is quite reasonable that MineTopkRGS is
monotonously increasing with k.

The impressive performance of MineTopkRGS can be contributed
to four main factors. First, TopkRGS bounds the number of discov-
ered rules. Second, the row enumeration strategy fits the problem of
mining TopkRGS very well. Third, the prefix tree structure speeds
up frequency computation. Fourth, the dynamically generated min-
imum confidence helps in pruning search space although MineTop-
kRGS does not require users to specify minimum confidence.

6.2 Classification Accuracy
In term of classification accuracy, we compare the performance

of RCBT classifier with CBA, IRG classifier, the C4.5 family algo-
rithms (single tree, bagging and boosting), and the support vector
machine (SVM). For the C4.5 family algorithms, we use the open-
source software Weka version 3.2. We use SV M light 5.0 for the
SVM algorithm. To keep the comparisons fair, SVM and the C4.5
family algorithms are run using the same genes selected by entropy
discretization, but with the original real values of the gene expres-
sion levels. Besides, we report the best accuracy of SVM when
varying between the linear and polynomial kernel functions. The
open-source-code CBA usually cannot finish after running several
days. We set the minimum support at 0.7 of the number of instances
of the specified class to generate top-1 covering rule group of each
row to build CBA classifier. The same minimum support is set for

Dataset # Original Genes # Genes after Discretization Class 1 Class 0 # Training # Test
ALL/AML (ALL) 7129 866 ALL AML 38 (27 : 11) 34
Lung Cancer (LC) 12533 2173 MPM ADCA 32 (16 : 16) 149

Ovarian Cancer (OC) 15154 5769 tumor normal 210 (133 : 77) 43
Prostate Cancer (PC) 12600 1554 tumor normal 102 (52 : 50) 34

Table 1: Gene Expression Datasets

 0.01

 0.1

 1

 10

 100

 1000

 10000

17 19 21 22 23 25

R
un

tim
e(

s)

Minimum Support

FARMER
FARMER(minconf=0.9)

FARMER+prefix(minconf=0.9)
TOP1

TOP100

(a) ALL-AML leukemia

 0.01

 0.1

 1

 10

 100

 1000

7 8 10 12 13 15

R
un

tim
e(

s)

Minimum Support

FARMER
FARMER(minconf=0.9)

FARMER+prefix(minconf=0.9)
TOP1

TOP100

(b) Lung Cancer

 1

 10

 100

 1000

 10000

80 94 100 107 114 120 127

R
un

tim
e(

s)

Minimum Support

FARMER(minsup = 0.9)
FARMER(minconf=0.95)

FARMER+Prefix(minconf=0.95)
TOP1

TOP100

(c) Ovarian Cancer

 0.1

 1

 10

 100

 1000

 10000

32 42 46 47 48 49 50

R
un

tim
e(

s)

Minimum Support

FARMER(minsup = 0.9)
FARMER(minconf=0.95)

FARMER+Prefix(minconf=0.95)
TOP1

TOP100

(d) Prostate Cancer

0.1

1

10

100

100 300 500 600 800 1000

R
un

tim
e(

s)

k

PC
ALL

(e) Varying k

Figure 6: Comparisons of Runtime on Gene Expression Datasets

IRG classifier and RCBT. We set minimum confidence 0.8 for IRG
Classier (the same threshold is applied to CBA but we find all top-1
covering rule groups satisfy the threshold in our experiments). We
set parameters k = 10 (TopkRGS) and nl = 20 (the number of
lower bound rules) for RCBT.

Because the test data of all the benchmark datasets are not bi-
ased, the classification accuracy on the independent test data is used
to evaluate these classification methods. Table 2 lists the classifica-
tion results on the five datasets.

We first look at the last row of Table 2 to have a rough idea of
these classifiers on gene expression datasets by comparing their av-
erage accuracy on four datasets. We see that the RCBT classifier
has the highest average accuracy. Note that the result of IRG clas-
sifier on OC is not available since FARMER cannot finish in one
day on OC and the average is computed on the other three data.

Comparison with SVM: RCBT outperforms the SVM significantly
on dataset PC. SVM achieves the best results on dataset ALL al-
though RCBT is still comparable to SVM on ALL. However, the
complexity together with the distance model of SVM is much more
complicated than our RCBT classifier and it is hard to derive un-
derstandable explanation of any diagnostic decision made by SVM.

No doubt, these problems limit the practical use of SVM in biologi-
cal discovery and clinical practice. In contrast, the RCBT classifier
is very intuitive and easy to understand.

Comparison with C4.5 family algorithms: RCBT usually out-
performs the C4.5 family algorithms. The C4.5 family algorithms
fail on the PC data while RCBT classifier still performs well. This
is because C4.5 always considers the top-ranked genes first when
generating the rules to construct the decision trees, and it misses the
globally significant rules on the PC data containing lower-ranked
genes, as discovered by RCBT.

Comparison with CBA, IRG Classifier and RCBT: RCBT per-
forms better than both CBA and IRG Classifier. Compared with
CBA, RCBT classifies much fewer test data using default class.
CBA classifies 5 test data (2 errors) on OC and 16 test data (5 er-
rors) on PC using default class while RCBT classifies 1 test data (0
error) on OC, and 1 test data (0 error) on PC using default class.
There is no test data classified using default class on ALL and LC
for both CBA and RCBT.

