
1

Exploring the Use of BitTorrent as the Basis for a
Large Trace Repository

Anthony Bellissimo Brian N. Levine Prashant Shenoy

Abstract—
Motivated by the need to deploy a public repository of multi-gigabyte

trace files, we studied the BitTorrent protocol’s ability to disseminate very
large files among peers. BitTorrent is a popular peer-to-peer protocol that
allows parallel downloads of large files. In this paper, we analyzed user
activity on BitTorrent over a four-month period with respect to supportable
file sizes, file popularity, session lengths, transfer speeds, and the likelihood
of service-interrupting flash crowds.

Our results show that file sizes tend to be on the order of gigabytes, far
larger than other peer-to-peer applications. File popularity has a distri-
bution similar to other peer-to-peer file sharing systems. Unlike other sys-
tems, the majority of users require multiple sessions to retrieve a file, and
they are willing to remain connected to the system for a very long time.
Most users we observed appear to have asymmetric Internet connections,
and their generally poor upload performance is mitigated by their willing-
ness to remain connected to the system and upload for an amount of time
far longer than they spent downloading. We found that service disruption
due to flash crowds is unlikely, as the vast majority of users were able to
begin contributing resources back to the system within seconds of connect-
ing. Our results indicate that BitTorrent provides an effective foundation
for dissemination of files that are multi-gigabyte or larger, provided more
sophisticated features are added like versioning, availability, and content
management.

I. INTRODUCTION

PEER-TO-PEER systems provide a useful mechanism for
disseminating large files to users. We are currently design-

ing a system to disseminate very large files and data sets to the
scientific community over the Internet. Our system will be pri-
marily used for the UMass Trace Repository. The repository,
which will be functional in late summer 2004, will house multi-
ple terabytes of network, web, operating systems, and program-
ming language traces. Many traces will be updated on a daily
or weekly basis, as new data is gathered. In addition, we plan
to use our system to distribute CDs and DVDs of popular open
source software, such as Linux distributions, and to disseminate
DVDs of lecture videos as part of our distance education effort.

Two existing methods are commonly used to support down-
loads of large files: mirror servers and content distribution net-
works. However, we do not expect volunteer mirror sites to be
able or desire to replicate our entire multi-terabyte repository,
nor do we have the resources to set up our own CDN or pay for
a commercial CDN service. Therefore, in this paper, we explore
a third approach: community-based, on-demand mirroring. This
method harnesses relatively small amounts of storage and net-
work bandwidth, donated by a large number of volunteer sites,
to disseminate large amounts of data. When a user downloads
any portion of the data set, they are given an option to share
this data with other members of the scientific community. The
protocol provides an incentive whereby users that share down-
loaded data are allowed faster downloads of subsequent data
sets. Unlike mirror servers, not all content is replicated on all

Department of Computer Science, University of Massachusetts, Amherst
01003. Email: {twon, brian, shenoy}@cs.umass.edu .

nodes. Further, unlike commercial CDNs, our community ap-
proach does not involve payments for providing or using this
service. Parallel TCP downloads from multiple mirrors can also
be used for better throughput.

BitTorrent is popular among Internet users for its ability to
handle large file downloads. It differs from other peer-to-peer
systems in that it is not intrinsically searchable or even unified—
to download a file or a set of files, the user must first manually
obtain a metafile. It also permits parallel TCP downloads. In
addition, since at least one study has shown that users are not
likely to contribute to a P2P system without any tangible reward,
BitTorrent specifically rewards users who contribute resources
to the system [12].

To understand the benefits and limitations of using BitTor-
rent as a building block for our system, we conducted a four
month measurement study of popular BitTorrent sites. This
paper presents the results of our measurement study. We ana-
lyze our results to identify performance issues. We present the
lessons learned from our study and the implications of using
such a protocol on the design of our system.

