
Measurement, Modeling, and Analysis
of a Peer-to-Peer File-Sharing Workload

Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu,
Steven D. Gribble, Henry M. Levy, and John Zahorjan

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195

{gummadi,rdunn,tzoompy,gribble,levy,zahorjan}@cs.washington.edu

ABSTRACT
Peer-to-peer (P2P) file sharing accounts for an astonishing
volume of current Internet traffic. This paper probes deeply
into modern P2P file sharing systems and the forces that
drive them. By doing so, we seek to increase our under-
standing of P2P file sharing workloads and their implica-
tions for future multimedia workloads. Our research uses
a three-tiered approach. First, we analyze a 200-day trace
of over 20 terabytes of Kazaa P2P traffic collected at the
University of Washington. Second, we develop a model of
multimedia workloads that lets us isolate, vary, and explore
the impact of key system parameters. Our model, which we
parameterize with statistics from our trace, lets us confirm
various hypotheses about file-sharing behavior observed in
the trace. Third, we explore the potential impact of locality-
awareness in Kazaa.

Our results reveal dramatic differences between P2P file
sharing and Web traffic. For example, we show how the
immutability of Kazaa’s multimedia objects leads clients
to fetch objects at most once; in contrast, a World-Wide
Web client may fetch a popular page (e.g., CNN or Google)
thousands of times. Moreover, we demonstrate that: (1)
this “fetch-at-most-once” behavior causes the Kazaa popu-
larity distribution to deviate substantially from Zipf curves
we see for the Web, and (2) this deviation has significant
implications for the performance of multimedia file-sharing
systems. Unlike the Web, whose workload is driven by doc-
ument change, we demonstrate that clients’ fetch-at-most-
once behavior, the creation of new objects, and the addition
of new clients to the system are the primary forces that drive
multimedia workloads such as Kazaa. We also show that
there is substantial untapped locality in the Kazaa workload.
Finally, we quantify the potential bandwidth savings that
locality-aware P2P file-sharing architectures would achieve.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’03, October 19–22, 2003, Bolton Landing, New York, USA.
Copyright 2003 ACM 1-58113-757-5/03/0010 ...$5.00.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques;
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—Distributed applications

General Terms
Measurement, performance, design

Keywords
Peer-to-peer, multimedia workloads, Zipf’s law, modeling,
measurement

1. INTRODUCTION
A decade after its birth, the Internet continues its rapid

and often surprising evolution. Recent studies have shown
a dramatic shift of Internet traffic away from HTML text
pages and images and towards multimedia file sharing. For
example, a March 2000 study at the University of Wisconsin
found that the bandwidth consumed by Napster had edged
ahead of HTTP bandwidth [28]. Only two years later, a Uni-
versity of Washington study showed that peer-to-peer file
sharing dominates the campus network, consuming 43% of
all bandwidth compared to only 14% for WWW traffic [29].
When comparing these bandwidth consumption statistics
to those in a 1999 study of a similar campus workload [37],
the portion of network bytes ascribed to audio and video
increased by 300% and 400%, respectively, over a 3-year pe-
riod. Without question, multimedia file sharing has become
a dominant factor in today’s Internet. In all likelihood, it
will dominate the Internet of the future, barring a chilling
effect from legal assaults.

Two traits of today’s file-sharing systems distinguish them
from Web-based content distribution. First, current file-
sharing systems use a “peer-to-peer” design: peers volun-
tarily provide resources as well as consume them. Because
of this, the system must dynamically adapt to maintain ser-
vice continuity as individual peers come and go. Second,
file-sharing is being used predominantly to distribute mul-
timedia files, and as a result, file-sharing workloads differ
substantially from Web workloads [29]. Multimedia files are
large (several megabytes or gigabytes, compared to several
kilobytes for typical Web pages), they are immutable, and
there are currently far fewer distinct multimedia files than

Web pages. Video-on-demand (VoD) systems also distribute
multimedia files; we contrast our Kazaa measurements and
analysis with related work on VoD systems in Section 3.

This paper presents an in-depth analysis of a modern P2P
multimedia file-sharing workload, considering the “peer-to-
peer” and the “multimedia” aspects of the workload inde-
pendently. Our goals are:

1. to understand the fundamental properties of multime-
dia file-sharing systems, independent of the design of
the delivery system,

2. to explore the forces driving P2P file-sharing work-
loads so we can anticipate the potential impacts of
future change, and

3. to demonstrate that significant opportunity exists to
optimize performance in current file-sharing systems
by exploiting untapped locality in the workload.

To meet these goals, we employ several approaches. First,
we analyze a 200-day trace of Kazaa [19] traffic that we
collected at the University of Washington between May and
December of 2002. We traced over 20 terabytes of traffic
during that period, from which we distill several key lessons
about the Kazaa workload. Second, we derive a model of
this multimedia traffic based on our analysis. The model
helps to explain the root causes of many of the trends shown
by Kazaa and to predict how the trends may change as the
workload evolves. Third, we use trace-driven simulation to
quantify the significant potential that exists to improve the
performance of multimedia file-sharing in our environment.

Our analysis reveals that the Kazaa workload is driven
by considerably different forces than the Web. Kazaa ob-
jects are immutable, and as a result, the vast majority of
its objects are fetched at most once per client; in contrast,
Web pages (e.g., Google or CNN) can be fetched thousands
of times per client. Our measurements show that the pop-
ularity distribution of Kazaa objects deviates substantially

from the Zipf curves we commonly see for the Web, and
our model confirms that the “fetch-at-most-once” behavior
of Kazaa clients is the cause. Our model demonstrates an-
other consequence of object immutability: unlike the Web,
whose workload is driven by document change, the primary
forces in Kazaa are the creation of new objects and the addi-
tion of new users. Without these forces, fetch-at-most-once
behavior would drive the system to stagnation.

The structure of this paper follows the multi-tiered ap-
proach cited above. Section 2 describes our trace method-
ology and presents our trace-based analysis of Kazaa. In
Section 3, we analyze the popularity distribution of Kazaa
requests and the forces that shape it. Section 4 uses our
observations and analysis to develop an analytical model;
we then use the model to explore the processes that drive
Kazaa’s behavior in greater depth. Section 5 considers the
performance potential of bandwidth-saving techniques sug-
gested by our modeling and analysis. We describe research
related to our study in Section 6, while Section 7 summarizes
our results and presents conclusions.

