
Zoned Federation of Game Servers: a Peer-to-peer
Approach to Scalable Multi-player Online Games

Takuji Iimura
Nara Institute of Science and

Technology
Nara, 630-0192, Japan

takuji-i@is.naist.jp

Hiroaki Hazeyama
Nara Institute of Science and

Technology
Nara, 630-0192, Japan

hiroa-ha@is.naist.jp

Youki Kadobayashi
Nara Institute of Science and

Technology
Nara, 630-0192, Japan

youki-k@is.naist.jp

ABSTRACT
Today’s Multi-player Online Games (MOGs) are challenged by in-
frastructure requirements, because of their server-centric nature.
Peer-to-peer networks are an interesting alternative, if they can im-
plement the set of functions that are traditionally performed by cen-
tralized authoritative servers. In this paper, we propose azoned
federation model to adapt MOG to peer-to-peer networks. In this
model, zoning layer is inserted between the game program and
peer-to-peer networks. We introduce the concept ofzone andzone
owner to MOG. Zone is some part of the whole game world, and
zone owner is an authoritative server of a specific zone. According
to the demands of the game program, each node actively changes
its role to zone owner and works in the same way as a centralized
authoritative server. By dividing the whole game world into sev-
eral zones, workloads of the centralized authoritative game server
can be distributed to a federation of nodes. We have implemented
the zoned federation model, and evaluate it with a prototypical
multi-player game. Evaluation results indicate that our proposed
approach is applicable to small and medium-sized MOGs, where
the number of nodes is less than 500.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network Proto-
cols—Applications

General Terms
Design, Performance

1. INTRODUCTION
Today’s Multi-player Online Games (MOGs) are usually con-

structed using the client-server model. In the client-server model, a
centralized authoritative server is required as storage for the global
state, as a judge to avoid conflicts among clients, and as a game
master to update global states and to announce updated data ac-
cording to game program sequences or clients demands. In order to
handle frequent requests from multiple players without interrupting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04 Workshops, Aug. 30+Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-942-X/04/0008 ...$5.00.

game program

zoning layer

DHT layer

network layer

Figure 1: Zoning Layer

game sequences, the authoritative server is usually constructed as
a cluster, in which each cluster node is provisioned with high per-
formance hardware with large storage and wide bandwidth. There-
fore, running and managing an MOG requires initial investments
and continuous maintenance fees. This prevents small or medium
enterprises from starting up a new MOG.

In this paper, we attempt to adapt MOG to peer-to-peer net-
works. If peer-to-peer network nodes can collaboratively form a
game server cluster, game creators may be able to run MOG pro-
grams without the co-location fees.

We use Distributed Hash Table (DHT) to construct the peer-to-
peer network. DHT is a distributed data placement and lookup al-
gorithm for peer-to-peer networks. There are some variations of
DHT, e.g., Chord [1], CAN [2], Pastry [3], and Tapestry [4].

To construct game server clusters on DHT, we propose thezoned
federation model. The zoned federation model is a model of MOG
based on DHT andzoning layer. In the zoned federation model,
all global states of an MOG are separated into severalzones and
distributed onto the DHT. A node in the zoned federation model
changes its role according to demands of the game program. A
node may work as the game server on some zone, or may become
a game client node.

To achieve the correct game sequence and low latency on data
updates, we inserted zoning layers between a game program and
the DHT or the network layer (Fig.1). We limited the use of DHT
to the backup data storage and to the initial rendezvous point to an
authoritative node. That is, once the authoritative node for a partic-
ular global state is found by DHT, a client node keeps the connec-
tion to the authoritative node in order to receive latest updates di-
rectly and to request modification of the data. In other words, zon-
ing layer confines the update request and notification within single
zone, and zoning layer depends on DHT layer for data storage and
rendezvous. By doing so, zoned federation model can provide la-
tency comparable to client-server model MOG in spite of the initial
rendezvous overhead.