In sum, we find that (1) BitTorrent can support very large files.
The median file size in our study was over 600MB and the max-
imum file size was over 10GB. (2) Session lengths in BitTorrent
can last for several hours or days. We observed a mean session
length of 13 hours and a maximum session length of 35 days.
(3) BitTorrent’s ability to support parallel TCP downloads and
out-of-order downloads of chunks of a file can mitigate the ef-
fects of poor upload bandwidths at the peers. (4) The incentive
mechanisms in BitTorrent and the ability of peers to quickly start
sharing downloaded portions of large files helps dissipate the ef-
fects of flash crowds. Overall, we find that BitTorrent can be an
effective foundation for disseminating very large files, provided
it is enhanced with additional features such as content control,
versioning, and availability.

The rest of this paper is structured as follows. We present
the literature in the area and an overview of the BitTorrent pro-
tocol in Section II. We present our experimental methodology
in Section III. Sections IV and V present the characteristics of
files and peers seen in our measurement study. We discuss the
lessons learned and the implications of these results on system
design in Section VI. Finally, Section VII presents our conclu-
sions and ongoing work.

II. PREVIOUS WORK

In this section, we summarize related work, and provide an
overview of the BitTorrent protocol.



2

A. Related Measurement Studies

There have been several measurement studies in recent years
on peer-to-peer networks. A measurement study of Napster and
Gnutella with respect to file popularity, file-type dominance, and
node availability was presented in [1]. More recently, traces
of open-Napster were used to evaluate the performance of the
Chord protocol under real-world conditions [2].

An analysis of Gnutella traces in terms of resource demand,
popularity of particular search terms, overlay topology, and node
latency was presented in [7]. Ripeanu and Foster [10] also ex-
amined Gnutella data, focusing on node connectivity, overlay
topology, and protocol message overhead. A trace analysis of
the network traffic from the perspective of traffic characteriza-
tion and bandwidth provisioning was presented in [13].

Saroiu, et al [12] analyzed Gnutella and Napster traffic with
respect to node availability and the amount of bandwidth capac-
ity individual peers could contribute to the system. The study
found that if there is no incentive to do otherwise, users are in-
clined to falsely report their connection speed. Markatos [6]
conducted a study of Gnutella protocol traffic aimed at caching
query/response traffic to reduce network load. Leibowitz et
al [5] examined Kazaa traffic to determine proportion of total
network traffic by file popularity.

None of the above efforts have specifically focused on shar-
ing and downloading of very large files, or specifically on Bit-
Torrent. A recent study has specifically focused on BitTorrent,
although in a somewhat different context [4]. The study is based
on the observation of a single long-running torrent of RedHat
Linux, whereas our study uses data from several thousand tor-
rents of varying size. Though none of the torrents we observed
were as popular as the RedHat torrent in [4], the variation in
torrent size allowed us to observe differences in the behavior of
connected users relative to the size of their torrents. In addition,
we were concerned about some of its observations, in particular
the apparently low success rate for downloading a torrent. Be-
cause a major goal of our system is load distribution, our system
must ensure that the benefits gained by participating in the sys-
tem and offering data to other peers outweigh the drawbacks.
Our observations were substantially different, and we speculate
about why in Section V.

Recently, there have been several efforts at constructing dis-
tributed storage and file systems from untrusted storage [9],
[11]. The goals of our work are somewhat different from these
efforts. We are interested in efficient distribution and parallel
download mechanisms for very large files, while the above ef-
forts have focused on issues such as availability, replication, and
secrecy when using untrusted storage from volunteer sites. Sim-
ilarly, unlike structured P2P systems such as Chord and CAN
[15], [8] that focus on efficient search mechanisms and efficient
content routing, we are less concerned about the ability to search
across peers, since all content is always housed in the primary
repository in our system.

B. BitTorrent Overview

BitTorrent is a peer-to-peer application that allows use of
peers’ unused upstream bandwidth to take load off a content-
providing host. Its popularity is growing rapidly—a recent study

revealed that while BitTorrent traffic was negligible in May
2003, it accounted for over 9% of the sampled traffic by Oc-
tober 2003 [14]. In BitTorrent, each file is split into chunks, and
peers download not only from the peer with the initial, complete
copy of the file (called a seed), but also download completed,
checksummed chunks from each other. This substantially re-
duces the load on the seed, when compared with old versions
of Napster, Gnutella, or KaZaA where all peers interested in a
piece of content contend for bandwidth.