2. THE MEASURED PROPERTIES OF P2P
FILE-SHARING WORKLOADS

This section uses our trace data to identify key properties
of the Kazaa multimedia file-sharing system. Recent stud-

trace length 203 days, 5 hours, 6 minutes
of requests 1,640,912
of transactions 98,997,622
of unsuccessful transactions 65,505,165 (66.2%)

average transaction size 252KB (all transactions)
752KB (successful transactions only)

of users 24,578
of unique objects 633,106 (totaling 8.85TB)
bytes transferred 22.72TB
content demanded 43.87TB

Table 1: Kazaa trace summary statistics, 5/28/02 to

12/17/02. A transaction refers to a single Kazaa HTTP

transfer; a request refers to the set of transactions a

client issues while downloading an object, potentially

in pieces from many servers. Clients are identified by

Kazaa username. We only present statistics for down-

loads made by university-internal clients for data on

university-external peers.

ies have described high-level characteristics of P2P work-
loads [6, 29, 30, 32]. Our goals in this section are to: (1)
dig beneath these high-level studies to uncover the processes
that drive the workloads, and (2) demonstrate ways in which
these processes fundamentally differ from those of the Web.

2.1 Trace Methodology
The data in this section are based on a 200-day trace

of Kazaa peer-to-peer file-sharing traffic collected at the
University of Washington between May 28th and December
17th, 2002. The University of Washington (UW) is a large
campus with over 60,000 faculty, students, and staff. Table 1
describes the trace, which saw over 20 terabytes of incoming
data resulting from 1.6 million requests. Our trace was long
enough for us to observe seasonal traffic variations, includ-
ing the end of spring quarter in June, the summer months,
and the start and end of the fall quarter. We also observed
the impact of bandwidth rate-limiting instituted by the uni-
versity’s networking organization midway through the trace
in an attempt to control the cost of Kazaa traffic.1

We collected our trace using hardware and software in-
stalled at the network border between the university and
the Internet. Our hardware consists of a 2.0 GHz Pentium-
III workstation that monitored traffic flowing between the
university and the Internet. Our workstation had sufficient
CPU and network capacity to ensure that no packets were
dropped, even during peak load. An adjacent workstation
acted as a one-terabyte file store for archiving trace data.
Our software used a kernel packet filter [24] to deliver TCP
packets to a user-level process, which identified HTTP re-
quests within the TCP flows. Throughout our trace, the
packet filter reported packet drop rates of less than 0.0001%.
We made all sensitive information anonymous – including
IP addresses, URLs, usernames, and object names – before
compressing and storing the trace. Overall, our tracing and
analysis software consists of over 30,000 lines of code.

Our hardware monitored all incoming and outgoing traf-
fic. However, the data presented in this paper (including
Table 1) are for one direction only: requests made by uni-
versity-internal peers to download data stored on university-

1The imposed rate limits bounded upload traffic out of the
university’s dormitory population and had little effect on
download traffic (to the dorms or to the university as a
whole), which is the focus of our research.

external peers. This unidirectional trace captures all re-
quests issued by a stable, complete user population over a
period of time. Kazaa control traffic, which consists primar-
ily of queries and their responses, is encrypted and was not
captured as part of our trace.

Throughout this paper, the term “user” refers to a person
and “client” refers to the application instance running on be-
half of a user. We assume there is largely a one-to-one corre-
spondence between users and specific application instances
in our environment (although this may not always be true);
therefore, we draw conclusions about users based on observa-
tions of clients in our trace. Note, however, that client-side
caches may absorb some requests from users, meaning that
the client request rate, which we observe in our trace, may
be lower than the true user request rate, which we cannot
directly observe.

Kazaa clients supply Kazaa-specific “usernames” as an
HTTP header in each transaction. We use these usernames
(rather than IP addresses) to distinguish between differ-
ent users in our trace. Unfortunately, an unofficial ver-
sion of Kazaa, called “KazaaLite,”2 became popular dur-
ing our tracing period and is compiled with a predefined
username embedded in the application itself. We “special-
case” requests from KazaaLite, resorting to distinguishing
between KazaaLite users by their IP addresses. Although
DHCP is used in portions of our campus, and identifying
users by IP address is known to have issues when DHCP is
present [6], only 5.7% of transactions in our trace were from
KazaaLite clients. Furthermore, KazaaLite clients did not
appear within the first 59 days of our 203 day trace.

Kazaa file-transfer traffic consists of unencrypted HTTP
transfers; all transfers include Kazaa-specific HTTP head-
ers (e.g., “X-Kazaa-IP”). These headers make it simple to
distinguish between Kazaa activity and other HTTP activ-
ity. They also provide enough information for us to identify
precisely which object is being transferred in a given trans-
action. When a client attempts to download an object, that
object may be downloaded in pieces (often called “chunks”)
from several sources over a long period of time. We define a
“transaction” to be a single HTTP transfer between a client
and a server, and a “request” to be the set of transactions a
client participates in to download an entire object. A failed
transaction occurs when a client successfully contacts a re-
mote peer, but that remote peer does not return any data,
instead returning an HTTP 500 error code.

A single request may span many minutes, hours, or even
days, since the Kazaa client software will continue to at-
tempt to download the object long after the user has asked
for it. Occasionally, a client may download only a subset of
the entire object (either because the user gives up or because
the object becomes permanently inaccessible in the middle
of a request). We call this a “partial request.”

The Kazaa application has an auto-update feature, mean-
ing that a running instance of Kazaa will periodically check
for updated versions of itself. If found, it downloads the new
executable over the Kazaa network. We chose to filter out
these auto-update transactions from our logs, as they are
not representative of multimedia requests from users. Such

2Many more unofficial versions of Kazaa that use generic
usernames have appeared since our trace period finished;
precisely distinguishing between peer-to-peer users will be-
come very difficult, given that neither IP addresses nor
application-specific usernames are unique.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-3
download latency

%
 o

f r
eq

ue
st

s
(C

D
F

)

5 mins 1 hour 1 week1 day 150 days

100MB+ objects

<10MB objects

Figure 1: Users are patient. A CDF of object transfer

times in Kazaa for small (<10 MB) and large (100 MB+)

objects. The X-axis is on a log-scale.

filtering removed 0.4% of total transactions (0.3% of bytes)
from our trace.