We have implemented this zoned federation model; zoning layer
has been implemented as a middle layer between MOG layer and
DHT layer. Its performance is evaluated with a prototypical game.

116

DHT Network

read read

read

write

write

write

node

node

node

data holder

data

Figure 2: Flat model

whole global data

zone A zone B

zone C

zone D
zone
 B

zone
 D

zone
 A

zone
 C

DHT

data #1
data #2
 :

owner = FOO

data #1
data #2
 :

Figure 3: Mapping Zones on DHT

In Section 2, we model MOG on a peer-to-peer network, and de-
scribe the details of node behaviors and procedures on our proposed
model. We mention an implementation of our proposed model
based on Pastry[3] in Section 3 and evaluate it in Section 4. In
Section 5, we refer to related work, and finally, we conclude this
paper in Section 6 and discuss future work in Section 7.

2. MODELING MOG ON PEER-TO-PEER
NETWORKS

In order to adapt MOG to peer-to-peer networks, we have to con-
sider how to distribute the tasks of the authoritative server. The
tasks of the authoritative server are storing global states, modifica-
tion of global states, and broadcasting state changes to clients to
keep synchronization among each client.

2.1 Flat model
First of all, we consider a simple model which distributes the

storage of all global states. We designed a flat model based on
DHT (Fig.2). Although each node can read and write global states,
a specific global state is always stored uniquely on the peer-to-peer
network because of the inherent consistency of data on DHT.

However, incorrect game sequence easily occurs due to the lack
of serializability. As an example of incorrect game sequence, a
player can be suddenly dead by very small damage after full re-
covery from near death. Furthermore, there is no mechanism on
DHT to announce changes of global states to nodes. Each node
must read global states frequently, in order to keep synchronization
among each node’s game progress.

2.2 Zone model
In order to establish serializability on game, we consider a sec-

ond model, namedzone model (Fig.4).
On MOG, most nodes exhibit locality; they only access frac-

tion of information in the whole game world. Therefore, we divide
the whole global state into severalzones. A zone is a set of sev-
eral global states gathered by a set of keys or some specific feature
(Fig.3). In other words, zone is the minimum unit on distributing
global states into DHT. For example, if the whole map data is par-
titioned into some areas with a set of keys, a zone data contains all
global states of a specific area in the whole game world. Also, it is
possible to bind all status data of a single player to a zone. There is
no restriction on partitioning all global states into zones; it is pos-

DHT Network

update

read owner

read zo
ne data

request to modify
owner member

data holder

zone data

zone
owner

Figure 4: Zone model

sible to assign a zone to one global state. It is up to each MOG to
determine how to decompose global states into zones. Each zone
is associated with a participant node according to DHT’s data dis-
tributing algorithm. In this paper, we call a node, which stores some
zone data in its own storage, as adata holder node.

In order to serialize global state changes within each zone, some
node changes its role to the authoritative node, calledzone owner,
according to situations. When a node works as the zone owner on
some specific zone, the node can modify global states on the zone.
Meanwhile, the zone owner is responsible to accept other nodes’
requests, to judge conflicts, and to serialize all changes of each
global state on its governing zone.

Initially, each node starts at theindependent node state. When
the game program on some node tries to modify some global state,
the node checks which node is working as the zone owner. Along
with global states, the address of the zone owner is stored on a zone.
Whenever the address of the zone owner is not stored, the detecting
node writes its own address in the zone and becomes new zone
owner. If the game program on a zone owner no longer requires
the global states of its zone any more, the zone owner can resign its
authoritative role.

An independent node changes its status tozone member if the
node wants to change some global states whose zone owner al-
ready exists. A zone member node looks up the address of the zone
owner, and asks the zone owner to modify some global state on
the zone. Each zone member reads the latest update from the data
holder node through DHT.

A node may work as a zone owner on some zone, while at the
time joining another zone as a zone member.

