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Abstract

Most current peer-to-peer lookup schemes keep
a small amount of routing state per node, typically
logarithmic in the number of overlay nodes. This de-
sign assumes that routing information at each mem-
ber node must be kept small, so that the book-
keeping required to respond to system membership
changes is also small, given that aggressive mem-
bership dynamics are expected. As a consequence,
lookups have high latency as each lookup requires
contacting several nodes in sequence.

In this paper, we question these assumptions by
presenting two peer-to-peer routing algorithms with
small lookup paths. First, we present a one-hop
routing scheme. We show how to disseminate infor-
mation about membership changes quickly enough
so that nodes maintain accurate routing tables with
complete membership information. We also deduce
analytic bandwidth requirements for our scheme that
demonstrate its feasibility.

We also propose a two-hop routing scheme for
large scale systems of more than a few million nodes,
where the bandwidth requirements of one-hop rout-
ing can become too large. This scheme keeps a fixed
fraction of the total routing state on each node, cho-
sen such that the first hop has low latency, and thus
the additional delay is small.

We validate our analytic model using simulation
results that show that our algorithms can maintain
routing information sufficiently up-to-date such that
a large fraction (e.g., 99%) of the queries will suc-
ceed without being re-routed.

1 Introduction

Structured peer-to-peer overlays like Chord [15],
CAN [11], Pastry [13], and Tapestry [18] provide a
substrate for building large-scale distributed appli-
cations. These overlays allow applications to locate
objects stored in the system in a limited number of
overlay hops.

Peer-to-peer lookup algorithms strive to main-
tain a small amount of per-node routing state – typi-

cally O(log N) – because their designers expect that
system membership changes frequently. This expec-
tation has been confirmed for successfully deployed
systems. A recent study [14] shows that the average
session time in Gnutella is only 2.9 hours. This is
equivalent to saying that in a system with 100, 000
nodes, there are about 19 membership change events
per second.

Maintaining small tables helps keep the amount
of bookkeeping required to deal with membership
changes small. However, there is a price to pay
for having only a small amount of routing state per
node: lookups have high latency since each lookup
requires contacting several nodes in sequence.

This paper questions the need to keep routing
state small. We take the position that maintain-
ing full routing state (i.e., a complete description of
system membership) is viable even in a very large
system, e.g., containing a million nodes. We present
techniques that show that in systems of this size,
nodes can maintain membership information accu-
rately yet the communication costs are low. The
results imply that a peer-to-peer system can route
very efficiently even though the system is large and
membership is changing rapidly.

We present a novel peer-to-peer lookup system
that maintains complete membership information at
each node. We show analytic results that prove
that the system meets our goals of reasonable ac-
curacy and bandwidth usage. It is, of course, easy
to achieve these goals for small systems. Our al-
gorithm is designed to scale to large systems. Our
analysis shows that we can use one-hop routing for
systems of up to a few millions of nodes.

Our analysis also shows that beyond a few mil-
lion nodes, the bandwidth requirements of the one-
hop scheme become too large. We present the de-
sign of a two-hop lookup scheme that overcomes
this problem, and still provides faster lookups than
existing peer-to-peer routing algorithms. We also
present an analytic model of the two-hop system
and conclude that its bandwidth requirements are
reasonable, even for systems with tens of millions of
nodes.



Finally, the paper presents simulation results that
corroborate what our analytic models predict. We
also show that performance does not degrade sig-
nificantly as the system becomes larger or smaller
than due to aggressive system dynamics.

The rest of the paper is organized as follows.
Section 2 presents our system model. Sections 3
and 4 describe our one-hop and two-hop routing
schemes, respectively. Section 5 evaluates our sys-
tem. We conclude with a discussion of what we have
accomplished.

2 System Model

We consider a system of n nodes, where n is
a large number like 105 or 106. We assume dy-
namic membership behavior as in Gnutella, which
is representative of an open Internet environment.
From the study of Gnutella and Napster [14], we
deduce that systems of 105 and 106 nodes would
show around 20 and 200 membership changes per
second, respectively. We call this rate r. We refer
to membership changes as events in the rest of the
paper.

Every node in the overlay is assigned a random
128-bit node identifier. Identifiers are ordered in an
identifier ring modulo 2128. We assume that iden-
tifiers are generated such that the resulting set is
uniformly distributed in the identifier space, for ex-
ample, by setting a node’s identifier to be the cryp-
tographic hash of its network address. Every node
has a predecessor and a successor in the identifier
ring, and it periodically sends keep-alive messages
to these nodes.

Similarly, each item has a key, which is also an
identifier in the ring. Responsibility for an item
(e.g., providing storage for it) rests with its succes-

sor; this is the first node in the identifier ring clock-
wise from key. This mapping from keys to nodes is
based on the one used in Chord [15], but changing
our system to use other mappings is straightforward.

Clients issue queries that try to reach the suc-
cessor node of a particular identifier. We intend
our system to satisfy a large fraction, f , of the
queries correctly on the first attempt (where each at-
tempt requires one or two hops, depending on which
scheme we use). Our goal is to support high values
of f , e.g., f = 0.99. A query may fail in its first
attempt due to a membership change, if the notifi-
cation of the change has not reached the querying
node. In such a case, the query can still be rerouted
and succeed in a higher number of hops. Neverthe-
less, we define failed queries as those that are not
answered correctly in the first attempt, as our objec-

tive is to have one- or two-hop lookups, depending
on which algorithm we use.

3 One Hop Lookups

This section presents the design and analysis of
our one-hop scheme. In this scheme, every node
maintains a full routing table containing informa-
tion about every other node in the overlay. The
actual query success rate depends on the accuracy
of this information.