Peers downloading a particular file are tracked by a tracker, a
piece of software that resolves queries and keeps track of what
IP/port pairs are downloading a particular file. In BitTorrent, the
term torrent is used to refer to a file or set of files with a common
tracker entry and hash file.

To join a torrent, a user must download a metafile contain-
ing the tracker’s URI, the file size of the torrent, the number of
chunks, and SHA-1 hashes of each chunk. The client then con-
nects to the tracker and requests a number of IP/port pairs of
other peers. The client then opens a user-configurable number
of TCP connections to these peers. When peers connect, they
exchange information about what chunks of the file they have
available. Peers can then request chunks from each other, and
the data flows bidirectionally over the connection. If a user dis-
connects, she can reconnect later using the same metafile. Her
client will reconstruct the list of completed chunks from the por-
tions of the file already downloaded before querying the tracker
for peers.

Once a chunk is completed, its SHA-1 hash is compared
with the value in the metafile. If the values match, the client
notifies each peer to which it is connected that it has com-
pleted that chunk. Thus, clients are kept constantly informed
of what chunks are available to them. As may be evident from
the above description, a file is not downloaded sequentially in
BitTorrent—each chunk of the file can be downloaded indepen-
dently by a client.

There are two popular algorithms for selecting which avail-
able chunk to download. One is for a peer to simply request a
random chunk that its neighbor has. The other is for the peer
to check its neighbors and request the chunk with the fewest
copies. Once a user has the complete file, the client then drops
connections with peers who are seeds, since they no longer need
to download from each other. As long as the user keeps the
client running, it will continue to distribute chunks of the file to
other peers.

BitTorrent employs an incentive mechanism where peers pre-
fer to send data to other peers that provide fast downloads. Each
client has a user-configurable number of peers with which it is
allowed to simultaneously exchange data. N − 1 of those slots
are reserved for peers with which the client is exchanging data
the fastest at the moment. The last slot is reserved for a ran-
dom peer, called the optimistic unchoke. This gives the client
an opportunity to discover a peer potentially better than the ones
from which it is currently downloading. These slots rotate if
necessary every ten seconds, with the exception that the opti-
mistic unchoke rotates every 30 seconds. In addition, in some
popular client implementations peers that advertise data and do
not provide it or provide it at extremely slow speeds (less than
1 kbps) are snubbed, and only limited data is exchanged with



3

TABLE I

TRACE STATISTICS

Period of Study 10/27/2003–1/16/2004
Total sessions 845,014
Total torrents 4,387
Total observations 24,822,391
Largest torrent 10.95 GB
Mean torrent size 760.12 MB
Median torrent size 651.77 MB
Longest session 35 days
Mean session length 13.25 hours
Median session length 8.46 hours

them. Currently, no analogous method is used to deny transfer
to error-prone peers.

III. EXPERIMENTAL METHODOLOGY

To conduct our measurement study, we downloaded statistics
from two popular trackers from October 27, 2003 until January
16, 2004. Each tracker continuously updates a public web page
with various statistics on its torrents and connected users. The
published statistics include user’s random unique ID (one per
user per session), the time the user had been connected to the
torrent, and the number of bytes uploaded, downloaded, and re-
maining. For each torrent, we also retrieved its size and unique
ID. Note that, since each peer is assigned a random ID for each
session, the specific IP addresses of peers are not known. We
downloaded the statistics page of each tracker every 30 minutes,
parsed the HTML to extract all published information, and in-
serted this data into a relational database.

Table I summarizes the traces resulting from this measure-
ment effort. As shown, our traces contain a total of 845,014
sessions observed across 4,387 individual torrents. Users in-
vested a total of 800 session-years transferring data in sessions
as long as a month. Torrents ranged in size from a few kilobytes
to nearly 11 gigabytes. In total, more than three terabytes of data
was available through these BitTorrent systems over the course
of the study.