For SVM and C4.5, we also try to use only the top 10, 20, 30,

Dataset RCBT CBA IRG Classifier C4.5 family SVM
single tree bagging boosting

AML/ALL (ALL) 91.18% 91.18% 64.71% 91.18% 91.18% 91.18% 97.06%
Lung Cancer(LC) 97.99% 81.88% 89.93% 81.88% 96.64% 81.88% 96.64%

Ovarian Cancer(OC) 97.67% 93.02% - 97.67% 97.67% 97.67% 97.67%
Prostate Cancer(PC) 97.06% 82.35% 88.24% 26.47% 26.47% 26.47% 79.41%
Average Accuracy 95.98% 87.11% 80.96% 74.3% 77.99% 74.3% 92.70%

Table 2: Classification Results

80

85

90

95

100

1 2 5 10 15 20 25 50

A
cc

ur
ac

y(
%

)

nl: the number of lower bound rules

ALL

(a) ALL-AML leukemia

80

85

90

95

100

1 2 5 10 15 20 25 50

A
cc

ur
ac

y(
%

)

nl: the number of lower bound rules

LC

(b) Lung Cancer

Figure 7: Effect of Varying nl on Classification Accuracy

or 40 entropy-ranked genes when building the classifier. In both
cases, the performances of SVM and C4.5 often become worse.
There are two main reasons that contribute to the performance of
RCBT classifier. The first is that we build a series of standby classi-
fiers besides the main classifier. The second is that we use a subset
of lower bound rules in building classifier. Next, we analyze the
effect of both factors in detail and explain how we can set the pa-
rameters for RCBT.

Usefulness of Standby Classifiers in RCBT: In our experiments,
we set k = 10 for TopKRGS to build RCBT classifiers, which
means that we build 9 standby classifiers besides a main classifier
for each dataset. We find that the standby classifiers classify 2 test
data of OC (no error) and 2 test data of PC (no error). On datasets
ALL and LC, the main classifier makes all decision. This shows the
usefulness of standby classifiers. We would like to stress that these
standby classifiers not only improve the classification accuracy but
also make the results more convincing to biologists since most test
data are not classified by default class.

We also find that only the first 4 standby classifiers are used to
classify some test data on all the four datasets. Therefore, RCBT is
quite insensitive to the value of k as long as k is set to a sufficiently
large value.

Sensitivity Analysis of nl for RCBT: We set nl = 20 to build
RCBT classifier. Figure 7 shows the effect of varying nl on the
classification accuracy on datasets ALL and LC. Both curves are
quite plain especially when nl > 15 (changing nl does not af-
fect accuracy). We observe similar trend on other datasets and only
report results on ALL and LC. Again, as long as nl is set to a rea-
sonable large value, RCBT will not be affected by it.

We also study the effect of varying minimum support thresholds
from 0.6 to 0.8 on accuracy and find that the performance of both
CBA and RCBT are not affected for all datasets.

In summary, the discovered TopkRGS are shown to be useful for
classification for both CBA and RCBT. RCBT is both accurate and

easy to understand. The parameters for RCBT are also easy for tun-
ing. Besides, experimental results show that some important genes
used in RCBT are really responsible for the cancer pathogenesis.

0 200 400 600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

1400

1600

1800

W72186

AI635895

M61916

AF017418

X14487

AB014519

Y13323

Frequncy of Occurrence

Gene Rank

Figure 8: Chi-square based Gene Ranks and the Frequencies
of Occurrence of the 415 Genes which Form the Top-1 Cover-
ing Rules of RCBT on the Prostate Cancer Data. Genes whose
Frequencies of Occurrence are Higher than 200 are Labelled.

Biological Meaning: As the lower bound rules RCBT selected
from the Prostate Cancer data contain genes of lower-ranks, it is
interesting to have a further study of the relationship between gene
ranks and usefulness in the lower bound rules. We assume that the
more important genes are more likely to be used in the globally sig-
nificant rules. Figure 8 illustrates the chi-square based gene ranks
and the frequencies of occurrence of 415 genes (which are involved
in forming the top-1 rule groups) in the shortest lower bound rules
of top-1 rule groups. As can be seen, most of the genes that occur
frequently in the rules are those that are ranked high in the chi-
square based ranking (most are ranked 700th and above).

This includes six genes which occur more than 200 times in the
discovered lower bound rules of the Prostate Cancer data: M61916
(408 times), W72186 (1775 times), AI635895 (887 times), X14487
(646 times), AB014519 (651 times), and AF017418 (997 times).
Among the lower ranked gene, only gene Y13323 occurs for a large
number of times (282).

This indicates that the genes of lower ranks generally serve as a
certain supplementary information provider for the genes of higher
ranks. The large proportion of lower-ranked genes also suggests
their necessity for globally significant rules. Based on the experi-

ment, we suspect that the 7 most active genes, M61916, W72186,
AI635895, X14487, AB014519, AF017418, and Y13323, are most
likely to be correlated with the disease outcomes. Interestingly,
gene AF017418 of rank 671 corresponds to MRG1 which has been
reported to be useful in detecting glycosphingolipid antigen present
in normal epithelium and superficial bladder tumor in patients with
blood group A or AB, but absent in the invasive type of bladder (es-
sentially prostate) tumor [17]. Also stated in [2, 10, 16, 5], MRG1
may function as a coactivator through its recruitment of p300/CBP
in prostate cancer cell lines and stimulate glycoprotein hormone
α-subunit gene expression. Gene AB014519 is related to Rock2
under certain cancer pathway known as the Wnt/planar cell polar-
ity pathway 6. X14487 is also a cancer-related gene for acidic (type
I) cytokeratin. As reported in [21], X14487 shows consistently dif-
ferent expression levels in OSCC tissues and is one of the potential
biomarkers for lymph node metastasis.

7. RELATED WORKS
Association rule mining has attracted considerable interest since

a rule provides a concise and intuitive description of knowledge. It
has already been applied to analyze biological data, such as [7, 8,
26]. Association rule can relate gene expressions to their cellular
environments or categories, thus they can be used to build accurate
classifiers on gene expression datasets as in [9, 18]. Moreover, it
can discover the relationship between different genes, so that we
can infer the function of an individual gene based on its relationship
with others [7] and build the gene network.