Section 3.1 describes how the algorithm handles
membership changes, namely how to convey infor-
mation about these changes to all the nodes in the
ring. Section 3.2 explains how the algorithm reacts
to node failures and presents an informal correctness
argument for our approach. Section 3.3 discusses
issues about asymmetry in the load of individual
nodes. Section 3.4 presents an analysis of the band-
width requirements of this scheme.

3.1 Membership Changes

Membership changes (i.e., nodes joining and leav-
ing the ring) raise two important issues that our
algorithm must address. First, we must update lo-
cal information about the membership change, in
order for each node in the system to determine pre-
cisely which interval in the id space it is responsi-
ble for. The second issue is conveying information
about the change to all the nodes in the ring so that
these nodes will maintain correct information about
the system membership and consequently manage
to route in a single hop.

To maintain correct local information (i.e., infor-
mation about each node’s successor and predecessor
node), every node n runs a stabilization routine pe-
riodically, wherein it sends keep-alive messages to
its successor s and predecessor p. Node s checks if
n is indeed its predecessor, and if not, it notifies n of
the existence of another node between them. Simi-
larly p checks if n is indeed its successor, and if not
it notifies n. If either of s or p does not respond, n
pings it repeatedly until a time-out period when it
decides that the node is unreachable or dead.

A joining node contacts another system node to
get its view of the current membership; this proto-
col is similar to the Chord protocol [15, 16]. The
membership information enables it to get in touch
with its predecessor and successor, thus informing
them of its presence.

To maintain correct full routing tables, notifica-
tions of membership change events, i.e., joins and
leaves, must reach every node in the system within
a specified amount of time (depending on what frac-
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Figure 1. Flow of event notifications in the system

tion of failed queries, i.e., f , is deemed acceptable).
Our goal is to do this in a way that has low notifica-
tion delay yet reasonable bandwidth consumption,
since bandwidth is likely to be the scarcest resource
in the system.

We achieve this goal by superimposing a well-
defined hierarchy on the system. This hierarchy is
used to form dissemination trees, which are used to
propagate event information.

We impose this hierarchy on a system with dy-
namic membership by dividing the 128-bit circu-
lar identifier space into k equal contiguous intervals
called slices. The ith slice contains all nodes cur-
rently in the overlay whose node identifiers lie in
the range [i · 2128/k, (i + 1) · 2128/k). Since nodes
have uniformly distributed random identifiers, these
slices will have about the same number of nodes at
any time. Each slice has a slice leader, which is cho-
sen dynamically as the node that is the successor
of the mid-point of the slice identifier space. For
example, the slice leader of the ith slice is the suc-
cessor node of the key (i + 1/2) · 2128/k. When a
new node joins the system it learns about the slice
leader from one of its neighbors along with other in-
formation like the data it is responsible for and its
routing table.

Similarly, each slice is divided into equal-sized
intervals called units. Each unit has a unit leader,
which is dynamically chosen as the successor of the
mid-point of the unit identifier space.

Figure 1 depicts how information flows in the
system. When a node (labeled X in Figure 1) de-
tects a change in membership (its successor failed
or it has a new successor), it sends an event no-

tification message to its slice leader (1). The slice
leader collects all event notifications it receives from
its own slice and aggregates them for tbig seconds
before sending a message to other slice leaders (2).
To spread out bandwidth utilization, communica-
tion with different slice leaders is not synchronized:
the slice leader ensures only that it communicates
with each individual slice leader once every tbig sec-
onds. Therefore, messages to different slice leaders
are sent at different points in time and contain dif-
ferent sets of events.

The slice leaders aggregate messages they receive
for a short time period twait and then dispatch the
aggregate message to all unit leaders of their respec-
tive slices (3). A unit leader piggybacks this infor-
mation on its keep-alive messages to its successor
and predecessor (4).

Other nodes propagate this information in one
direction: if they receive information from their pre-
decessors, they send it to their successors and vice
versa. The information is piggy-backed on keep-
alive messages. In this way, all nodes in the system
receive notification of all events, but within a unit
information is always flowing from the unit leader
to the ends of the unit. Nodes at unit boundaries do
not send information to their neighboring nodes out-
side their unit. As a result, there is no redundancy
in the communications: a node will get information
only from its neighbor that is one step closer to its
unit leader.

We get several benefits from choosing this de-
sign. First, it imposes a structure on the system,
with well-defined event dissemination trees. This
structure helps us ensure that there is no redun-
dancy in communications, which leads to efficient
bandwidth usage.

Second, aggregation of several events into one
message allows us to avoid small messages. Small
messages are a problem since the protocol overhead
becomes significant relative to the message size, lead-
ing to higher bandwidth usage. This effect will be
analyzed in more detail in Section 3.4.

Our scheme is a three-level hierarchy. The choice
of the number of levels in the hierarchy involves a
tradeoff: A large number of levels implies a larger
delay in propagating the information, whereas a small
number of levels generates a large load at the nodes
in the upper levels. We chose a three level hierarchy
because it has low delay, yet bandwidth consump-
tion at top level nodes is reasonable.

3.2 Fault Tolerance

If a query fails on its first attempt it does not
return an error to an application. Instead, queries



can be rerouted. If a lookup query from node n1 to
node n2 fails because n2 is no longer in the system,
n1 can retry the query by sending it to n2’s suc-
cessor. If the query failed because a recently joined
node, n3, is the new successor for the key that n1

is looking up, n2 can reply with the identity of n3

(if it knows about n3), and n1 can contact n3 in a
second routing step.