IV. TORRENT CHARACTERISTICS

A. Supportable file sizes

Very large files are supportable under BitTorrent.
Figure 1 reveals that BitTorrent downloads have a wide range

in size. The largest torrent we observed was approximately 11
GB, with around 2% of all torrents at or above DVD-R capacity
(4.38 GB). Only a very few, about 4%, were under 10 MB, a rea-
sonable cap for common music files exchanged on many other
peer-to-peer systems (A 5-minute song encoded at a constant
192 kbps is 7.2 MB).

B. Torrent popularity

Torrent popularity does not fit a Web model.
Figure 2 shows that the popularity of all torrents observed

does not fit a common model (Zipf/power law). Had the data
distribution been Zipf, the plot would have been linear on a log-
log scale. Our previous studies have shown that requests for

files are non-Zipf in P2P file sharing systems [1], and this was
also seen by Gummadi et al. [3]. Our findings agree, showing a
similar shape in a log-log plot of popularity vs. rank.

C. Scaling

The transfer rate scales well with the number of peers.
The primary argument for using BitTorrent is that it scales

better than single-source downloads (e.g. from a non-clustered
webserver). Figure 3 is an example of the correlation between
connected users and aggregate bytes transferred. The existence
of this correlation (around 90%) indicates that BitTorrent’s per-
formance does not degrade with an increased number of users
connected to the system.

V. PEER CHARACTERISTICS

A. Sessions

Most clients do not complete a download in one session.
Figures 4(a) and 4(b) show the percentage of a torrent peers

bring to a new session, as well as how much of the torrent de-
parting peers have when they leave. Note that only around 20%
of new peers had not connected at all before. Around 15% of
new peers had the complete torrent already, meaning they either
acted as the initial seed or reconnected later to help their peers
finish their downloads.

This shows that around two-thirds of sessions are returning
peers: they received some data, disconnected, and then joined
again under a new ID. Our study shows, as expected, that larger
torrents require more sessions per user to download than smaller
ones. For the approximately 5% of torrents in the region above 4
GB, the ratio of sessions during which a download has finished
to all sessions is around 0.31. For torrents in the range between 1
GB and 4 GB, this ratio climbs to 0.34. For the smallest range of
torrents we examined (0 to 200 MB) the ratio is approximately
0.55. Note that these ratios only count sessions during which
a peer became a seed, and not sessions during which the peer
joined as a seed. This is in contrast to Figure 4(b), which in-
cludes seed sessions.

In [4], individual sessions could be correlated because IP logs
were available. In that study, only 19% of sessions were part
of a transfer that eventually completed. Even the total of ob-
served single-session downloads, multi-session downloads, and
seed sessions was only 24% of the total. In contrast, Figure 4(b)
shows that fully 50% of peers who left a torrent in our sam-
ple exited with the complete file, and this is without being able
to discard sessions that would later resume and complete. We
speculate that the sizable difference in observed behavior is due
to the content of the torrents. If a user is dissatisfied with her
performance while torrenting a Linux ISO, she can simply can-
cel the transfer and download it from a more reliable FTP or
HTTP source. Most of the content in the torrents we observed
was individual users distributing generally unavailable content
in a way that distributed load, so there was no alternative distri-
bution method on which a dissatisfied user could fall back.



4

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

% of all torrents

T
or

re
nt

 s
iz

e 
(M

iB
)

Torrent size
 
 

DVD Capacity 

CD Capacity 

Fig. 1. Torrent sizes are widely distributed and large.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

C
om

pl
et

ed
 D

ow
nl

oa
ds

Rank

Fig. 2. Torrent popularity is non-Zipf.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

Incomplete Peers

A
gg

re
ga

te
 D

ow
nl

oa
d 

R
at

e 
(M

bi
t/s

ec
)

Fig. 3. Aggregate performance does not degrade as
more peers connect to a torrent.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

%
 o

f t
or

re
nt

 c
om

pl
et

e

% of all sessions

(a) Completeness of new peers at join. 15% be-
gin as seeds.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

%
 o

f t
or

re
nt

 c
om

pl
et

e

% of all sessions

(b) 50% of all sessions exit with the complete
file.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

% of all sessions

%
 o

f t
or

re
nt

 r
et

rie
ve

d

(c) Relatively few peers obtain the entire torrent
in one session.