2.2 User Characteristics
Our first slice through the trace data focuses on the prop-

erties of Kazaa users. Previous studies [29, 2] have shown
that peer-to-peer users in general are “greedy” (i.e., most
users consume data but provide little in return) and have
poor availability [30]. We confirm some of these character-
istics, but we also explore others, such as user activity.

2.2.1 Kazaa Users Are Patient
As any Web-based enterprise knows, users are very sensi-

tive to page-fetch latency. Beyond a certain small threshold
(measured in seconds), they will abandon a site and move
to another, possibly competing, site. For this reason, many
online businesses engage services such as Keynote [20] to tell
them quickly if their servers are not sufficiently responsive.
In the world of the Web, users expect instant gratification
and are unforgiving if they do not receive it.

In this context, the behavior of Kazaa users is surprising.
Figure 1 shows the distribution of transfer times in Kazaa;
transfer time is defined as the difference between the start
time of the first transaction and the end time of the last
transaction of a given user request. We filtered out partial
requests (i.e., we only counted transfers for which the user
eventually obtained the entire object). To deal with edge
effects, we ignored requests for which at least one transac-
tion occurred during the first month of the trace; note that
this will tend to result in an underestimate of user patience.
We present our results in terms of requests for “small” ob-
jects (less than 10MB, typically audio files) and requests for
“large” objects (more than 100MB, typically video files). As
we will show in Section 2.3.1, this is a natural and represen-
tative way to decompose the overall workload.

The results show incredible patience on the part of Kazaa
users. Even for small objects, 30% of the requests take over
an hour, and 10% take nearly a day. For large requests, less
than 10% complete in an hour, 50% take more than a day,
and nearly 20% of users are willing to wait a week for their
downloads to complete! From this graph, it is clear that the
dynamics of multimedia downloads differ totally from Web
usage. The Web is an interactive system where users want
an immediate response. Kazaa is a batch-mode delivery sys-
tem, where downloads are made in the background and the

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11
week

T
B

 r
eq

ue
st

ed

0

1000

2000

3000

4000

5000

6000

po
pu

la
tio

n
si

ze

TB requested
population size

Figure 2: Bytes requested by the population and attrition

as a function of age. “Older” clients request a smaller

fraction of bytes than newer clients. There are fewer old

clients than young clients, but attrition occurs at a more

gradual rate than the slowdown in bytes requested.

content is examined later. Users do not wait for their con-
tent to arrive. They go about their business and eventually
return to review the content after it has been received.

2.2.2 Users Slow Down As They Age
An interesting question we explored is how user interest

in Kazaa varies over time. Do users become hungrier for
content as they gain experience with Kazaa? Are their re-
quest rates relatively constant? Do they lose interest over
time? The answer to such questions significantly affects the
growth of the system.

To understand user behavior over time, we first calcu-
lated the average number of bytes consumed by clients as a
function of age. The methodology for this measurement is
complex: our trace has finite length, so we must avoid end
effects that would overcount short-lived or undercount long-
lived users. We compensate, first, by counting transferred
bytes only from clients whose “births” we could observe. Be-
cause there are no detectable birth events in our trace, we
used the heuristic of treating the first observed download
from a client as a birth event if at least a full month had
elapsed in our trace before seeing that first download. To
compensate at the end of the trace, we counted bytes only
from clients born prior to the last 11 weeks of the trace.
Because of this “end threshold,” we could draw definitive
conclusions about clients’ behavior only during the first 11
weeks of their lifetimes.

Figure 2 shows the total number of bytes requested by
the population as a function of its age. From this graph, we
can see that older clients consume fewer bytes than newer
clients. There are two reasons for this effect: (1) attrition
reduces the number of older clients, since clients may “die”
(i.e., leave the system forever) over time, and (2) some clients
may continue to issue requests but do so at a slower rate as
they age. We explore each of these in turn.

Attrition. To understand attrition in the system, we an-
alyzed the number of clients that remain alive as a function
of age (also shown in Figure 2). Population size declines at
a more gradual rate than bytes requested, at least over the
first 11 weeks of clients’ lifetimes. Attrition therefore only
partially explains why older clients demand less in aggregate
from the system. To fully explain this phenomenon, clients
must also slow down their request rates as they age.

Slowing down over time. Older clients may have slower

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11
week

da
ta

 r
eq

ue
st

ed
 p

er
liv

e
cl

ie
nt

 (
G

B
)

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ilt

y
a

cl
ie

nt
m

ak
es

 >
0

re
qu

es
ts

data requested
probability of request

Figure 3: Older clients have slower request rates. On av-

erage, clients use the system equally often as they age

(having approximately a 50% chance of using the system

any given week), but they request less data per session

as they age. Note that the point corresponding to new

clients (week 1) is artificially high, since by definition

every new client requests an object immediately.

request rates for two reasons: (1) they may use the system
less often, or (2) they may ask for less when they use the
system. Figure 3 shows that clients are equally likely to use
the system regardless of age: on average, clients have about
a 50% chance of making a request on any given week. Older
clients slow down because they ask for less each time they
use the system, not because they use the system less often.

In summary, new clients generate most of the load in
Kazaa, and older clients consume fewer bytes as they age.
In part, this is because of attrition: clients leave the system
permanently as they grow older. Also, older clients tend to
interact with the system at a constant rate, but ask for less
during each interaction.