Since our scheme is dependent on the correct
functioning of slice leaders, we need to recover from
their failure. Since there are relatively few slice lead-
ers, their failures are infrequent. Therefore, we do
not have to be very aggressive about replacing them
in order to maintain our query success target. When
a slice or unit leader fails, its successor soon detects
the failure and becomes the new leader.

Between the time a slice or unit leader fails, and
a new node takes over, some event notification mes-
sages may be lost, and the information about those
membership changes will not be reflected in the sys-
tem nodes’ membership tables. This is not an is-
sue for routing correctness, since each node main-
tains correct information about its predecessor and
successor. It will, however, lead to more routing
hops and if we allowed these errors to accumulate,
it would eventually lead to a degradation of the one
hop lookup success rate.

To avoid this accumulation, we use the lookups
themselves to detect and propagate these inaccura-
cies. When a node performs a lookup and detects
that its routing entry is incorrect (i.e., the lookup
timed out, or was re-routed to a new successor),
this new information is then pushed to all the sys-
tem nodes via the normal channels: it notifies its
slice leader about the event.

The correctness of our protocols is based on the
fact that successor and predecessor pointers are cor-
rect. This ensures that, even if the remainder of the
membership information contains errors, the query
will eventually succeed after re-routing. In other
words, our complete membership description can be
seen as an optimization to following successor point-
ers, in the same way as Chord fingers are an opti-
mization to successors (or similarly for other peer-
to-peer routing schemes). Furthermore, we can ar-
gue that our successor and predecessor pointers are
correct due to the fact that we essentially follow the
same protocol as Chord to maintain these, and this
has already been proven correct [16].

3.3 Scalability

Slice leaders have more work to do than other
nodes, and this might be a problem for a poorly pro-
visioned node with a low bandwidth connection to

the Internet. To overcome this problem we can iden-
tify well connected and well provisioned nodes as
“supernodes” on entry into the system (as in [17]).
There can be a parallel ring of supernodes, and the
successor (in the supernode ring) of the midpoint
of the slice identifier space becomes the slice leader.
We do require a sufficient number of supernodes to
ensure that there are at least a few per slice.

As we will show in Section 3.4, bandwidth re-
quirements are small enough to make most partic-
ipants in the system potential supernodes in a 105

sized system (in such a system, slice leaders will
require 35 kbps upstream bandwidth). In a million-
node system we may require supernodes to be well-
connected academic or corporate users (the band-
width requirements increase to 350 kbps). Section 4
presents the two-hop scheme that may be required
when we wish the system to accommodate even larger
memberships.

3.4 Analysis

This section presents an analysis of how to pa-
rameterize the system to satisfy our goal of fast
propagation. To achieve our desired success rate, we
need to propagate information about events within
some time period ttot; we begin this section by show-
ing how to compute this quantity. Yet we also re-
quire good performance, especially with respect to
bandwidth utilization. Later in the section we show
how we satisfy this requirement by controlling the
number of slices and units.

Our analysis considers only non-failure situations.
It does not take into account overheads of slice and
unit leader failure because these events are rare. It
also ignores message loss and delay since this simpli-
fies the presentation, and the overhead introduced
by message delays and retransmissions is small com-
pared to other costs in the system.

Our analysis assumes that query targets are dis-
tributed uniformly throughout the ring. It is based
on a worst case pattern of events, queries, and notifi-
cations: we assume all events happen just after the
last slice-leader notifications, and all queries hap-
pen immediately after that, so that none of the af-
fected routing table entries has been corrected and
all queries targeted at those nodes (i.e., the nodes
causing the events) fail. In a real deployment, queries
would be interleaved with events and notifications,
so fewer of them would fail.

This scenario is illustrated by the timeline in
Figure 2. Here twait is the frequency with which
slice leaders communicate with their unit leaders,
tsmall is the time it takes to propagate information
throughout a unit, and tbig is the time a slice leader
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waits between communications to some other slice
leader. Within twait+tsmall seconds (point 3), slices
in which the events occurred all have correct entries
for nodes affected by the respective events. After
tbig seconds of the events (point 4), slice leaders no-
tify other slice leaders. Within a further twait +
tsmall seconds (point 6), all nodes in the system re-
ceive notification about all events.

Thus, ttot = tdetect + twait + tsmall + tbig . The
quantity tdetect represents the delay between the
time an event occurs and when the leader of that
slice first learns about it.

3.4.1 Configuration Parameters

The following parameters characterize a system de-
ployment:

1. f is the acceptable fraction of queries that fail
in the first routing attempt

2. n is the expected number of nodes in the sys-
tem

3. r is the expected rate of membership changes
in the system

Given these parameters, we can compute ttot.
Our assumption that query targets are distributed
uniformly around the ring implies that the frac-
tion of failed queries is proportional to the expected
number of incorrect entries in a querying node’s
routing table. Given our worst case assumption,
all the entries concerning events that occurred in
the last ttot seconds are incorrect and therefore the
fraction of failed queries is r×ttot

n
. Therefore, to en-

sure that no more than a fraction f of queries fail
we need:

ttot ≤
f × n

r

For a system with 106 nodes, with a rate of 200
events/s, and f = 1%, we get a time interval as
large as 50s to propagate all information. Note also
that if r is linearly proportional to n, then ttot is
independent of n. It is only a function of the desired
success rate.

3.4.2 Slices and Units

Our system performance depends on the number of
slices and units:

1. k is the number of slices the ring is divided
into.

2. u is the number of units in a slice.