Fig. 4. PDFs: Various statistics.

B. Session lengths

Sessions can last hours or days.
Since we have determined that users require multiple sessions

to download most files, we can examine more closely the num-
ber of sessions they are likely to require. Figure 5 shows the pro-
portion of the torrent retrieved in individual sessions, grouped
by sizes of torrents. We see that fewer users tend to acquire the
torrent in a single session for larger torrents, possibly suggest-
ing a limit on how many bytes users are willing to transfer per
session. (Figure 4(c) shows the same data, but in aggregate.)
Overall, less than 10% of users obtained all of the data for their
particular torrent during a single session. Figure 6 shows a sim-
ilar graph, but is in terms of the ratio of bytes downloaded to
torrent size. The discrepancy between the two data sets is ex-
plained by errors experienced during transfer. From this graph
we can be certain that at least 4% of sessions experienced errors
during a download, though the figure is almost certainly higher
than that.

Figure 7 shows the distribution of amounts downloaded dur-
ing single sessions in megabytes. More than 90% of the sessions
we observed downloaded less than a gigabyte during the time
they were connected.

A previous study of more conventional peer-to-peer systems

such as Kazaa and Gnutella observed great patience on the part
of users downloading content [3]. BitTorrent users have similar
patience. Though we cannot map multiple individual sessions
into a single download, we have observed individual sessions
lasting as long as a month. 25% of sessions last for more than
a day. Figure 8 shows the distribution of users’ session lengths
in hours. Interestingly, several of the longest-running sessions
were spent unsuccessfully waiting for a seed to provide data.

Although the protocol allows users to report their connection
time, some peers report extremely inconsistent data. We have
been unable to determine whether or not this is a bug in some
client implementations, but that is likely as peers have no incen-
tive to lie about their statistics. Therefore, this graph is based
on the amount of time for which the tracker kept a user’s listing
alive, rather than the user’s reported connection time.

C. Asymmetric connections

Many clients’ connections are asymmetric.
The typical user’s home broadband connection is likely asym-

metric. The data in Figure 9 appears to support this, with aver-
age upload speeds being noticably lower than download speeds.
This not only implies asymmetry in connections but also that
users spend more time uploading data than downloading it. This



5

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

% of all sessions

%
 o

f t
or

re
nt

 r
et

rie
ve

d

< 1 C
D

 

1 C
D

 − 2 C
D

s 

2 C
D

s − 1 D
V

D
 

> 1 D
VD

 

Fig. 5. Users obtain a larger portion of smaller tor-
rents in one session.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

% of all sessions

D
ow

nl
oa

de
d 

B
yt

es
 / 

T
or

re
nt

 S
iz

e

Fig. 6. A small percentage of users download many
more bytes than the torrent size.

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

% of all sessions

M
eg

ab
yt

es
 d

ow
nl

oa
de

d

> 1 D
V

D
 

2 CDs − 1 DVD 1 CD − 2 CDs < 1 CD 

Fig. 7. Users retrieving larger torrents download
more bytes per session.

0 20 40 60 80 100
0

5

10

15

20

25

30

35

% of all sessions

S
es

si
on

 T
im

e 
(D

ay
s)

Fig. 8. Clients remain connected for very long peri-
ods of time.