Introducing zone owner as an authoritative node, zone model
achieves correct game sequence and global state consistency. How-
ever, this model has limited applicability since many MOGs require
low latency[5]. In this model, all messages and modifications have
to go through DHT for the purpose of keeping data consistency.
DHT requires several routing hops to reach a data holder node be-
cause of DHT lookup algorithm[1, 2, 3, 4]. Searching DHT, when-
ever the game program wishes to modify global states, causes high
latency which makes game progress intolerably slow.

2.3 Zoned federation model
In order to amend zone model for the latency requirement, we

came up with the third model, where we limit the use of DHT to
the backup storage of global states and to the initial rendezvous
point. We also employ caching techniques to reduce latency. The
third model is named zoned federation model (Fig.5).

2.3.1 Data caching
Zone owner has the write permission to the master data of global

states on its governing zone. However, updating master data through
DHT causes more latency than modifying data on local storage of
zone owner. So, using local cache on a zone owner as master data
of global states on its zone, it is able to cut the latency caused by
searching the data holder to modify global states through DHT.

117

DHT Network
data holder

zone data

zone
owner

update zone data

request to modifyread write

load

backup

rendezvouswrite entry

owner member

Zoning
 Layer

owner’s
local cache

zone data

zone
owner

Figure 5: Zoned federation model

Therefore, we employ DHT as a backup data storage, in other
words, we use local cache of zone data on its zone owner as a mas-
ter data. When a node becomes the zone owner of some zone, the
new zone owner uploads its local cache of zone data from the data
holder through DHT at first. After then, the zone owner reads and
writes the local cache on its own storage as a master data of its
zone. Once a zone owner has uploaded zone master data into its
local cache, the zone owner doesn’t need to search the data holder
location to modify global states. To avoid losses of the latest master
data of some zone when the zone owner moves out from the zone,
each zone owner updates zone data on its data holder to leave a
backup of master data on its zone.

2.3.2 Connection caching
Along with data caching on each zone owner, we combine con-

nection caching in the zone model. Some global states, such as the
location of a character, are likely to be changed frequently. It is
wasteful to close the connection between a zone owner and a zone
member whenever a notification of state changes finishes.

Therefore, we take DHT as a rendezvous point between a zone
owner and its zone member. As a rendezvous point, global states on
a data holder are stored with not only its zone owner’s location, but
also with the addresses of each zone member. When an indepen-
dent node becomes a zone member, the new zone member writes
its address in the DHT while checking its zone owner location by
using DHT. Once a zone member finds a zone owner through the
DHT, the zone member keeps the connection to the zone owner
until the zone member no longer needs any global states on the
zone. Establishing the direct connection between the zone member
and the zone owner, the zone member makes requests to the zone
owner through the direct connection.

On the other hand, if no zone owner exists on some zone but
its zone members are still alive, and if some node becomes new
zone owner on the zone, the new zone owner can grasp all its mem-
bers’ addresses uploading all zone data, because zone members ad-
dresses are also described in zone data stored as a backup data on
the zone’s data holder. Therefore, new zone owner can updates all
its members global states directly as soon as the zone owner fin-
ishes uploading the latest backup data stored on its data holder.

Using DHT as rendezvous points and backup storage, the zoned
federation model lets each zone owner play the authoritative game
server on its governing zone. In a sense, this model represents some
kind of clustering game servers arranged on peer-to-peer network
sparsely. In this model, each zone owner can update zone mem-
bers’ global states directly while keeping the consistency and the
serialization of global states on each zone. We can consider that
the zoned federation model can provide the necessary and sufficient
low latency characteristics required by MOG.

Table 1: Zoning Layer API
initialize() to connect to the game world
stepup() to step up to zone owner

join() to join a zone as zone member
and listenupdate messages

update() to update modified global states
commit() to send a commit message
release() to release direct connection to

the zone owner
stepdown() to step down from zone owner

and close all connections to
zone members

3. IMPLEMENTATION
In this section, we describe our implementation of the zoned fed-

eration model. We have insertedzoning layer as a middle layer be-
tween game programs and TCP/IP stacks, and between game pro-
grams and the DHT layer (Fig.1).