Parameters k and u determine the expected unit
size. This in turn determines tsmall, the time it takes
for information to propagate from a unit leader to
all members of a unit, given an assumption about h,
the frequency of keep-alive probes. From tsmall we
can determine tbig from our calculated value for ttot,
given choices of values for twait and tdetect. (Recall
that ttot = tdetect + tbig + twait + tsmall.)

To simplify the analysis we will choose values
for h, tdetect, and twait. As a result our analysis will
be concerned with just two independent variables,
k and u, given a particular choice of values for n,
r, and f . We will use one second for both h and
twait. This is a reasonable decision since the amount
of data being sent in probes and messages to unit
leaders is large enough to make the overhead in these
messages small (e.g., information about 20 events
will be sent in a system with 105 nodes). Note that
with this choice of h, tsmall will be half the unit size.
We will use three seconds for tdetect to account for
the delay in detecting a missed keep-alive message
and a few probes to confirm the event.

3.4.3 Cost Analysis

Our goal is to choose values for k and u in a way
that reduces bandwidth utilization. In particular
we are concerned with minimizing bandwidth use
at the slice leaders, since they have the most work
to do in our approach.

Bandwidth is consumed both to propagate the
actual data, and because of the message overhead.
m bytes will be required to describe an event, and
the overhead per message will be v.

There are four types of communication in our
system.

1. Keep-alive messages: Keep-alive messages form
the base level communication between a node
and its predecessor and successor. These mes-
sages include information about recent events.
As described in Section 3.1, our system avoids
sending redundant information in these mes-
sages by controlling the direction of informa-
tion flow (from unit leader to unit members)
and by not sending information across unit
boundaries.



Upstream Downstream

Slice Leader r · m · (u + 2) + 2·v·k
tbig

r · m + 2·v·k
tbig

Unit Leader 2 · r · m + 3 · v r · m + 2 · v
Other nodes r · m + 2 · v r · m + 2 · v

Table 1. Summary of bandwidth use

Since keep-alive messages are sent every sec-
ond, every node that is not on the edge of a
unit will send and acknowledge an aggregate
message containing, on average, r events. The
size of this message is therefore r · m + v and
the size of the acknowledgment is v.

2. Event notification to slice leaders: Whenever
a node detects an event, it sends a notifica-
tion to its slice leader. The expected number
of events per second in a slice is r

k
. The down-

stream bandwidth utilization on slice leaders
is therefore r·(m+v)

k
. Since each message must

be acknowledged, the upstream utilization is
r·v
k

.

3. Messages exchanged between slice leaders: Each
message sent from one slice leader to another
batches together events that occurred in the
last tbig seconds in the slice. The typical mes-
sage size is, therefore, r

k
· tbig · m + v bytes.

During any tbig period, a slice leader sends
this message to all other slice leaders (k −
1 of them), and receives an acknowledgment
from each of them. Since each slice leader re-
ceives as much as it gets on average, the up-
stream and downstream use of bandwidth is
symmetric. Therefore, the bandwidth utiliza-
tion (both upstream and downstream) is

(

r · m
k

+
2 · v
tbig

)

· (k − 1)

4. Messages from slice leaders to unit leaders:

Messages received by a slice leader are batched
for one second and then forwarded to unit
leaders. In one second, r events happen and
therefore the aggregate message size is (r ·m+
v) and the bandwidth utilization is

(r · m + v) · u

Table 1 summarizes the net bandwidth use on
each node. To clarify the presentation, we have re-
moved insignificant terms from the expressions.

Using these formulas we can compute the load
on non-slice leaders in a particular configuration. In
this computations we use m = 10 bytes and v = 20
bytes. In a system with 105 nodes, we see that the
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Figure 3. Bandwidth use on a slice leader with r ∝ n

load on an ordinary node is 3.84 kbps and the load
on a unit leader is 7.36 kbps upstream and 3.84 kbps
downstream. For a system with 106 nodes, these
numbers become 38.4 kbps, 73.6 kbps, and 38.4 kbps
respectively.

From the table it is clear that the upstream band-
width required for a slice leader is likely to be the
dominating and limiting term. Therefore, we shall
choose parameters that minimize this bandwidth.
By simplifying the expression and using the inter-
relationship between u and tbig (explained in Sec-
tion 3.4.2) we get a function that depends on two
independent variables k and u. By analyzing the
function, we deduce that the minimum is achieved
for the following values:

k =

√

r · m · n
4 · v

u =

√

4 · v · n
r · m · (ttot − twait − tdetect)2

These formulas allow us to compute values for
k and u. For example in a system of 105 nodes we
want roughly 500 slices each containing 5 units. In
a system of 106 nodes, we still have 5 units per slice,
but now there are 5000 slices.

Given values for k and u we can compute the unit
size and this in turn allows us to compute tsmall and
tbig . We find that we use least bandwidth when

tsmall = tbig

Thus, we choose 23 seconds for tbig and 23 seconds
for tsmall.

Given these values and the formulas in Table 1,
we can plot the bandwidth usage per slice leader in
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systems of various sizes. The results of this calcu-
lation are shown in Figure 3. Note that the load
increases only linearly with the size of the system.
The load is quite modest in a system with 105 nodes
(35 kbps upstream bandwidth), and therefore even
nodes behind cable modems can act as slice leaders
in such a system. In a system with 106 nodes the
upstream bandwidth required at a slice leader is ap-
proximately 350 kbps. Here it would be more appro-
priate to limit slice leaders to being machines on rea-
sonably provisioned local area networks. For larger
networks, the bandwidth increases to a point where
a slice leader would need to be a well-provisioned
node.