Many association rule mining algorithms have been proposed to
find the complete set of association rules satisfying user-specified
constraints by discovering frequent (closed) patterns as the key
step, such as [1, 11, 12, 22, 23, 24, 30, 31]. The basic approach of
most existing algorithms is column enumeration in which combina-
tions of columns are tested systematically to search for association
rules. Such an approach is usually unsuitable for gene expression
datasets since the maximal enumeration space can be as large as
2i, where i is the number of columns and is in the range of tens of
thousands for gene expression data. These high-dimensional bioin-
formatics datasets render most of the existing algorithms imprac-
tical. On the other hand, the number of rows in such datasets is
typically very small and the maximum row enumeration space 2m

(m is the number of rows) is relatively small.
CARPENTER [23] is the first row enumeration algorithm which

uses this special property of gene expression dataset to find closed
patterns. However, it is still unable to work well when large num-
bers of patterns are generated in the case of entropy-based dis-
cretized gene expression data. Following CARPENTER, various
groups have adopted the row enumeration 7 approach to find pat-
terns in microarray datasets. In [29], the transposition of the gene
expression table is proposed to facilitate efficient discovery of pat-
terns in microarray datasets. This is essentially the same as the
concept of a transposed table in CARPENTER. Likewise, in [25,
13, 14], the row-wise enumeration approach of CARPENTER is
adopted and their pruning strategies essentially follow CARPEN-
TER as well.

There are also many proposals about mining interesting rules
with various interestingness measures. Some of them do a post-

6http://www.csl.sony.co.jp/person/tetsuya/
Pathway/Cancer-related/cancer-related.html,
http://www.csl.sony.co.jp/person/tetsuya/
Pathway/Cancer-related/Wnt/Wnt-planar
7Some groups refer to row enumeration as sample enumeration
since the rows in the gene expression datasets are essentially tis-
sue samples of patients.

processing to remove those uninteresting rules, such as [20]. Such
methods cannot work on gene expression data since it is usually
too computationally expensive to mine the huge association rules
from gene expression data. Other works [4, 28] try to mine in-
teresting rules directly. The proposed algorithm in [4] adopts col-
umn enumeration method and usually cannot work on gene expres-
sion data as shown in the experiments of [6]. FARMER [6] is de-
signed to mine interesting rule groups from gene expression data
by row enumeration. But it is still very time-consuming on some
entropy based discretized gene expression datasets. Although we
also adopt the row enumeration strategy, our algorithm is different
from FARMER: (1) we discover different kinds of rule groups; (2)
we use top-k pruning; (3) we use a compact prefix-tree to improve
efficiency while FARMER adopts in-memory pointer.

Our work is also related to those work on gene expression data
classification. Traditional statistical and machine learning methods
of classifying gene expression data usually select top-ranked genes
(ranked according to measures such as gain ratio, chi-square and
etc.) to alleviate the computational problems of high-dimensional
data. However, such methods have two main problems. First, it is
difficult to determine how many top-ranked genes to be used for
classification model; Second, as observed in [18] and our exper-
iments, low-ranked genes are often contained in significant rules
that are sometimes necessary for perfect classification accuracy.
Our proposed methods do not rely on the feature selection to re-
duce the number of dimensions for computational efficiency.

Our work is closely related to the classification methods [6, 9,
19] based on association rules. These algorithms first try to mine all
rules satisfying minimum support and minimum confidence thresh-
olds, and then sort and prune the discovered rules to get the classi-
fication rules. The high-dimensional gene expression data renders
these algorithms impractical because of the huge number of discov-
ered rules. Our proposed RCBT method addresses an open problem
of these methods, that is to refine the classification of the test data
when it matches no rules of the main classifier. This problem is es-
pecially severe since biologist may not accept the default class re-
sults for important cancer diagnosis. RCBT also improves CBA by
aggregating the discriminating powers of a subset of rules selected
by considering the gene discriminant ability. The IRG classifier [6]
is similar to CBA except that it uses upper bound rules.

8. DISCUSSIONS AND CONCLUSIONS
Although it is true that current gene expression datasets have

small number of rows, we may extend TopkRGS to other large
datasets that are characteristic of both long columns and a large
number of rows by utilizing column-wise mining first, then switch-
ing to row-wise enumeration in later levels to mine top-k covering
rules in the partition formed by column-wise mining, and finally
aggregating the top-k covering rules in all partitions.

This method could also help MineTopkRGS to deal with those
datasets too large to fit in memory, as it is well known that some
column-wise mining algorithms have linear scalability with dataset
size. Another method for MineTopkRGS to deal with the memory
limitation problem is to utilize the database projection (disk-based)
techniques as suggested in [11].

In this paper, we proposed the concept of top-k covering rule
groups for each row of gene expression data and an algorithm called
MineTopkRGS to find the TopkRGS. Experiments showed that Mine-
TopkRGS outperforms existing algorithms like CHARM, CLOSET+
and FARMER by a large order of magnitude on gene expression
datasets.

This paper also show that the set of top-1 covering rule group
for each row makes it feasible to build CBA classifier. Moreover, a

classification method RCBT is proposed based on TopkRGS dis-
covered by MineTopkRGS. Both kinds of classification demon-
strated the usefulness of discovered TopkRGS. Our experiments
showed RCBT has the highest average accuracy compared with
CBA, IRG classifier, SVM and C4.5 family. Moreover, RCBT clas-
sifier is more understandable for biologists than SVM because rules
themselves are intuitive.