2.2.3 Client Activity
Quantifying the availability of clients in a peer-to-peer sys-

tem is notoriously difficult [6]: no one metric can accurately
capture availability in this environment, since any individ-
ual client might exist only for a fraction of the traced time
period. Given our passive tracing methodology, we faced
an additional methodological problem: we can detect that
users are participating in the system only when their clients
transfer data (either by downloading or uploading files). If a
client is on-line but not active, we could not observe them.
Because of this, we report statistics about client activity

only, which is a lower bound on availability.3

We use two specific metrics to quantify the amount of
client transfer activity: (1) activity fraction, which measures
the fraction of time a client is transferring content over the
client’s lifetime or over the duration of the entire trace, and
(2) average session length, in which a session is defined as
an unbroken period of time during which a client has one or
more active transactions. Average session length measures
the typical duration of the periods during which a client is
receiving or transmitting data. Our measurements indicate
that the distributions of average session length and activity
fraction over the measured population are heavy-tailed.

3P2P software is often designed to make it difficult to close
the program once it starts, “fooling” users into making their
clients more available than intended. Accordingly, we sug-
gest that client activity is a more universally comparable
and stable indicator of “availability” than other metrics.

(a) (b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

<= 10 10-100 >100

object size (MB)

%
 o

f r
eq

ue
st

s/
by

te
s

requests
bytes transferred

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 1 10 100 1000
object size (MB)

(C
D

F
)

% requests

% bytes consumed

Figure 4: Bandwidth consumed vs. object size. (a) CDFs of the total bandwidth consumed and the number of requests

generated, as a function of object size, and (b) bandwidth consumed and requests generated as a function of object

size, grouped into three regions.

all
clients

clients with >1
transfer

median 66.08% 5.54% activity fraction
over lifetime 90th percentile 100% 94.41%

median 0.01% 0.20% activity fraction
over trace 90th percentile 2.29% 4.15%

median 0.69 hours 10.09 hours total activity
over trace 90th percentile 111.93 hours 202.65 hours

median 2.40 mins 2.40 mins average
session length 90th percentile 28.25 mins 28.33 mins

Table 2: Client session lengths and activity fractions.

Summary statistics over two different subsets of our

client population: all clients, and only those clients that

have transferred more than one file. We show activity

fraction summary statistics relative to both the clients’

lifetimes and to the entire trace.

Table 2 summarizes these metrics. Average session lengths
are typically small: the median average session length is
only 2.4 minutes, while the 90th percentile is 28.25 minutes.
Most clients have high activity fractions relative to their
lifetimes. However, this is a potentially misleading statistic,
since many clients have very short lifetimes, leaving the sys-
tem permanently after requesting only one file. The activity
fraction for clients with greater than one request is a more
revealing statistic. The median client in this category was
active only 5.54% of its lifetime, or 0.20% of the entire trace.
Highly active clients in this category are active for most of
their lifetime, but even these clients are typically active for
only a short fraction of the trace: the 90th percentile client
has an activity fraction of only 4.15% over the trace.

At first glance, our user patience statistics may appear at
odds with our average session length statistics. The median
small object takes about 17 minutes to download fully, but
the median average session length is only 2.41 minutes. This
apparent paradox is reconciled by several facts: (1) many
transactions fail (Table 1), producing many very short ses-
sions, (2) periods of no activity may occur during a request
if the client cannot find an available server with the object,
and (3) some successful transactions are short, either be-
cause servers close connections prematurely or the “chunk”
size requested is small.

2.3 Object Characteristics
We now turn our attention to the characteristics of re-

quested objects. Kazaa objects consist of a mixture of media
types, including audio, video, images, and executables [29].
Our trace captured 1,640,912 requests to 633,106 different
objects, resulting in 98,997,622 transactions. In the remain-
der of this section, we discuss the most prominent properties
of the requested objects.

2.3.1 Kazaa Is Not One Workload
While we tend to think of a system like Kazaa as generat-

ing a single workload, Kazaa is better described as a blend
of workloads that each have different properties. Figure 4(a)
shows the percentage of total bandwidth consumed in our
trace as a function of object size. The graph shows three
prominent regions: “small” objects that are less than 10
MB in size, medium-sized objects from 10 to a few hundred
MB in size, and large objects that are close to 1 GB in size.
Relative to the Web, our “small” objects are three orders
of magnitude larger than an average Web object, while our
large objects are nearly five orders of magnitude larger. This
was shown in [29] as well.

Figure 4(a) also graphs the percentage of requests ob-
served in the trace as a function of object size, demonstrat-
ing that most requests are for the “small” objects. Tak-
ing a closer look, Figure 4(b) breaks down the number of
requests and bytes transferred into three regions: 10MB
or less, 10MB to 100MB, and over 100MB. We chose the
value 10MB as this corresponds to an obvious plateau in
Figure 4(a) and it serves as an upper bound on the size of
most digitized audio clips. We chose the value 100MB as it
is a reasonable lower bound on the size of most digitized full-
length movies transferred. While the majority of requests
(91%) are for objects smaller than 10MB (primarily audio
clips), the majority of bytes transferred (65%) are due to the
largest objects (video files). Thus, if our concern is band-
width consumption, we need to focus on the small number
of requests to those large objects. However, if our concern
is to improve the overall user experience, then we must fo-
cus on the majority of requests for small files, despite their
relatively small bandwidth demand.

The stark differences between the large and small object
workloads lead us to analyze their behaviors independently
for much of the evaluation that follows.

small objects
(primarily audio)

large objects
(primarily video)

top 10 top 100 top 10 top 100

overlap in the most
popular objects

between first and last
30 days of trace

0 of 10 5 of 100 1 of 10 44 of 100

of newly popular
objects that are

recently born
6 of 10 73 of 95 2 of 9 47 of 56

Table 3: Object popularity dynamics in Kazaa. There is

significant turnover in the set of most popular objects

between the first 30 days and the last 30 days of the

trace. The newly popular objects (those in the set of

most popular objects over the last 30 days but not in

the set over the first 30 days) tend to be recently born.

2.3.2 Kazaa Object Dynamics
A simple but crucial difference between multimedia and

Web workloads is that multimedia objects are immutable,
while Web pages are not. Though obvious, this fact and
its implications have not been discussed in the research lit-
erature. A video clip of “Bambi Meets Godzilla” will be
the same clip tomorrow or the next day: it never changes.
On the other hand, the Web page CNN.com may change
every hour, or upon every access if the page is personal-
ized for clients. Web workloads are thus strongly driven
by dynamic content creation. It has been shown that the
rate of document change is a key factor in Internet behav-
ior and has enormous implications for caching, performance,
and content delivery in general [11, 37]. We now show how
immutability affects object dynamics.