Figure 4 shows the percentage overhead of this
scheme in terms of aggregate bandwidth used in
the system with respect to the hypothetical opti-
mum scheme with zero overhead. In such a scheme
scheme, the cost is just the total bandwidth used
in sending r events to every node in the system ev-
ery second, i.e., r · n · m. Note that the overhead
in our system comes from the per-message proto-
col overhead. The scheme itself does not propagate
any redundant information. We note that the over-
head is approximately 20% for a system containing
105 nodes and goes down to 2% for a system con-
taining 106 nodes. This result is reasonable because
messages get larger and the overhead becomes less
significant as system size increases.

4 Two Hop Lookups

The scheme that was presented in the previous
section works well for systems as large as a few mil-
lion nodes. For systems of larger size, the bandwidth
requirements of this scheme may become too large

for a significant fraction of nodes. In this section,
we propose a two-hop scheme. This scheme keeps a
fixed fraction of the total routing state on each node
and consumes much less bandwidth, and thus scales
to a larger system size. We begin by presenting the
algorithm design in Section 4.1. Section 4.2 analyzes
the bandwidth requirements of this scheme.

4.1 System Design

Our design for a routing algorithm that routes
in two hops is based on a structure like that used
in the one-hop scheme, with slices, units, and their
respective leaders, as described previously.

In addition, every slice leader chooses a group
of its own nodes for each other slice; thus there are
k − 1 such groups. Each group is of size l. The
groups may be chosen randomly or they may be
based on proximity metrics, i.e., each group may be
chosen so that its members are dispersed (in terms
of network location) in a way that approximates the
network spread among all members of the slice.

The slice leader sends routing information about
one group to exactly one other slice leader. The in-
formation about the group is then disseminated to
all members of that slice as in the one hop scheme.
Therefore, each node has routing information for ex-
actly l nodes in every other slice. Each node main-
tains an ordering (e.g., by sending probes) for the l
nodes based on network distance to itself. It main-
tains such an ordering for every slice and thus builds
a table of k − 1 nodes that are close to it, one from
every other slice. In addition, every node keeps full
routing information about nodes in its own slice.

When a node wants to query the successor of a
key, it sends a lookup request to its chosen node
in the slice containing the key. The chosen node
then examines its own routing table to identify the
successor of the key and forwards the request to that
node. For the rest of the paper, we shall refer to the
chosen intermediate nodes as forwarding nodes.

The information flow in the system is similar to
what we saw for the one-hop lookup algorithm in
Figure 1. The only difference occurs in what a slice
leader sends to other slice leaders in step (2). The
message it sends to the ith slice leader is empty
unless one or more of the l nodes it previously sent to
that slice leader have left the system. In that case,
it sends information about the nodes that have left
the system and the nodes that it chooses to replace
them.

When a node learns of different membership for
some other slice, it probes the nodes it just heard
about and updates its proximity information for that
slice.



Tolerating slice and unit leader failure works sim-
ilarly to the one hop case.

4.2 Analysis

This section presents an analysis of how to pa-
rameterize the system to satisfy our goal of fast
propagation. As before, our analysis does not take
into account overheads of slice and unit leader fail-
ure because these events are rare. It also ignores
message loss and delay and proximity probes since
this simplifies the presentation, and the overhead
introduced by probes and by message delays and re-
transmissions is small compared to other time con-
stants in the system.

As before, our analysis assumes that query tar-
gets are located uniformly at random around the
ring. It is based on a worst case pattern of queries
and notifications. There are two ways in which a
query can fail. First, the forwarding node has failed
and the querying node is not yet aware of the event.
Second, the successor of the key being queried has
changed and the forwarding node is not yet aware
of the event. The probability of a query failing de-
pends on these events, which may not be indepen-
dent. Therefore, we assume the upper bound for the
failure probability is the sum of the probabilities of
these events.

The time taken to spread information about an
event within a slice depends on the unit size, and
as before, we call it tsmall. Then the time taken to
spread information about an event to all nodes in
the system is ttot = tbig + twait + tsmall. Therefore,
the average (over locations in the ring) probability
of query failure because of leave of forwarding node
is approximately r

2·n ·
(

tbig + twait+tsmall

2

)

. The av-
erage probability of query failure because of change
of key’s successor is r

n
· twait+tsmall

2 . Therefore, the
expected fraction of failed queries is upper bounded
by r

n
· ( tbig

2 + 3·twait

2 + 3·tsmall

2 ). Therefore, to ensure
that no more than a fraction f of queries fail, we
need:

2 · tbig + 3 · (twait + tsmall) ≤
4 · f · n

r

For example, for a system with 108 nodes, with a
rate of 20, 000 events/s, and f = 1%, we require that
2 · tbig +3 · (twait + tsmall) ≤ 200 seconds. Note that
if r is linearly proportional to n, this inequality is
independent of n. It is only a function of the desired
success rate. We choose tbig = 40 seconds, twait = 1
seconds and tsmall = 30 seconds. This choice leaves
an interval of around 4 seconds for detection of a
join or leave event. Given that keep-alive messages
are exchanged every second, this implies that the

expected size of a unit must be 60. To control up-
stream bandwidth utilization on slice leaders, we fix
the number of units in a slice to 25. This implies
that the expected size of a slice should be 1500 and
the ring should be divided into k = n/1500 slices.

In terms of bandwidth costs, we need to have
into account the fact that we are dealing with small
messages, so we need to consider protocol overheads.
Assume that m bytes will be required to describe an
event, and the overhead per message will be v.

There are four types of communication in our
system:

1. Keep-alive messages: Keep-alives comprise the
base level communication between a node and
its predecessor and successor. These messages
include information about recent events in the
node’s slice and about exported nodes in other
slices. As described in Section 4.1, our system
avoids sending redundant information in these
messages by controlling the direction of infor-
mation flow (from unit leader to unit mem-
bers) and by not sending information across
unit boundaries.