Acknowledgment: We like to thank the anonymous ICDE’2005
reviewers for their comments which have help to improve this paper
substantially.

9. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proc. 1994 Int. Conf. Very Large Data
Bases (VLDB’94), pages 487–499, Sept. 1994.

[2] T. R. Anderson and T. A. Slotkin. Maturation of the adrenal
medulla–iv. effects of morphine. Biochem Pharmacol,
August 1975.

[3] P. Baldi and S. Brunak. Bioinformatics: The Machine
Learning Approach. MIT Press, 1998.

[4] R. J. Bayardo and R. Agrawal. Mining the most intersting
rules. In Proc. of ACM SIGKDD, 1999.

[5] K. S. Bose and R. H. Sarma. Delineation of the intimate
details of the backbone conformation of pyridine nucleotide
coenzymes in aqueous solution. Biochem Biophys Res
Commun, October 1975.

[6] G. Cong, A. K. H. Tung, X. Xu, F. Pan, and J. Yang. Farmer:
Finding interesting rule groups in microarray datasets. In
23rd ACM International Conference on Management of
Data, 2004.

[7] C. Creighton and S. Hanash. Mining gene expression
databases for association rules. Bioinformatics, 19, 2003.

[8] S. Doddi, A. Marathe, S. Ravi, and D. Torney. Discovery of
association rules in medical data. Med. Inform. Internet.
Med., 26:25–33, 2001.

[9] G. Dong, X. Zhang, L. Wong, and J. Li. Caep: Classification
by aggregating emerging patterns. Discovery Science, 1999.

[10] D. J. Glenn and R. A. Maurer. Mrg1 binds to the lim domain
of lhx2 and may function as a coactivator to stimulate
glycoprotein hormone α-subunit gene expression. J Biol
Chem, 274, December 1999.

[11] J. Han and J. Pei. Mining frequent patterns by pattern
growth: methodology and implications. KDD Exploration, 2,
2000.

[12] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In Proc. 2000 ACM-SIGMOD Int.
Conf. Management of Data (SIGMOD’00), 2000.

[13] D. Jiang, J. Pei, M. Ramanathan, C. Tang, and A. Zhang.
Mining coherent gene clusters from gene-sample-time
microarray data. In KDD, pages 430–439, 2004.

[14] D. Jiang, J. Pei, and A. Zhang. A general approach to mining
quality pattern-based clusters from gene expression data. In
DASFAA 2005. To Appear.

[15] T. Joachims. Making large-scale svm learning practical.
Advances in Kernel Methods - Support Vector Learning,
1999. http://svmlight.joachims.org/.

[16] M. Kasai, J. Guerrero-Santoro, R. Friedman, E. S. Leman,
R. H. Getzenberg, and D. B. DeFranco. The group 3 lim
domain protein paxillin potentiates androgen receptor
transactivation in prostate cancer cell lines. Cancer
Research, 63:4927–4935, August 2003.

[17] S. Kurimoto, N. Moriyama, K. Takata, S. A. Nozaw, Y. Aso,
and H. Hirano. Detection of a glycosphingolipid antigen in
bladder cancer cells with monoclonal antibody mrg-1.
Histochem J., 1995.

[18] J. Li and L. Wong. Identifying good diagnostic genes or
genes groups from gene expression data by using the concept
of emerging patterns. Bioinformatics, 18:725–734, 2002.

[19] B. Liu, W. Hsu, and Y. Ma. Integrating classification and
association rule mining. In Proc. 1998 Int. Conf. Knowledge
Discovery and Data Mining (KDD’98), 1998.

[20] B. Liu, W. Hsu, and Y. Ma. Pruning and summarizing the
discovered associations. In ACM KDD, 1999.

[21] M. Nagata, H. Fujita, H. Ida, H. Hoshina, T. Inoue, Y. Seki,
M. Ohnishi, T. Ohyama, S. Shingaki, M. Kaji, T. Saku, and
R. Takagi. Identification of potential biomarkers of lymph
node metastasis in oral squamous cell carcinoma by cdna
microarray analysis. International Journal of Cancer,
106:683–689, June 2003.

[22] R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang.
Exploratory mining and pruning optimizations of constrained
associations rules. In Proc. 1998 ACM-SIGMOD Int. Conf.
Management of Data (SIGMOD’98), 1998.

[23] F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. J. Zaki.
Carpenter: Finding closed patterns in long biological
datasets. In Proc. 2003 ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining (KDD’03), 2003.

[24] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Discovering frequent closed itemsets for association rules. In
Proc. 7th Int. Conf. Database Theory (ICDT’99), Jan. 1999.

[25] J. Pei, X. Zhang, M. Cho, H. Wang, and P. S. Yu. Maple: A
fast algorithm for maximal pattern-based clustering. In
ICDM, pages 259–266, 2003.

[26] J. L. Pfaltz and C. M. Taylor. Closed set mining of biological
data. Workshop on Data Mining in Bioinformatics, pages
43–48, 2002.

[27] J. R. Quinlan. Bagging, boosting, and C4.5. In Proc. 1996
Nat. Conf. Artificial Intelligence (AAAI’96), volume 1, pages
725–730, Portland, OR, Aug. 1996.

[28] R. Rastogi and K. Shim. Mining optimized association rules
with categorical and numeric attributes. In Int. Conf. on Data
Engineering, 1998.

[29] F. Rioult, J.-F. Boulicaut, B. Crémilleux, and J. Besson.
Using transposition for pattern discovery from microarray
data. In DMKD, pages 73–79, 2003.

[30] J. Wang, J. Han, and J. Pei. Closet+: Searching for the best
strategies for mining frequent closed itemsets. In Proc. 2003
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining (KDD’03), 2003.