We have implemented the zoning layer as a C++ library that
works on NetBSD, FreeBSD, and Solaris. As a DHT implemen-
tation, we have also implemented the Pastry[3] which uses SHA1
[6] as the hash function. Our zoning layer implementation provides
several APIs for game programs. On the assumption that game pro-
grams are written in event driven model, we have designed and im-
plemented APIs (Table 1). Using these APIs, game programs can
change its node status along with situations.

3.1 Node Behaviors on Zoning Layer

3.1.1 Change of node status
Whenever a game program on an independent node wants to

modify any global states, the independent node has to become the
zone owner or zone member of the zone which contains required
global states.

First of all, an independent node checks its own DHT whether
the zone owner exists or not. If the zone owner already exists, the
independent node becomes the zone member of the zone. To be-
come a zone member of some zone, the independent node sends
a join message to the zone owner. As soon as the zone owner re-
ceives the join message from the independent node, the zone owner
then adds the independent node as its zone member in zone mem-
bers list on DHT, and sends anaccept message to the independent
node. When the node receives the accept message, the indepen-
dent node changes its own status to zone member, and keeps the
direct connection to the zone owner until when then game program
on the zone member doesn’t need global data managed the zone
owner any more. This sequence to become zone member is called
join. After succeeding join, a zone member sendscommit messages
through established direct connections to its zone owner if the game
program demands to modify some global state.

Otherwise, if the zone owner of a specific zone doesn’t exist, an
independent node or a zone member becomes the zone owner. We
call this actionstep up. The sequence of “step up” is as follows: an
independent node or a zone member registers itself as zone owner
on DHT, then, the new zone owner copies or reloads local cache
of global states on its zone from DHT to avoid missing any zone
members. After finishing step up, a new zone owner then estab-
lishes and keeps all connections to its zone members.

The releasing process of the direct connection between a zone
owner and a zone member is as follows: if a zone owner wants to

118

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500 600 700

tim
e

[s
ec

]

number of members

DHT time
total time

total - DHT time

Figure 6: Step Up Time

step down, to resign the authoritative role, the zone owner deletes
its entry as zone owner from the zone data located on DHT, and
closes all connections to its zone members. On the other hand, if
a zone member returns to a node, it deletes its own registration in
the zone member list on the zone data, then closes the connection
to the zone owner. We call this procedure “release”.

3.1.2 Recovery from Failure
We should mention error processing when a node is suddenly

isolated from peer-to-peer network because of some network fail-
ure. If a zone member is isolated from the network, we can consider
that the zone member carried out a ”release” action. The registra-
tion of the zone member on DHT still remains, however. The zone
owner is the only node which knows the zone member has gone
away, so the zone owner removes the zone member’s entry from
zone members list to keep consistency of the list.

When a zone owner has been disconnected from a network, its
zone members notice that the zone owner was isolated from the
network according to the absence of heartbeat messages from the
zone owner. Then, each zone member sendsowner-lost message
to the game program. After sending an owner-lost message, one
of these zone members deletes the zone owner entry from DHT.
If some zone member game program demands a change of global
state, the zone member tries to ”step up”.

If a zone owner disappears from network when no zone mem-
ber is listed, the entry of the zone owner remains on DHT. In this
case, a node becomes a zone member because of the remnant of the
zone owner entry on DHT, but the new zone member receives no
heartbeat message from registered zone owner, so the zone member
notices that the zone owner doesn’t exist. Then, the zone member
deletes the old zone owner entry from DHT and tries to ”step up”.

4. EVALUATION
In this section, we evaluate our implementation described in Sec-

tion 3.
First, we evaluatedstep up time, that is, the time a node spends

to become a new zone owner and to establish direct connections to
all of its members. We used an experimental environment which
consists of seven FreeBSD PCs with 256MB memory, three with
500MHz processors and the other four with 850 MHz, intercon-
nected by a 100base-TX switch. In order to increase the number of
zone members, we emulated multiple zone member nodes by run-
ning multiple zone member processes on a PC. In this test-bed en-
vironment, zone owner was placed in only one PC, and zone mem-
bers were equally distributed among other six PCs.