Since keep-alive messages are sent every sec-
ond, every node that is not on the edge of
a unit will send and acknowledge an aggre-
gate message containing, on average, r

k
·(l+1)

events. The size of this message is therefore
r
k
· (l + 1) ·m + v and the size of the acknowl-

edgment is v.

2. Event notification to slice leaders: This is iden-
tical to the one-hop case. Whenever a node
detects an event, it sends a notification to its
slice leader. The expected number of events
per second in a slice is r

k
. The downstream

bandwidth utilization on slice leaders is there-
fore r·(m+v)

k
. Since each message must be ac-

knowledged, the upstream utilization is r·v
k

.

3. Messages between slice leaders: Each message
sent from one slice leader to another contains
information about changes in exported nodes,
if any. The expected message size is, therefore,
r·l
n
· tbig ·m + v bytes. During any t1 = 40 sec-

onds period, a slice leader sends this message
to all other slice leaders, and receives an ac-
knowledgment from each of them. Since each
slice leader receives as much as it gets on av-
erage, the upstream and downstream use of
bandwidth is symmetric. Therefore, the band-
width utilization (both upstream and down-
stream) is

(

r · l · m
n

+
2 · v
40

)

· (k − 1)



Upstream Downstream
Slice Leader 1.6 Mbps 800 kbps
Unit Leader 1 kbps 530 bps
Ordinary node 530 bps 530 bps

Table 2. Summary of bandwidth use for a system of size
108

4. Messages from slice leaders to unit leaders:

Messages received by a slice leader are batched
for one second and then forwarded to unit
leaders. In one second, r

k
events happen within

the slice and r·k·l
n

events are exported. There
are 25 units per slice, and therefore, the band-
width utilization is

25 ·
((

r

k
+

r · k · l
n

)

· m + v

)

Using these formulas we can compute the load on all
nodes for a system of any size and an appropriate
choice of l. For a system of size 108, we may choose
l to be approximately 15. Since slices are large, we
expect that this group size will allow each node to be
able to find at least one node (in every slice) which
is close to it in terms of network proximity even if
the groups are populated randomly. This will make
the first hop in the lookup a low latency hop, bring-
ing down the total routing delay. If algorithms for
clustering nodes on the basis of network proximity
are used, then l may be fixed depending on the size
and the number of clusters. In this computations we
use m = 10 bytes and v = 20 bytes. Table 2 sum-
marizes the net bandwidth use on each node in a
system of size 108 having 20, 000 events per second,
and with l = 15. The load on slice leaders increases
linearly with the size of the system. Therefore, this
scheme would scale up to a system of around half a
billion nodes.

5 Evaluation

In this section, we present experimental results
obtained with simulations of the one hop and two
hop schemes. In the first set of experiments, we used
a coarse-grained simulator to understand the over-
all behavior of the one and two hop systems with
tens of thousands of nodes. This simulation scales
to approximately 20,000 nodes. In the second set of
experiments we use a more fine-grained simulation
of the one hop system where the simulation envi-
ronment could not support more than 2000 nodes.

In both experiments we derived inter-host la-
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Figure 5. Query Failure Rate in a one hop system of
size 20, 000 with changing inter-slice communication fre-
quency

tencies from Internet measurements among a set of
1024 DNS servers [5]. Note that our experimental
results are largely independent of topology since we
did not measure lookup latency (this would be influ-
enced by the distance to the forwarding node in the
two-hop scheme), and the impact of inter-node la-
tency on query failure rates is minimal, since the la-
tencies are over an order of magnitude smaller than
the timeouts used for propagating information.

5.1 Coarse-grained Simulations

The experiments using the coarse-grained simu-
lator were aimed at validating our analytic results
concerning query success rate. The coarse-grained
simulator is based on some simplifying assumptions
that allow it to scale to larger network sizes. First,
it is synchronous: the simulation proceeds in a se-
ries of rounds (each representing one second of pro-
cessing), where all nodes receive messages, perform
local processing of the messages, and send messages
to other nodes. Second, in this case we did not sim-
ulate slice leader failures. Packet losses are also not
simulated.

The first set of experiments shows the fraction
of successful queries as a function of interslice com-
munication rate. The expected number of nodes in
the system is 20, 000, the mean join rate is 2 nodes
per second, and the mean leave rate is 2 nodes per
second. Node lifetime is exponentially distributed.
New nodes and queries are distributed uniformly in
the ID space. The query rate is 1 query per node
per second.

For the one hop scheme, the number of slices is
chosen to be 50 and there are 5 units in every slice
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Figure 6. Query Failure Rate in a two hop system of
size 20, 000 with changing inter-slice communication fre-
quency

(these are good choices according to our analysis).
The frequency of inter-slice communication varied
from 1 every 10 seconds to 1 every 100 seconds.

The results are shown in Figure 5. We can see
that the query failure rate grows steadily with the
time between inter-slice communication. Note, how-
ever, that even with a relatively infrequent commu-
nication of once every 100 seconds, we still obtain
an average of about a 1% failure rate.

This simulation confirms our expectation that
the failed query rate we computed analytically was
conservative. We can see that when the inter-slice
communication is set to 23 s (the value suggested
by our analysis), the query failure rate is about
0.4%, and not 1% as we conservatively predicted
in Section 3. The reason why the actual failure rate
is lower is because our analysis assumed the worse
case where all queries are issued right after member-
ship events occur, and before any events were prop-
agated. In reality, queries are distributed through
the time interval that it takes to propagate the in-
formation, and by the time some queries are issued,
some nodes already have received the most up-to-
date information.