Kazaa clients fetch objects at most once. Because
objects are immutable and take non-trivial time to down-
load, we believe that users typically download a Kazaa ob-
ject only once. Our traces confirm that 94% of the time,
a Kazaa client requests a given object at most once; 99%
of the time, a Kazaa client requests a given object at most
twice. In comparison, based on a Web trace we gathered
during the first nine days of our Kazaa trace period, a Web
client requests a given object at most once only 57% of the
time.

The popularity of Kazaa objects is often short-

lived. Object immutability also has an impact on object
popularity dynamics. The set of most popular pages remains
relatively stable for the Web and these pages account for
a significant fraction of overall accesses [26]. In contrast,
many of the most popular audio/video objects are routinely
replaced by newly released objects, often in only a few weeks.

To illustrate this change in popular Kazaa objects, we
compared the first 30 days of the trace to the last 30 days of
the trace. For each of these 30-day (month-long) segments,
we identified the top-10 most popular and the top-100 most
popular objects (Table 3). For small objects, there was no
overlap between the top-10 most popular objects: the most
popular small objects had changed completely in the space
of only six months. For large objects, there was only one
object in common in the top-10 across these segments. The
top-100 objects show only 5 small objects in common across
the segments, and 44 objects in common across the large
objects. Popularity is fleeting in Kazaa, and popular audio
files tend to lose popularity faster than popular video files.

The most popular Kazaa objects tend to be re-

cently born objects. Given that there is significant turn-
over in popularity within Kazaa, we wanted to understand
whether objects that become popular are old objects that
have grown in popularity over time or recently born objects
that enjoy sudden popularity. Using the same month-long
segments as before, we calculated the fraction of objects that
were newly popular (i.e., in the top-10 or top-100 in the last
month of the trace but not the first month of the trace), but
did not receive any requests at all during the first month of
the trace (i.e., they were likely “born” after the first month
of the trace). Table 3 shows the results: newly popular ob-
jects tend to be recently born in Kazaa, although this is
more true for audio objects than video objects.

Most requests are for old objects. The previous ex-
periments confirmed that the most popular objects tend to
decay in popularity, and that the newly popular objects that
replace them tend to be newly born. A related, but different,
question is whether most requests go to old or new objects.
We categorize an object as “old” if at least a month has
passed since we observed the first request for that object.
We categorize it as “new” if it has been less than a month
since it was first requested. Note that we can be sure that
an object is old, but we can never be sure that an object
is new, since we may have missed requests for the object
before our trace began. To deal with edge effects, we do not
include the first month of requests in our statistics, but we
do use them to help distinguish between old and new objects
in subsequent months.

Using this methodology, 72% of requests for large objects
go to old objects, while 28% go to new objects. For small
objects, 52% of requests go to old objects, and 48% go to new
objects. This shows that a substantial fraction of requests
are for the old objects. Large objects requested tend to
be older than small objects, reinforcing our assertion that
Kazaa is really a mixture of workloads: the pace of life is
slower for large objects than for small objects.

From the above discussion, it is clear that the forces driv-
ing the Kazaa workload differ in many ways from those driv-
ing the Web. Web users may download the same pages many
times; Kazaa users tend to download objects at most once.
The arrival of new objects plays an important role in P2P
file-sharing systems, while changes to existing pages are a
more important dynamic in the Web. We discuss implica-
tions of these differences in Sections 3 and 4.

2.3.3 Kazaa Is Not Zipf
Much has been written about the Zipf-like qualities of

the WWW [7]. In fact, researchers commonly quote the
Zipf parameter of the popularity distributions seen in their
traces [14, 27], in part to demonstrate that their results
are “correct.” This Zipf property of Web access patterns
is thought to be a basic fact of nature: a small number of
objects are extremely popular, but there is a long tail of
unpopular requests. Zipf’s law states that the popularity of
the ith-most popular object is proportional to i−α, where α

is the “Zipf coefficient” or “Zipf parameter.” Zipf distribu-
tions look linear when plotted on a log-log scale.

Figure 5 shows the Kazaa object popularity distribution
on a log-log scale for large (>100MB) objects, along with
the best-fit Zipf curve; a qualitatively similar curve exists
for small (<10MB) objects. This figure also shows the pop-
ularity distribution of Web objects, drawn from our Web
trace. Unlike the WWW, the Kazaa object request distribu-

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1 10 100 1000 10000 100000 1E+06 1E+07 1E+08

object rank

of

 r
eq

ue
st

s

100MB+ Kazaa objects

WWW objects

Figure 5: Kazaa is not Zipf. The popularity distribution

for large objects is much flatter than Zipf would predict,

with the most popular object being requested 100x less

than expected. Similarly shaped distributions exist for

small objects and the aggregate Kazaa workload. For

comparison, we show the popularity distribution of Web

requests during a subset of the Kazaa trace period: the

Web is well described by Zipf.

tion as observed in our trace does not seem to follow a Zipf
curve. The strongest difference from Zipf appears among
the most popular objects, where the curves are noticeably
flatter than the Zipf lines. The most popular multimedia
objects are significantly less popular than Zipf would pre-
dict. For example, our trace shows that the most popular
large object has only 272 requests, and only 47 objects have
100 requests or more. Popularity distributions of Web traffic
sometimes have slightly flattened “heads,” but the objects
in the flattened region account for only a small percentage of
total requests and bytes. The flattened portion of the Kazaa
popularity curve consists of the top 1000 objects, and these
objects account for more than 50% of bandwidth consumed.

2.4 Summary
Peer-to-peer file-sharing workloads are driven by consid-

erably different processes than the Web. Kazaa users are
much more patient than Web users, waiting hours, days,
and, in some cases, weeks for their objects to arrive. Even
so, the median session length is only 2.4 minutes, because:
(1) many transactions fail, (2) many transactions are short,
and (3) clients occasionally have periods of no activity while
satisfying a request. As Kazaa clients age, they demand less
from the system. Part of this is due to attrition (clients per-
manently leaving the system), but part is also due to older
clients requesting fewer bytes per session.