[31] M. Zaki and C. Hsiao. Charm: An efficient algorithm for
closed association rule mining. In Proc. of SDM 2002, 2002.

Sample-Wise Enumeration Methods
for Mining Microarray Datasets

Anthony K. H. Tung
Department of Computer Science
National University of Singapore

http://www.comp.nus.edu.sg/~atung/talks/sample_enum.htm
http://www.comp.nus.edu.sg/~atung/talks/sample_enum.htm

A Microarray Dataset
1000 - 100,000 columns

Class Gene1 Gene2 Gene3 Gene4 Gene5 Gene6 Ge

Sample1 Cancer
Sample2 Cancer

.

.

.
SampleN-1 ~Cancer
SampleN ~Cancer

100-
500
rows

• Find closed patterns which occur frequently among genes.
• Find rules which associate certain combination of the columns

that affect the class of the rows
– Gene1,Gene10,Gene1001 -> Cancer

Challenge I

lower bounds

• Large number of patterns/rules
– number of possible column combinations is extremely high

• Solution: Concept of a closed pattern
– Patterns are found in exactly the same set of rows are

grouped together and represented by their upper bound
• Example: the following patterns are found in row 2,3

and 4 i ri Class
1 a ,b,c,l,o,s C
2 a ,d, e , h ,p,l,r C
3 a ,c, e , h ,o,q,t C
4 a , e ,f, h ,p,r ~C
5 b,d,f,g,l,q,s,t ~C

ae ah eh

e h

upper
bound
(closed
pattern)

aeh

“a” however not part of
the group

Challenge II
• Most existing frequent pattern discovery

algorithms perform searches in the column/item
enumeration space i.e. systematically testing
various combination of columns/items

• For datasets with 1000-100,000 columns, this
search space is enormous

• Instead we adopt a novel row/sample
enumeration algorithm for this purpose.
CARPENTER (SIGKDD’03) is the FIRST
algorithm which adopt this approach

Column/Item Enumeration Lattice

• Each nodes in the lattice represent
a combination of columns/items

• An edge exists from node A to B if
A is subset of B and A differ from B
by only 1 column/item

• Search can be done

a,c a,e bb,ca,b

b,ca,b,e a,c,ea,b,c

a b c

a,b,c,e

{}start

a b ca b c

a,c a,e bb,ca,b a,c b,c

b,cb,c

 i ri Class
1 a,b,c,l,o,s C
2 a,d,e,h,p,l,r C
3 a,c,e,h,o,q,t C
4 a,e,f,h,p,r ~C
5 b,d,f,g,l,q,s,t ~C

breadth first

a b ca b ca b c

a,c a,e b,ca,b a,c a,e b,ca,b a,c b,c

b,ca,b,e a,c,ea,b,c b,cb,c

Column/Item Enumeration Lattice
• Each nodes in the lattice represent

a combination of columns/items
• An edge exists from node A to B if

A is subset of B and A differ from B
by only 1 column/item

• Search can be done depth first
• Keep edges from parent to child

only if child is the prefix of parent
a,c a,e bb,ca,b

b,ca,b,e a,c,ea,b,c

a b c

a,b,c,e

{}start

a b ca b c

a,c a,e bb,ca,b a,c b,c

b,cb,c

 i ri Class
1 a,b,c,l,o,s C
2 a,d,e,h,p,l,r C
3 a,c,e,h,o,q,t C
4 a,e,f,h,p,r ~C
5 b,d,f,g,l,q,s,t ~C

a

a,b

a,b,c a,b,e

a,c

a,c,e

General Framework for Column/Item
Enumeration

Read-based Write-based Point-based

Association Mining Apriori[AgSr94],
DIC

Eclat,
MaxClique[Zaki01],

FPGrowth
[HaPe00]

Hmine

Sequential Pattern
Discovery

GSP[AgSr96] SPADE
[Zaki98,Zaki01],

PrefixSpan
[PHPC01]

Iceberg Cube Apriori[AgSr94] BUC[BeRa99], H-
Cubing [HPDW01]

A Multidimensional View

types of data or
knowledge

lattice trans
main operations

others

associative
pattern

sequential
pattern

iceberg
cube

point

other interest
measure

compression method

pruning method

constraints

closed/max
pattern

versal/

read write

Sample/Row Enumeration Algorihtms
• To avoid searching the large column/item

enumeration space, our mining algorithm search
for patterms/rules in the sample/row
enumeration space

• Our algorithms does not fitted into the
column/item enumeration algorithms

• They are not YAARMA (Yet Another Association
Rules Mining Algorithm)

• Column/item enumeration algorithms simply
does not scale for microarray datasets

Existing Row/Sample Enumeration Algorithms

• CARPENTER(SIGKDD'03)
– Find closed patterns using row enumeration

• FARMER(SIGMOD’04)
– Find interesting rule groups and building classifiers

based on them
• COBBLER(SSDBM'04)

– Combined row and column enumeration for tables with
large number of rows and columns

• FARMER's demo (VLDB'04)
• Balance the scale: 3 row enumeration algorithms

vs >50 column enumeration algorithms

Concepts of CARPENTER

C ~C
a 1,2,3 4
b 1 5
c 1,3
d 2 5
e 2,3 4
f 4,5
g 5
h 2,3 4
l 1,2 5
o 1,3
p 2 4
q 3 5
r 2 4
s 1 5
t 3 5

ij R (ij)

 i ri Class
1 a,b,c,l,o,s C
2 a,d,e,h,p,l,r C
3 a,c,e,h,o,q,t C
4 a,e,f,h,p,r ~C
5 b,d,f,g,l,q,s,t ~C