Figure 6 shows a similar experiment for the sim-
ulation of the two hop scheme. Here the expected
number of slices in the system is chosen to be the
bandwidth-optimal slice count of 7. Similarly, the
number of units per slice is chosen to be 60 (again
this choice comes from our analysis). By compar-
ing Figures 5 and 6, we can see that the two hop
scheme causes a lower fraction of failed queries than
the one hop scheme. This happens for two reasons.
In the two hop scheme, the first hop fails only if
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Figure 7. Query Failure Rate in a one hop system of size
2, 000

the forwarding node fails; node joins do not cause
routing failures in this case. Also the second hop
is more likely to succeed than the single hop in the
one hop case, since the choice of target node is made
by the forwarding node, which has very up-to-date
information about its own slice. These points also
explain why the two hop system has much lower
sensitivity to change in frequency of inter-slice com-
munications than the one hop system.

5.2 Fine-grained Simulations

In this section we report on simulations of the
one hop routing algorithm using p2psim [4], a peer-
to-peer protocol simulator where we could imple-
ment the complete functionality of the one hop pro-
tocol. Using this simulator we are able to explore
bandwidth utilization and also the impact of slice
and unit leader failures.

In the first experiment we measure the evolution
of the query failure rate of a system that grows very
fast initially, and then stabilizes to “typical” mem-
bership dynamics. We simulate a system with 2000
dynamic nodes with 10 slices and 5 units per slice.
The results are shown in Figure 7. In the first 300
seconds of the simulation, all nodes join rapidly. Af-
ter that the system shows Gnutella-like churn [14]
with 24 events per minute. All nodes join by obtain-
ing a routing table from another node; the routing
tables then continue to grow as new nodes come in.

After approximately the first 10 minutes, the
query failure rate stayed consistently at around 0.2%.
We also did experiments to determine the failure
rate observed after the query is re-routed once. In
this case the failure rate settles down to approxi-
mately one failure in 104 queries, or 0.01%. This



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 7700  7800  7900  8000  8100  8200  8300  8400  8500

F
ra

ct
io

n 
of

 Q
ue

ry
 F

ai
lu

re
s

Time (seconds)

’one hop query failure rate’

Figure 8. Query Failure Rate in a one hop system of size
2000 after 45% of the nodes crash at t=8000s

is because the local information about a slice, es-
pecially knowledge of predecessors and successors
gets transmitted very rapidly. Thus, 99.99% of the
queries are correctly satisfied by two or fewer hops.

Next, we examine the behavior of the system in
the presence of a burst of membership departures.
Again we simulated a system with 2000 nodes, with
10 slices and 5 units per slice. The query rate was 1
lookup per second per node. At time instant t=8000
seconds, 45% of the nodes in the system were made
to crash. These nodes are chosen randomly. Fig-
ure 8 shows the fraction of lookups that failed sub-
sequent to the crash. It takes the system about 50
seconds to return to a reasonable query success rate,
but it doesn’t stabilize at the same query success
rate that it had prior to the crash for another 350
seconds. What is happening in this interval is recov-
ery from slice leader failures. The query rate has an
important role in slice leader recovery; queries help
in restoring stale state by regenerating event notifi-
cations that are lost because of slice-leader failures.
For example, with a query rate of 1 lookup every 10
seconds, the system did not stabilize below 2% for
the length of the simulation (50,000 seconds) while
for a query rate of 2 lookups per second, the system
stabilized within 300 seconds. This indicates that
it may be useful to artificially insert queries in the
system during periods of inactivity.

Figure 9 shows the overall bandwidth used in
the system in this period. The aggregate bandwidth
used in the entire system is around 300 kbps before
the crash and settles into around 180 kbps after ap-
proximately 150 seconds. (The steady-state band-
width decreases due to the decrease in the system
size.) We can see that while the duration of the
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Figure 9. Bandwidth used in a one hop system of size
2000 after 45% of the nodes crash at t=8000s

spike is similar to that of the spike in query fail-
ure rate, bandwidth settles down to expected levels
faster than successful lookups. This happens be-
cause lookups continue to fail on routing table en-
tries whose notifications are lost in slice leader fail-
ures. These failures have to be “re-discovered” by
lookups, and then fixed slice-by-slice, which takes
longer. While each failed lookup generates notifi-
cations and thus increases maintenance bandwidth,
at the system size of around 2000 most messages
(after the spike settles down) are dominated by the
UDP/IP packet overhead. Thus, the overall effect
on bandwidth is significantly lower.

We also ran experiments in which we simulated
bursts of crashes of different fractions of nodes. We
observed that the time periods taken for the lookups
and bandwidth to settle down were almost the same
in all cases. We expect this to happen because the
time taken to stabilize in the system is dependent
on the system size, and chosen parameters of unit
size and tbig which remain the same in all cases.

We also computed the average spike bandwidth.
This was measured by computing the average band-
width used by the entire system in the 50 seconds it
took for the system to settle down in all cases. From
Figure 10 we see that the bandwidth use grows ap-
proximately linearly with the size of the crash. In
all cases, the bandwidth consumption is reasonable,
given the fact that this bandwidth is split among
over a thousand nodes.

6 Discussion

In this section we discuss features that we did
not incorporate into our algorithms, but that may
be of use in the future.
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6.1 Proximity

Existing peer-to-peer routing algorithms like Pas-
try [13] and Tapestry [18] carefully exploit inter-
node proximity when choosing a node’s routing ta-
ble entries. By trying to populate a node’s routing
tables with nearby nodes, the routing process is sim-
plified, as shorter routing hops become more likely.