100 200 300 400 500 600 700 800 900 1000

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

number of members

de
la

y
tim

e
[s

ec
]

Figure 7: Update latency

The scenario of this experiment was as follows: at first, only zone
members are running; next, a new independent node steps up to the
zone owner. We evaluated this step up time while increasing the
number of zone members gradually. The result of this experiment
is shown in Figure 6. The time to establish connections to all zone
members (“total - DHT time” in the figure) was proportional to the
number of zone members, whereas the rendezvous overhead was
almost constant but with inter-node delay fluctuations.

Next, we measuredupdate latency, the time spent to update a
global state of each zone member from the zone owner, from when
a zone owner starts transferring an updated global state. The mea-
surements have been done at Hokuriku IT Open laboratory, where
512 PCs are divided into five partitions and interconnected through
switches. Each PC has Intel Pentium III 1GHz, 512 MB main mem-
ory, and two 100 Base-TX network interfaces. On each node, one
of the NICs is connected to the control network, and another NIC
is connected to the experimental network. We ran FreeBSD 4.7 on
each PC. For this particular measurement, we used 296 PCs with a
flat network topology.

We evaluated the effect of the number of zone members on a
single zone. In this experiment, we used a PC for running only
one zone owner process with 100 milliseconds artificial delay by
dummynet, and zone member processes ran on other 295 PCs.

The update latency exhibits weak exponential trend when we
increase the number of zone members from 100 to 1,000 (Figure
7). This trend can be explained by multiplexing of zone members
onto single processor. The degree of multiplexing increases as zone
member exceeds 295, 590, and 885, respectively.

The update latency of zoned federation model is comparable to
client-server model in the case of single zone, since the single zone
case is identical to client-server model when we only look at up-
dates.

Next, we measured the effect of the number of zones to update
time when total number of zone members was fixed to 297 nodes.
We changed the number of zones from one to eight, and we dis-
tributed zone members to each zone uniformly. Figure 8 shows the
result of this experiment. In contrast to the first experiment, arti-
ficial delay was not introduced here. From this figure, we can see
that we can reduce the delay and narrow distribution of update time
by dividing a large zone into several smaller zones.

5. RELATED WORK
Knutsson et. al. proposed SimMud, an alternative approach to

MOG in peer-to-peer environments[7]. SimMud employs Pastry[3]
and Scribe[8] as base components of its architecture. In SimMud
approach, the authoritative role is given to a data holder node, which

119

1 2 4 6 8

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

number of zones

de
la

y
tim

e
[s

ec
]

Figure 8: Effect of number of zones to update time

they call “coordinator”. By randomly mapping coordinators on
DHT, SimMud prevents game players from cheating global states.
Also, by preparing several replicas of a coordinator, SimMud pro-
vides fault tolerance.

Since SimMud uses DHT and application-layer multicast (ALM)
for message exchange, it incurs network delay by crossing several
hops on both DHT and ALM. In contrast, our model is optimized
for lower latency: except initial rendezvous by DHT, each node
exchanges messages directly. Also, the zoned federation model
optimizes the network latency without combining a central arbiter
server like as [9].

The scalable data dissemination problem has been addressed in
the application-level multicast literatures[8, 10], where large re-
ceiver groups are of particular concern. In contrast, our work fo-
cuses on zone-local data dissemination with low latency.

The API described in this paper resembles to the CAST interface
which is part of the common API effort[11]. However, the under-
lying semantics have notable differences: zone-local serializability,
and the presence of multiple roles. Any-source multicast protocols
are not serializable, in the sense that one particular receiver cannot
ensure the same order of packet arrival as other receivers. In MOG
context, we believe that the serializability is of particular impor-
tance.