 C ~C
 a 1,2,3 4
 e 2,3 4
 h 2,3 4

TT|{2,3}Example Table

Transposed Table,TT

Row Enumeration

{bls}
15

{l}
125
{a}124

{a}123

{al}

{aco}

{abclos}

{}
13

12

1 134

{f}

{}

{}

{}

{}

{a}

1245

1345

1235

1234

{}
345

12345

{aeh}
34

35

45

{q}

{acehoqt}
3

{}245

{a}

2345

{bdfglqst}
5

{aefhpr}
4

{adehplr}
2

{dl}
25

{aehpr}
24

{aeh}
23

{}235

{aeh}234

{}135

{}145

{a}
14

{}

C ~C
a 1,2,3 4
b 1 5
c 1,3
d 2 5
e 2,3 4
f 4,5
g 5
h 2,3 4
l 1,2 5
o 1,3
p 2 4
q 3 5
r 2 4
s 1 5
t 3 5

ij R (ij)

C ~C
a 1,2,3 4
b 1 5
c 1,3
l 1,2 5
o 1,3
s 1 5

ij R (ij)

TT|{1}

C ~C
a 1,2,3 4
l 1,2 5

ij R (ij)

TT|{12}

C ~C
a 1,2,3 4

ij R (ij)

TT|{123}

C ~C
a 1,2,3 4

ij R (ij)

TT|{124}

Pruning Method 1
• Removing rows that appear in all

tuples of transposed table will not
affect results

 C ~C
 a 1,2,3 4
 e 2,3 4
 h 2,3 4

r2 r3 r4
{aeh}

r2 r3
{aeh}

TT|{2,3}

r4 has 100% support in the conditional table of
“r2r3”, therefore branch “r2 r3r4” will be
pruned.

Pruning method 2
• if a rule is discovered

before, we can prune
enumeration below this
node
– Because all rules

below this node has
been discovered
before

– For example, at node
34, if we found that
{aeh} has been
found, we can prune
off all branches
below it

{bls}
15

{l}
125
{a}124

{a}123

{al}

{aco}

{abclos}

{}
13

12

1 134

{f}

{}

{}

{}

{}

{a}

1245

1345

1235

1234

{}
345

12345

{aeh}
34

35

45

{q}

{acehoqt}
3

{}245

{a}

2345

{bdfglqst}
5

{aefhpr}
4

{adehplr}
2

{dl}
25

{aehpr}
24

{aeh}
23

{}235

{aeh}234

{}135

{}145

{a}
14

{}

 C ~C
 a 1,2,3 4
 e 2,3 4
 h 2,3 4

TT|{3,4}

Pruning Method 3: Minimum Support

C ~C
a 1,2,3 4
b 1 5
c 1,3
l 1,2 5
o 1,3
s 1 5

ij R (ij)

TT|{1}

• Example: From TT|{1}, we
can see that the support of
all possible pattern below
node {1} will be at most 5
rows.

From CARPENTER to FARMER

• What if classes exists ? What more can
we do ?

• Pruning with Interestingness Measure
– Minimum confidence
– Minimum chi-square

• Generate lower bounds for classification/
prediction

Interesting Rule Groups
• Concept of a rule group/equivalent class

– rules supported by exactly the same set of rows are grouped
together

• Example: the following rules are derived from row 2,3
and 4 with 66% confidence

 i ri Class
1 a ,b,c,l,o,s C
2 a ,d, e , h ,p,l,r C
3 a ,c, e , h ,o,q,t C
4 a , e ,f, h ,p,r ~C
5 b,d,f,g,l,q,s,t ~C

ae-->C (66%)

lower bounds

ah--> C(66%) eh-->C (66%)

e-->C (66%) h-->C (66%)

upper
boundaeh--> C(66%)

a-->C however is not in
the group

Pruning by Interestingness Measure
• In addition, find only interesting rule groups

(IRGs) based on some measures:
– minconf: the rules in the rule group can predict the

class on the RHS with high confidence
– minchi: there is high correlation between LHS and

RHS of the rules based on chi-square test
• Other measures like lift, entropy gain, conviction

etc. can be handle similarly

Ordering of Rows: All Class C
before ~C

{bls}
15

{l}
125
{a}124

{a}123

{al}

{aco}

{abclos}

{}
13

12

1 134

{f}

{}

{}

{}

{}

{a}

1245

1345

1235

1234

{}
345

12345

{aeh}
34

35

45

{q}

{acehoqt}
3

{}245

{a}

2345

{bdfglqst}
5

{aefhpr}
4

{adehplr}
2

{dl}
25

{aehpr}
24

{aeh}
23

{}235

{aeh}234

{}135

{}145

{a}
14

{}

C ~C
a 1,2,3 4
b 1 5
c 1,3
d 2 5
e 2,3 4
f 4,5
g 5
h 2,3 4
l 1,2 5
o 1,3
p 2 4
q 3 5
r 2 4
s 1 5
t 3 5

ij R (ij)

C ~C
a 1,2,3 4
b 1 5
c 1,3
l 1,2 5
o 1,3
s 1 5

ij R (ij)

TT|{1}

C ~C
a 1,2,3 4
l 1,2 5

ij R (ij)

TT|{12}

C ~C
a 1,2,3 4

ij R (ij)

TT|{123}

C ~C
a 1,2,3 4

ij R (ij)

TT|{124}

Pruning Method: Minimum Confidence

 C ~C
 a 1,2,3,6 4,5
 e 2,3,7 4,9
 h 2,3 4

• Example: In TT|{2,3} on the
right, the maximum
confidence of all rules below
node {2,3} is at most 4/5