Our one hop scheme does not require proximity
for routing, as proximity information is of no use in
practice in this scheme. For our two hop scheme,
we mentioned in Section 4.1 how proximity can be
exploited to improve routing.

However, we can also improve our algorithms by
using proximity information when forming our dis-
semination trees (which in our case are formed by
randomly chosen slice and unit leaders). The main
improvement comes from improving the dissemina-
tion of information within a slice. We think that
inter-slice communication is a small part of the over-
all load, and since the slice leaders are chosen to be
well-connected nodes, there is not much point in
trying to improve this situation.

For disseminating information within a slice, how-
ever, we could improve our current scheme by using
an application-level multicast technique that takes
proximity into account. Either a peer-to-peer tech-
nique (e.g., Scribe [1] or Bayeux [19]) or a tradi-
tional technique (e.g., SRM [3] or RMTP [8]) might
be appropriate.

6.2 Caching and Load-Balancing

Previous peer-to-peer systems exploited the fact
that queries for the same key from different clients
have lookup paths that overlap in the final segments,
to perform caching of the objects that were returned

on the nodes contacted in the lookup path. This
provided a natural way to perform load balancing —
popular content was cached longer, and thus it was
more likely that a client would obtain that content
from a cached copy on the lookup path.

Our two hop scheme can use a similar scheme to
provide load-balancing and caching. This will lead
to popular items being cached at the forwarders,
where they can be accessed in one hop; note that an
added benefit is the the querying node will usually
have good proximity to the forwarder.

Since the one hop scheme doesn’t have extra
routing steps we can’t use them for load balancing.
But one-hop routing can be combined with caching
schemes to achieve load balancing (and nearby ac-
cess) if desired. In addition, load balancing might
be achieved at the application level by taking ad-
vantage of replication. In a peer-to-peer system data
must be replicated in order to avoid loss when nodes
depart. A query can take advantage of replication
to retrieve an item from the replica most proximate
to the querying node.

7 Related Work

Rodrigues et al. [12] proposed a single hop dis-
tributed hash table but they assumed a much smaller
peer dynamics, like that in a corporate environ-
ment, and therefore did not have to deal with the
difficulties of rapidly handling a large number of
membership changes with efficient bandwidth us-
age. Douceur et al. [2] present a system that routes
in a constant number of hops, but that design as-
sumes smaller peer dynamics and searches can be
lossy.

Kelips [6] uses
√

n sized tables per node and a
gossip mechanism to propagate event notifications
to provide constant time lookups. Their lookups,
however, are constant time only when the routing
table entries are reasonably accurate. As seen be-
fore, these systems are highly dynamic and the ac-
curacy of the tables depends on how long it takes
for the system to converge after an event. The ex-
pected convergence time for an event in Kelips is
O(

√
n× log3(n)). While this will be tens of seconds

for small systems of around a 1000 nodes, for sys-
tems having 105 to 106 nodes, it takes over an hour
for an event to be propagated through the system.
At this rate, a large fraction of the routing entries in
each table are likely to be stale, and a correspond-
ingly large fraction of queries would fail on their first
attempt.

Mahajan et al. [9] also derive analytic models
for the cost of maintaining reliability in the Pas-



try [13] peer-to-peer routing algorithm in a dynamic
setting. This work differs substantially from ours in
that the nature of the routing algorithms is quite
different – Pastry uses only O(log N) state but re-
quires O(log N) hops per lookup – and they focus
their work on techniques to reduce their (already
low) maintenance cost.

Liben-Nowell et al. [7] provide a lower-bound
on the cost of maintaining routing information in
peer-to-peer networks that try to maintain topo-
logical structure. We are designing a system that
requires significantly larger bandwidth than in the
lower bound because we aim to achieve a much lower
lookup latency.

Mizrak et al. [10] present an alternative two-
hop routing scheme. In this scheme, all queries
are routed through (their equivalent of) slice leaders
and ordinary nodes do not exchange state. Our two
hop scheme gives the querying node different possi-
bilities for the forwarding node, which allows us to
employ clever techniques to decide which forwarding
node to use (e.g., based on proximity).

8 Conclusions

This paper questions the necessity of multi-hop
lookups in peer-to-peer routing algorithms. We in-
troduce the design of two novel peer-to-peer lookup
algorithms. These algorithms route in one and two
hops, respectively, unless the lookup fails and other
routes need to be attempted. We designed our algo-
rithms to provide a small fraction of lookup failures
(e.g., 1%).

We present analytic results that show how we
can parameterize the system to obtain reasonable
bandwidth consumption, despite the fact that we
are dealing with a highly dynamic membership. We
present simulation results that support our analysis
that the system delivers a large fraction of lookups
within one or two hops, depending on the algorithm.

Previous peer-to-peer systems exploited the fact
that queries for the same id from different clients
have lookup paths that overlap in the final segments,
to perform caching of the objects that were returned
on the nodes contacted in the lookup path. This
provided a natural way to perform load balancing —
popular content was cached longer and more often,
and it became more likely that a client would obtain
that content from a cached copy on the lookup path.

Our two hop algorithm can use a similar scheme
to provide load-balancing and caching. We are in-
vestigating ways to obtain similar advantages in the
one hop scheme.

Currently peer-to-peer systems have high lookup

latency and are therefore only well-suited for appli-
cations that do not mind high-latency store and re-
trieve operations (e.g., backups) or that store and
retrieve massive amounts of data (e.g., a source tree
distribution). Moving to more efficient routing re-
moves this constraint. This way we can enable a
much larger class of applications for peer-to-peer
systems.
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