0 20 40 60 80 100
10

0

10
2

10
4

10
6

10
8

10
10

S
pe

ed
 (

by
te

s/
se

c)

% of all sessions

Download
Upload
 
 
 
 T3 

T1 

384K DSL 

56K Modem 

Fig. 9. Clients’ connections tend to be asymmetric.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3
x 10

10

% of sessions

T
im

e 
(s

)

Uploading 

Downloading 

Fig. 10. Users spend twice as much time uploading
as they spend downloading. (cumulative)

implication is confirmed in Figure 10—users contributed almost
double the amount of total upload time in the system as down-
load time. Note that upload time is defined here as the total time
a user is connected to the system, while download time only in-
cludes the amount of time spent waiting for a download to finish.
As we will see in the next section, it is reasonable to assume that
upload time and connected time are equivalent.

D. Flash crowds

New content can result in a flash crowd but its effects are dis-
sipated quickly by peers that share downloaded portions of the
torrent within seconds.

Figures 11(a)–11(c) show the rate of new connections to the
torrent for the most popular torrent on four randomly selected
dates in the sample period. The lighter part of the graph displays
the number of new connections observed during the snapshot,
while the darker part is the total of those connections with re-
turning sessions (new IDs with partially complete content). We
see that activity is generally highest toward the beginning of the
torrent, and tapers off with time. We also observed that torrents
do not tend to choke themselves while waiting for new peers to
begin offsetting load—96% of all sessions were able to begin
contributing back to the system in less than a minute, and 90%
in less than 15 seconds.

VI. IMPLICATIONS OF OUR RESULTS AND LESSONS

LEARNED

In general, our measurement study shows that BitTorrent can
be an good starting point for our system based on the several fac-
tors. First, we find that BitTorrent can successfully serve very
large files to its users. Our study showed that a non-trivial frac-
tion of files are hundreds of megabytes or gigabytes in size. Sec-
ond, the ability to parallelize download of a file and the ability
to download chunks of a file out of sequence leads to good per-
formance and dissipates load across peers. It is also effective at
dissipating hot spots since downloading peers can quickly start
sharing downloaded chunks and take on some of the load from
the primary seed (thus, a peer need not wait until the entire file is
donwloaded before sharing it with others). Third, the incentive
mechanisms in BitTorrent are effective at encouraging content
sharing—an important issue for our community-based mirroring
approach to suceed. Last, we find that many users are willing to
spend several hours and multiple sessions in order to download
very large files. This is especially encouraging, since a commu-
nity approach for disseminating large files cannot assume any
single peer will contribute a large amount of bandwidth to the
system.

However, BitTorrent lacks many features that are necessary
in our system.

• Content control: One important issue in managing a large
trace repository is content control. We would like the ability
to assign version numbers to data sets as well as the ability to



6

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

Time (hours)

S
es

si
on

 ID
s

New + Resuming
New Only

(a) Torrent 1

0 100 200 300 400 500
0

5

10

15

20

25

30

35

Time (hours)

S
es

si
on

 ID
s

New + Resuming
New

(b) Torrent 2

0 100 200 300 400 500 600 700
0

5

10

15

20

25

30

35

Time (hours)

S
es

si
on

 ID
s

New + Resuming
New

(c) Torrent 3

Fig. 11. The rate of arrival to torrents is higher near the beginning than at the end.

replace an old or erroneous data set with a new file. Thus, it is
important to prevent peers from sharing an old file that has been
replaced by a new version. We plan to extend the protocol to
add such content control features.
• Reliable mirrors: The architecture of our repository will in-
clude a small set of tightly-coupled sites that mirror content
from the main repository. Each (reliable) mirror then shares its
data sets with (less reliable) peers. Since the main repository
can be a single point of failure, such a hybrid architecture en-
sures greater availability of the data. BitTorrent will need to be
enhanced to account for such a two tier hierarchy; for example,
to enable proactive replication across the mirrors as opposed to
on-demand replication at peers.
• Transparent failover: We plan to enhance BitTorrent to auto-
mate the process of resuming failed sessions. This will reduce
the amount of manual intervention necessary for downloading
large files over long sessions.
• Searching: Although BitTorrent is not inherently searchable,
in our system, all files are always available on the primary
repository and its mirrors. Consequently, a simple, content-
side search engine to index data sets based on content and user-
provided keywords should suffice for our purpose.