TT|{2,3}

Pruning method: Minimum chi-square

 C ~C
 a 1,2,3,6 4,5
 e 2,3,7 4,9
 h 2,3 4

• Same as in computing
maximum confidence

TT|{2,3}
C ~C Total

A max=5 min=1 Computed

~A Computed Computed Computed

Constant Constant Constant

Finding Lower Bound, MineLB
– Example: An upper

bound rule with
antecedent A=abcde
and two rows (r1 : abcf
) and (r2 : cdeg)

– Initialize lower bounds
{a, b, c, d, e}

– add “abcf”--- new
lower {d ,e}

– Add “cdeg”--- new
lower bound{ad, bd,
ae, be}

a,b,c,d,e

a
b c d

e

abc

Candidate lower bound: ad, ae, bd, be, cd, ce

Removed since d,e are still lower bound

cde

Candidate lower bound: ad, ae, bd, be

Kept since no lower bound override them

ad ae bd be

Implementation
• In general, CARPENTER

FARMER can be implemented in
many ways:
– FP-tree
– Vertical format

• For our case, we assume the
dataset can be fitted into the
main memory and used pointer-
based algorithm similar to BUC

C ~C
a 1,2,3 4
b 1 5
c 1,3
d 2 5
e 2,3 4
f 4,5
g 5
h 2,3 4
l 1,2 5
o 1,3
p 2 4
q 3 5
r 2 4
s 1 5
t 3 5

ij R (ij)

Experimental studies
• Efficiency of FARMER

– On five real-life dataset
• lung cancer (LC), breast cancer (BC) , prostate cancer

(PC), ALL-AML leukemia (ALL), Colon Tumor(CT)
– Varying minsup, minconf, minchi
– Benchmark against

• CHARM [ZaHs02] ICDM'02
• Bayardo’s algorithm (ColumE) [BaAg99] SIGKDD'99

• Usefulness of IRGs
– Classification

Example results--Prostate

1

10

100

1000

10000

100000

9876543

minimum sup p o r t

FARM ER

Co lumnE

CHARM

Example results--Prostate

0

200

400

600

800

1000

1200

0 50 70 80 85 90 99

minimum confidence(%)

FARM ER:minsup=1:minchi=10

FARM ER:minsup =1

Naive Classification Approach

• Generate the upper bounds of IRGs
• Rank the upper bounds, thus ranking the IRGs;
• Apply coverage pruning on the IRGs;
• Predict the test data based on the IRGs that it

covers.

Classification results

Summary of Experiments
• FARMER is much more efficient than existing

algorithms
• There are evidences to show that IRGs is useful

for classification of microarray datasets

COBBLER: Combining Column and Row Enumeration

• Extend CARPENTER to handle datasets with
both large number of columns and rows

• Switch dynamically between column and row
enumeration based on estimated cost of
processing

Single Enumeration Tree

{ }

a
{r1r2}

b
{r1r3}

c
{r1r2r3}

d
{r2r4}

ab
{r1}

ac
{r1r2}

abc
{r1}
abd { }

r1
{abc}

r2
{acd}

r3
{bc}

r4{d}

r1r2
{ac}

r1r3
{bc}
r1r4 { }

r1r2r3
{c}
r1r2r4 { }

r1r2r3r4
{ }

abcd
{ }

acd { r2} r1r3r4 { }

ad {r2}

bcd
{ }

bc
{r1r3}

bd { }

r2r3
{c}

cd
{r2 }

{ }

r2r4{d }

r2r3r4 { }

r3r4
{ }

r1 a b c

r2 a c d

r3 b c

r4 d

Feature enumeration Row enumeration

Dynamic Enumeration Tree
abcd

{ }

{ }

a
{r1r2}

b
{r1r3}

c
{r1r2r3}

d
{r2r4}

r1
{bc}

r2
{cd}

r1r2
{c} ab

{r1}

r1
{c}
r3

{ c}

r1r3
{ c}

r2
{d }

Feature enumeration to Row enumeration

ac
{r1r2}

ad
{r2}

abc
{r1}
abd
{ }
acd
{ r2}

r1 bc

r2 cd a
{r1r2}

abc: {r1}

ac: {r1r2}

acd: {r2}

b r1

c r1 r2

d r2

Dynamic Enumeration Tree

r1r2 {ac}

r1r3 {bc}

r1r4 { }

r1r2r3
{c}
r1r2r4 { }

r1r2r3r4
{ }

{ }

r1
{abc}

r2
{acd}

r3
{bc}

a{r2}

b{r3}

r4
{d}

c{r2r3 }

ab {}

ac { r2}

bc {r3 }

a{r1}

r1
{abc} r1r3r4 { }

d {r4 }

ac{r1 }

b{r1 }

c {r1r3}

ad{ }

acd { }

cd { } ac: {r1r2}

bc: {r1r3}

c: {r1r2r3}bc {r1 }

c{r1r2 }

Row enumeration to Feature Enumeration

Switching Condition
• Naïve idea of switching based on row number and feature

number does not work well
• to estimate the required computation of an enumeration

sub-tree, i.e., row enumeration sub-tree or feature
enumeration sub-tree.
– Estimate the maximal level of enumeration for each children sub-

tree

• Example of estimating the maximal level of enumeration:
– Suppose r=10, S(f1)=0.8, S(f2)=0.5, S(f3)=0.5, S(f4)=0.3 and

minsup=2
– S(f1)*S(f2)*S(f3)*r =2 ≥ minsup
– S(f1)*S(f2)*S(f3)*S(f4)*r =0.6 < minsup
– Then the estimated deepest node under f1 is f1f2f3

Switching Condition

Switching Condition

To estimate for a node:

To estimate for a path:

To sum up estimation of all paths as the final estimation

Length and Row ratio

0

2000

4000

6000

8000

10000

12000

14000

0.75 0.8 0.85 0.9 0.95 1 1.05

Length Ratio

R
un

tim
e

(s
ec

.)