The Kazaa file-sharing workload consists of a mixture of
large, immutable audio and video objects, but the measured
popularity distribution of these objects is not Zipf. The
popularity of the most requested objects is limited, since
clients typically fetch objects at most once, unlike the Web.
Nonetheless, there is substantial non-uniformity in Kazaa
object popularity, which suggests that caching is a poten-
tially effective bandwidth savings tool. In Kazaa, object
arrivals play an important role, while in the Web, updates
to existing pages are a more important dynamic.

In the next section, we explore what we believe are the rea-
sons why Kazaa’s workload does not appear to follow Zipf’s
law. We also compare Kazaa’s non-Zipf behavior to non-
Zipf behavior in other systems, including video-on-demand

servers and the Web. Following this, we present a model of
multimedia workloads in Section 4, and we use this model
to explore implications of non-Zipf behavior.

3. ZIPF’S LAW AND MULTIMEDIA WORK-
LOADS

Previous studies of multimedia workloads examined ob-
ject popularity and found conflicting results, noting both
Zipf and non-Zipf behavior [4, 7, 8, 12, 33]. This section
examines previous work in the context of our own, with the
goal of explaining the similarities, differences, and causes of
the behavior observed both by us and others. We begin by
presenting a hypothesis that explains the non-Zipf behav-
ior in Kazaa. Next, we discuss previous studies that have
observed or modeled non-Zipf workloads and contrast our
hypothesis with previous explanations. Finally, we attempt
to show the generality of our claim by revealing non-Zipf be-
havior in previously studied workloads. Section 4 then sup-
ports our hypothesis through the use of a generative work-
load model whose output closely matches our observations.

3.1 Why Kazaa Is Not Zipf
The previous section highlighted a crucial difference be-

tween the Web and the Kazaa P2P file-sharing system:
Kazaa objects are immutable, while Web objects change,
sometimes frequently. As we observed in Section 2.3.2, the
immutability of Kazaa objects causes two important effects,
one affecting user behavior and the other object dynam-
ics. First, Web clients often fetch the same Web page many
times (“fetch-repeatedly”). In contrast, Kazaa clients rarely
request the same object twice (“fetch-at-most-once”). Sec-
ond, the Web’s primary object dynamic is updates to exist-
ing pages. In contrast, the primary object dynamic in the
Kazaa workload is the arrival of entirely new objects.

These object and user characteristics can be used as two
axes for classifying systems: immutable objects vs. mu-

table objects, and fetch-repeatedly clients vs. fetch-

at-most-once clients. In systems with large client-side
caches, these characteristics are intimately linked: fetch-
repeatedly behavior exists when there are object updates,
such as in the Web, and fetch-at-most-once user behavior
exists when the only object dynamic is new arrivals, such as
in the Kazaa system. We believe that these differences in
object and user dynamics explain why we observed Zipf re-
quest distributions in our measured Web workload, but not
in Kazaa.

As an initial comparison of fetch-at-most-once and fetch-
repeatedly behavior, we simulated the request distribution
generated by two hypothetical 1,000-user populations: one
in which users fetch objects repeatedly, and one in which
they fetch objects at most once. In both cases, we simulated
the same initial Zipf distribution (with Zipf parameter α =
1.0 over 40,000 objects). However, in the fetch-at-most-once
case, we prevented users from making subsequent requests
for the same object. (Section 4 more fully explains the model
behind this simulation.)

Figure 6 shows the results when users have made an av-
erage of 1000 requests each. While fetch-repeatedly behav-
ior recreates the underlying Zipf distribution, fetch-at-most-
once behavior shows markedly different results: the most
popular objects are requested much less, while objects down
the tail show elevated numbers of requests. This behav-

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

object rank

of

 r
eq

ue
st

s

fetch-at-most-once

fetch-repeatedly

Figure 6: Simulated object popularity for fetch-repeatedly

and fetch-at-most-once behavior. When users fetch an in-

dividual object at most once, the resulting request distri-

bution has a significantly flattened head, approximating

the Kazaa popularity distribution.

ior strikingly resembles the measurement results shown in
Figure 5, confirming our intuition that fetch-at-most-once
behavior is a key contributor to non-Zipf popularity.

3.2 Non-Zipf Workloads in Other Systems
Non-Zipf popularity distributions have been observed in

many previous studies [1, 3, 8, 33]. We now compare our
results to two categories of previous studies: those that an-
alyzed Web workloads and those that analyzed video (or
other multimedia) workloads.

3.2.1 Kazaa vs. Web Workloads
While most Web studies conclude that Web popularity

distributions follow Zipf’s law, some studies have observed
non-Zipf behavior, specifically in workloads that emerge as
miss traffic from a proxy cache [4, 7, 12]. Web proxy caches,
by design, absorb requests to popular documents; conse-
quently, the most popular documents in a workload will ap-
pear only once (as cold misses) in cache miss traces. Mod-
erately popular documents will occasionally be absorbed by
the proxy cache, but they will also appear in the miss traffic
as capacity misses. The least popular documents will always
miss in the proxy cache, assuming the cache has finite size
and cannot hold the entire object population. As a result, a
Zipf workload, when fed through a shared proxy cache, will
result in a non-Zipf popularity distribution with a flattened
head [12], visually similar to the non-Zipf distributions we
observed in Kazaa. Breslau et al. [7] derive equations that
relate the Zipf parameter of a workload fed to a proxy cache
and the hit rate that the proxy cache will experience.

Although proxy cache miss distributions may visually re-
semble our measured Kazaa popularity distributions, we be-
lieve the two workloads diverge from Zipf for different rea-
sons. In Kazaa, users’ requests do not flow through a shared
proxy cache: the workload we observed is the aggregate of a
large number of individual fetch-at-most-once streams, with
an absence of shared proxy caches. The only caches that
currently exist in Kazaa are client-side caches. Note that
there is no practical difference between true fetch-at-most-
once user behavior, and fetch-repeatedly user behavior fil-
tered through infinite client-side caches resulting in fetch-
at-most-once client behavior.