6. CONCLUSION
In this paper, we have proposed the zoned federation model,

which adapts MOG to peer-to-peer networks. In this model, the
whole game world is divided into several zones, and each zone is
maintained by a federation of nodes: an owner and one or more
members. Zone owner plays two critical roles. First, it provides
zone-local serializability of state changes, by aggregating modifi-
cations from all members, and by sending state-change notifica-
tions to all members. Second, it ensures consistency of changes
that are committed by other member nodes. DHT harnesses this
zoning layer by providing rendezvous capability and by working as
a backup medium for zone data.

We have applied this model to our prototypical MOG implemen-
tation, with which we have evaluated latency and scalability. Our
results, based on synthetic workloads, indicate that the zoned fed-
eration model can achieve scalability by decomposing the whole
game world into many zones and by maintaining each zone rela-
tively small.

7. FUTURE WORK
We have constructed our model on DHT in order to achieve data

consistency. However, if a data holder leaves from network, the
zone data disappears until the data holder comes back to peer-to-
peer network. In future work, we should consider the durability
of global states by replicating states or by adopting loss-resilient
codes.

While we have only looked at the application-layer topology,
topology-aware overlay[12] will further reduce latency of intra-
zone communication by optimizing network-layer topology of the
overlay.

Working as the authoritative node is likely to be heavy task for a
game player’s PC. In our model, we assume that each player node
plays fairly and trusts other players. Based on this assumption,
we let a node, which wants to change some global state, become
the zone owner. Therefore, cheating on the zone owner node is
possible in our model. Cheating on the zone owner can be solved
by replacing the zone owner role on the data holder node as pro-
posed in SimMud[7]. However, this solution cannot deal with at-
tacks by a large number of malicious nodes. These problems come
from the lack of the mechanism for checking the trustworthiness of
each node autonomously. If some reputation system like as Eigen-
Trust[13] is available, it can replace an untrusted zone owner node
or a malicious data holder node according to the relationship of mu-
tual trust among participant nodes. Achieving the reliability of the
zoned federation model is one of our future work.

8. REFERENCES
[1] I. Stoica et. al. Chord: A scalable Peer-To-Peer lookup

service for internet applications. InProceedings of the ACM
SIGCOMM Conference, 2001.

[2] S. Ratnasamy et. al. A scalable content-addressable network.
In Proceedings of the ACM SIGCOMM Conference, 2001.

[3] A. Rowstron et. al. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems.
Lecture Notes in Computer Science, 2001.

[4] B. Y. Zhao el. al. Tapestry: An infrastructure for
fault-tolerant wide-area location and routing. Technical
Report UCB/CSD-01-1141, UC Berkeley, 2001.

[5] L. Pantel et .al. On the impact of delay on real-time
multiplayer games. InProceedings of NOSSDAV, 2002.

[6] D. Eastlake III et. al. US secure hash algorithm 1 (SHA1).
RFC 3174, Internet Engineering Task Force, 2001.

[7] B. Knutsson et. al. Peer-to-peer support for massively
multiplayer games. InProceedings of INFOCOM, 2004.

[8] M. Castro et. al. Scribe: A large-scale and decentralized
application-level multicast infrastructure.IEEE JSAC, 2002.

[9] J. D. Pellegrino et .al. Bandwidth requirement and state
consistency in three mutliplayer game architecture. In
Proceedings of NETGAMES, 2003.

[10] S. Zhuang et. al. Bayeux: An architecture for scalable and
fault-tolerant wide-area data dissemination. InProceedings
of NOSSDAV, 2001.

[11] F. Dabek et. al. Towards a common api for structured
peer-to-peer overlays. InIPTPS ’03, 2003.

[12] S. Ratnasamy et. al. Topologically-aware overlay
construction and server selection. InProceedings of
INFOCOM, 2002.

[13] S. D. Kamvar et .al. The eigentrust algorithm for reputatin
management in p2p networks. InProceedings of The 12th
International World Wide Web Comferrence, 2003.

120