COBBLER
CLOSET+
CHARM

0

10000

20000

30000

40000

50000

60000

70000

80000

0.5 1 1.5 2
Row Ratio

Ru
nt

im
e

(s
ec

.)

COBBLER
CLOSET+
CHARM

Synthetic data

Extension of our work by other groups
(with or without citation)

• [1] Using transposition for pattern discovery from microarray data, Francois
Rioult (GREYC CNRS), Jean-Francois Boulicaut (INSA Lyon), Bruno Cremileux
(GREYC CNRS), Jeremy Besson (INSA Lyon)

• See the presence and absence of genes in the
sample as a binary matrix. Perform a transposition
of the matrix which is essentially our transposed
table. Enumeration methods are the same
otherwise.

http://www.cs.rpi.edu/~zaki/DMKD03/papers/10-rioult.ps.gz

Extension of our work by other groups
(with or without citation) II

• [2] Mining Coherent Gene Clusters from Gene-Sample-Time Microarray Data.
D. Jiang, Jian Pei, M. Ramanathan, C. Tang and A. Zhang. (Industrial full
paper, Runner-up for the best application paper award). SIGKDD’2004

Gene1 Gene
2

Gene3 Gene
4

Sample1
Sample2

.

.

.
SampleN-
1
SampleN

http://portal.acm.org/citation.cfm?id=1014052.1014101

Extension of our work by other groups
(with or without citation) III

Gene
1

Gene
2

Gene
3

Gen
4

S1 1.23
S2 1.34

.

.

.
SN-1 1.52
SN

A gene in two samples are say to
be coherent if their time series
satisfied a certain matching
condition

In CARPENTER, a gene in two
samples are say to be matching if
their expression in the two
samples are almost the same

Extension of our work by other groups
(with or without citation) IV

[2] Try to find a subset of
samples S such that a subset
of genes G is coherent for
each pair of samples in S.
|S|>mins, |G|>ming

In CARPENTER, we try to
find a subset of samples S in
which a subset of genes G is
similar in expression level for
each pair of samples in S.
|S|>mins, |G|>0

Gene1 Gene2 Gene
3

Gene4

S1 1.23
S2 1.34

.

.

.
SN-1 1.52
SN

Extension of our work by other groups
(with or without citation) V

{bls}
15

{l}
125
{a}

{a}123

{aco}

{abclos}
{}

13

12

1 134

{

{

{

{a

12

13

12

12

{acehoqt}
3

245

{a}

23
{adehplr}

2

{dl}
25

{aehpr}
24

{aeh}
23

{}235

{aeh}234

{}135

{}145

{a}
14

{

[2] Perform sample-wise
enumeration and remove
genes that are not pairwise
coherent across the samples
enumerated

CARPENTER: Perform sample-
wise enumeration and remove
genes that does not have the
same expression level across
the samples enumerated

Extension of our work by other groups
(with or without citation) VI

From [2]: Pruning Rule 3.1
(Pruning small sample
sets). At a node v = fsi1 ; :
: : ; sikg, the subtree of v
can be pruned if (k +
jTailj) < mins

• Pruning Method 3 in CARPENTER:
From TT|{1}, we can see that the
support of all possible pattern below
node {1} will be at most 5 rows.

C ~C
a 1,2,3 4
b 1 5
c 1,3
l 1,2 5
o 1,3
s 1 5

ij R (ij)

TT|{1}

Extension of our work by other groups
(with or without citation) VII

• [2] Pruning Rule 3.2
(Pruning subsumed sets).
At a node v = {si… sik} if
{si1,…sik} U Tail is a
subset of some maximal
coherent sample set, then
the subtree of the node
can be pruned.

• CARPENTER Pruning
Method 2: if a rule is
discovered before, we
can prune enumeration
below this node

{bls}
15

{l}
125
{a}124

{a}123

{al}

{aco}

{abclos}
{}

13

12

1 134

{f}

{}

{}

{}

{a}

1245

1345

1235

1234

{}
345

{aeh}
34

35

45

{q}

{acehoqt}
3

{}245

{a}

2345

{bdfglqst}
5

{aefhpr}
4

{adehplr}
2

{dl}
25

{aehpr}
24

{aeh}
23

{}235

{aeh}234

{}135

{}145

{a}
14

{}

 C ~C
 a 1,2,3 4
 e 2,3 4
 h 2,3 4

TT|{3,4}

Extension of our work (Conclusion)
• The sample/enumeration framework had been

successfully adopted by other groups in mining
microarray datasets

• We are proud of our contribution as the group the
produce the first row/sample enumeration algorithm
CARPENTER and is happy that other groups also
find the method useful

• However, citations from these groups would have
been nice. After all academic integrity is the most
important things for a researcher.

Future Work: Generalize Framework for
Row Enumeration Algorithms?

types of data or
knowledge

lattice transversal/
main operations

others

associative
pattern

sequential
pattern

iceberg
cube

read write point

other interest
measure

compression method

pruning method

constraints

closed/max
pattern

Only if real life applications require it.

Conclusions
• Many datasets in bioinformatics have very different

characteristics compared to those that has been
previously studied

• These characteristics can either work against you or
for you

• In the case of microarray datasets with large number
columns but small number of rows/samples, we turn
what is against us to our advantage
– Row/Sample enumeration
– Pruning strategy

• We show how our methods have been modified by
other groups to produce useful algorithm for mining
microarray datasets

Thank you!!!
atung@comp.nus.edu.sg

www.comp.nus.edu.sg/~atung/sfu_talk.pdf

mailto:atung@comp.nus.edu.sg