The most popular Web object will show up only one time
in a proxy cache miss trace. The most popular object will

show up many times (potentially as many times as there
are users) in a fetch-at-most-once workload such as Kazaa,
even with individual client caches. Both result in non-Zipf
distributions, but for different reasons.

3.2.2 Kazaa vs. Other Multimedia Workloads
Tang et al. [33] show that streaming media server work-

loads exhibit flattened popularity distributions similar to
those we observed. They attribute this flattened distribu-
tion to the long duration over which they gathered their
trace. Their hypothesis is that with a longer trace, more
files with similar popularity can be observed, in effect cre-
ating “groups” of files with similar properties. Instead of
Zipf’s law being appropriate for describing the popularity of
individual files, they show that Zipf’s law better describes
the popularity of these groups, and they provide a mathe-
matical transformation inspired by these groups to convert
observed non-Zipf distributions into a Zipf-like distribution.

We believe that fetch-at-most-once behavior is the likely
cause of the non-Zipf popularity in their workload. A short
trace can cause a non-Zipf workload to appear Zipf-like, as
not enough requests have been gathered within the trace for
objects with similar popularity to be observed [8]. However,
the fact that an adequate sample size will reveal a non-Zipf
workload does not explain why this true workload is non-
Zipf in the first place. The length of a trace by itself does
not provide a satisfactory explanation of the forces driving
popularity in a system. Fetch-at-most-once behavior par-
tially provides this explanation. Additionally, in a system
that experiences object births (for example, new video ob-
jects becoming available), a short trace may miss important
birth events. A longer trace may reveal objects spread out
over time that have equivalent short-term popularity, similar
to the “group” effect Tang et al. proposed.

In another study, Almeida et al. [3] observe a flattened
Zipf-like popularity distribution in an educational media
server. They propose that this distribution is well described
by the concatenation of two true Zipf distributions. Al-
though the data appears to be well modeled by two Zipf
distributions, their study does not provide an explanation
of what causes this effect.

Another often studied multimedia workload is that of vid-
eo-on-demand (VoD) servers. VoD researchers frequently
use Zipf distributions to model the popularity of video doc-
uments in their systems [10, 18, 31]. Surprisingly, many of
these researchers appear to base their Zipf assumption on
results published from a single data set: one week of rental
data from a video store [35].

Our results suggest that their workload (i.e., requests for
immutable video objects) should reveal similar non-Zipf be-
havior stemming from fetch-at-most-once client behavior.
To understand the apparent discrepancy between their as-
sumptions and our results, we manually extracted the video
rental data set from Figure 2 of [10]. In Figure 7(a), we show
this data as it appeared in that paper, plotted on a linear
scale with a Zipf curve fit. Figure 7(b) shows the same
data plotted on a log-log scale with the same Zipf curve
fit. While the linear scale plot seems to suggest the data
may be well described by Zipf’s law, the log-log plot reveals
that even this data set appears to show the flattened head
that is characteristic of fetch-at-most-once systems. We also
gathered recent box-office movie ticket sales data [34]. Fig-
ures 7(c) and (d) show that this data, too, is consistent with

(a) (b)

(c) (d)

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

1 10 100 1000
movie index

bo
x

of
fic

e
sa

le
s

($
m

ill
io

ns
)

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250

movie index

bo
x

of
fic

e
sa

le
s

($
m

ill
io

ns
)

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150 200 250
movie index

re
nt

al
 fr

eq
ue

nc
y

1

10

100

1000

1 10 100 1000
movie index

re
nt

al
 fr

eq
ue

nc
y

Figure 7: Video rental and box office sales popularity. (a) The popularity distribution from a 1992 video rental data set

used to justify Zipf’s law in many video-on-demand papers, along with a Zipf curve fit with α = 0.9, and (b) the same

data set and curve fit plotted on a log-log scale. Contrary to the assumption of many papers, video rental data does

not appear to follow Zipf’s law. (c) The distribution of 2002 U.S. box office ticket sales on a linear scale, along with a

Zipf-fit with α = 2.28, and (d) on a log-log scale. This data set also appears to be non-Zipf.

our fetch-at-most-once popularity distribution.
The VoD community has recently begun to recognize the

importance of object births in video-on-demand systems [16].
Because new video titles are created (often with high pop-
ularity), and because the popularity of existing video titles
tends to diminish over time, VoD workload models are start-
ing to incorporate schemes for changing popularity distribu-
tions over time. This is consistent with our earlier observa-
tions that both client and object birth rates are important
factors in multimedia workloads.

In the next section, we present a model of fetch-at-most-
once systems. We use this model to demonstrate the impli-
cations of the resulting non-Zipf behavior and explore the
importance of client and object birth rates on system per-
formance. We believe that this model is relevant to both
P2P file-sharing and video-on-demand systems.

4. A MODEL OF P2P FILE-SHARING
WORKLOADS

In the previous section, we hypothesized that the non-Zipf
behavior of Kazaa, and of multimedia workloads in gen-
eral, is best explained by the fetch-at-most-once behavior
of clients. This section presents a model of P2P file-sharing
systems that enables us to explore this hypothesis further.
The model, used to generate Figure 6 in the previous section,
captures key parameters of the P2P file-sharing workload,
such as request rates, number of clients, number of objects,
and changes to the set of clients and objects. From these
parameters, it produces a stream of client requests for ob-
jects that we then analyze. By varying model parameters,
we explore the underlying processes that lead to certain ob-
servable workload characteristics and how changes to the
parameters affect the system and its performance.

The remainder of this section describes our basic model of
a P2P file-sharing system. This model shows the impact that

Symbol Meaning Base value
C # of clients 1,000
O # of objects 40,000
λλλλR per-user request rate 2 objects/day

αααα
Zipf parameter driving

object popularity
1.0

P(x)
probability that a user
requests an object of

popularity rank x

based on Zipf(1)
(see text)

A(x)
probability that a newly

arrived object is inserted
at popularity rank x

Zipf(1)

M cache size, measured as
fraction of all objects

varies

λλλλO object arrival rate varies
λλλλC client arrival rate varies

Table 4: Model structure and notation. These parame-

ter settings reflect the values seen in our trace for large

(>100MB) objects.

fetch-at-most-once behavior has on overall object popularity.
We use caching as a lens to observe how the addition of
new objects and new clients affects performance in a fetch-
at-most-once file-sharing system. Finally, we validate the
model by comparing the popularity distributions of a model-
generated workload with that extracted from our trace data.