Finally, we note it is unlikely we will gather stable partnering
mirror sites if they have to assist in all downloads. We plan
to extend the BitTorrent clients run at mirror sites to appear as
seeds only if another seed does not current exist in the system.
Similarly, stable mirror sites could offer only chunks currently
unavailable from downloading peers. This way, mirrors ensure
availability of files, but provide bandwidth only when necessary.

VII. CONCLUSIONS AND ONGOING WORK

As part of ongoing work, we are using the insights from our
study to design a BitTorrent-based system for our trace reposi-
tory. We plan to deploy our repository on a server at our uni-
verity and will explore the use of PlanetLab to house a small
number of reliable mirrors. A design of our system will be com-
pleted in the next few weeks and a prototype implementation
will be completed by late summer. The trace repository will be
functional shortly thereafter.

The traces gathered for this measurement study will be the

first set of traces disseminated on our trace repository. Over the
next year, traces of network packet headers, measurement data
from a 802.11b network, disk I/O traces, web traces and memory
behavior of Java programs will also be made available.

REFERENCES

[1] J. Chu, K. Labonte, and B. N. Levine. Availability and locality measure-
ments of peer-to-peer file systems. In ITCom: Scalability and Traffic Con-
trol in IP Networks II, July 2002.

[2] Jacky Chu, Kevin Labonte, and Brian Levine. Evaluating the use of chord
with real-world peer-to-peer traces. Technical report, 2004. Submitted to
IMC 2004.

[3] Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D. Gribble,
Henry M. Levy, and John Zahorjan. Measurement, modeling, and analysis
of a peer-to-peer file-sharing workload. In Proceedings of the nineteenth
ACM symposium on Operating systems principles, pages 314–329, 2003.

[4] Mikel Izal, Guillaume Urvoy-Keller, Ernst W Biersack, Pascal A Fel-
ber, Anwar Al Amra, and Luis Garces-Erice. Dissecting BitTorrent: five
months in a torrent’s lifetime. In PAM’2004, 5th annual Passive & Ac-
tive Measurement Workshop, April 19-20, 2004, Antibes Juan-les-Pins,
France, Apr 2004.

[5] Nathaniel Leibowitz, Matei Ripeanu, and Adam Wierzbicki. Deconstruct-
ing the kazaa network. In Proceedings of 3rd IEEE Workshop on Internet
Applications (WIAPP ’03), San Jose, CA, USA, June 2003.

[6] Evangelos P. Markatos. Tracing a large-scale peer to peer system: an hour
in the life of gnutella. In 2nd IEEE/ACM International Symposium on
Cluster Computing and the Grid, 2002.

[7] D. Nogueira, L. Rocha, J. Santos, P. Araujo, V. Almeida, and W. Meira
Jr. A methodology for workload characterization of file-sharing peer-to-
peer networks. In IEEE Workshop of Workload Characterization, pages
118–126, 2002.

[8] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content addressable network. In Proceedings of ACM
SIGCOMM 2001, 2001.

[9] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatow-
icz. Pond: The oceanstore prototype. In Proceedings of the Conference on
File and Storage Technologies. USENIX, 2003.

[10] M. Ripeanu and I. Foster. Mapping the gnutella network: Macroscopic
properties of large-scale peer-to-peer systems, 2002.

[11] Timothy Roscoe and Steven Hand. Palimpsest: Soft-capacity storage for
planetary-scale services. In Proceedings of the 9th Workshop on Hot Top-
ics in Operating Systems (HotOS-IX), Lihue, Hawaii, CA, USA, May 2003.

[12] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of
peer-to-peer file sharing systems. In Multimedia Computing and Network-
ing (MMCN), January 2002.

[13] S. Sen and J. Wang. Analyzing peer-to-peer traffic across large networks.
In Proc. ACM Internet Measurement Workshop, 2002.

[14] Stanislav Shalunov. Internet2 netflow weekly reports, 2003.
[15] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Bal-

akrishnan. Chord: A scalable Peer-To-Peer lookup service for internet
applications. pages 149–160.