4.1 Model Description
Table 4 summarizes the parameters used in our model. We

chose parameter values that reflect our trace measurements
for large objects, since this component dominates bandwidth
consumption. One parameter value that differs from the
measured trace is the number of clients. In order to run a
substantially larger number of experiments, we model a sys-

tem with 1,000 clients rather than the roughly 7,000 large-
object clients in our trace. We verified that the predictions
of our model were not affected by this difference. To simplify
our model, we also assumed that all objects in the system
were of equal size.

Our model captures key aspects of our P2P file-sharing
workload, in particular, the differences between file-sharing
and Web workloads. In a Web workload, clients select ob-
jects from a Zipf distribution, P (x), in an independent and
identically distributed fashion. In contrast, the object selec-
tion process in a file-sharing system depends on three fac-
tors: (1) the Zipf distribution, P (x), (2) the way in which
new objects are inserted into that distribution, A(x), and
(3) the clients’ fetch-at-most-once behavior.

Our model generates requests as follows. On average, a
client requests two objects per day, choosing which object to
fetch from a Zipf probability distribution with parameter 1.0
(“Zipf(1)”).4 We hypothesize that the underlying popularity
of objects in a fetch-at-most-once file-sharing system is still

driven by Zipf’s law, even though the observed workload
becomes non-Zipf because of fetch-at-most-once clients. In
our model, subsequent requests from the same client obey
distributions obtained by removing already fetched objects
from the candidate object set and re-scaling so the total
probability is 1.0. Given two previously unrequested objects,
the ratio of the probabilities that the client will request these
objects next is identical to their ratio in the original Zipf
distribution. For fetch-repeatedly systems, each request is
made according to the original Zipf distribution.

When modeling fetch-at-most-once systems, λO > 0 is the
object arrival rate. When an object is born in a fetch-at-
most-once system, its popularity rank is determined by se-
lecting randomly from the Zipf(1) distribution. Pre-existing
objects of equal or lesser popularity are “pushed down” one
Zipf position, and the resulting distribution is re-normalized
so the total probability is again 1.0. In fetch-repeatedly sys-
tems, we set the object arrival rate to 0. Objects may be
updated, but for simplicity we ignore the second-order effect
of completely new objects on request behavior.

While our trace shows all requested objects, it cannot ob-
serve the total object population, since many available ob-
jects were never accessed. However, total object population
is a key parameter of our model, as it influences the amount
of overlap that will likely occur in requests from different
clients. We therefore estimated a base value for total object
population by back-inference: how many large objects are
most likely to have existed in total, given that we saw about
18,000 distinct large objects requested in the trace? We find
that a total population of about 40,000 large-media objects
is consistent with the trace data; therefore, we use this num-
ber as the base value. This number is also comparable to
statistics that describe commercial movie releases: the In-
ternet Movie Database reports between 50,000 and 60,000
movie releases world-wide over the past 20 years [34].

To quantify file-sharing effectiveness, we use the hit rate
that the aggregate workload experiences against a 100%
available shared cache with LRU replacement, whose size
we vary in each experiment. Selected experiments using
optimal replacement showed no qualitative differences from
LRU results, and quantitative differences varied by only a
few percent. For Web (fetch-repeatedly) scenarios, we make

4Attempting to best-fit a Zipf curve to our measured non-
Zipf distribution resulted in a Zipf parameter of 0.98.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

days

hi
t r

at
e

fetch-repeatedly

4000
2000 1000

fetch-at-most-once

1000 40002000

Figure 8: File-sharing effectiveness diminishes with client

age. After an initial cache warm-up period, the request

stream generated by fetch-at-most-once client behavior

experiences rapidly decreasing cache performance, while

the stream generated by fetch-repeatedly clients remains

stable. This effect is shown for various cache sizes (1000,

2000, and 4000 objects).

the optimistic assumption that all objects are cachable and
are never updated.

4.2 File-Sharing Effectiveness Diminishes with
Client Age

Imagine an organization experiencing current demand for
external bandwidth due to fetches of P2P file-sharing ob-
jects. How should this organization expect bandwidth de-
mand to change over time, given a shared proxy cache? We
address this question using the “static” case in which no new
clients or objects arrive. This static analysis allows us to fo-
cus on one factor at a time (fetch-at-most-once behavior, in
this case). We relax these assumptions in later subsections
to show the impact of other factors, such as new object and
client arrivals.

Figure 8 shows hit rate against time for various shared
cache sizes, assuming that at time zero no clients have fetched
any objects. After a brief cache warm-up period, hit rate de-
creases as clients age, even for a cache that can hold 10% of
all file-sharing objects. This is because fetch-at-most-once
clients consume the most popular objects early. Later re-
quests are selected with nearly uniform likelihood from an
increasingly large number of objects. That is, the system
evolves towards one in which there is no locality, and ob-
jects are chosen at random from a very large space.

This behavior suggests that if client request rates remain
constant over time, the external bandwidth load they present
increases, since more of their requests are directed to objects
that are only available externally. Conversely, if we hope to
have stable bandwidth demand over time, clients must be-
have in a way that reduces the intensity of their requests in
a manner consistent with the shape of the hit-rate decreases
shown in Figure 8.

The decrease in hit-rate over time is a strong property of
fetch-at-most-once behavior. The underlying popularity dis-
tribution need not be heavy tailed for it to occur. We have
performed experiments using initial object popularity distri-
butions that have higher locality (i.e., Zipf parameters larger
than 1.0). In a fetch-repeatedly context, the larger skew of
these distributions towards the most popular objects makes
file sharing easier and hit rates rise. For fetch-at-most-once
systems, hit rates start out much higher, but as clients age

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9
object arrivals per user request

hi
t r

at
e

cache size = 8000
cache size = 4000
cache size = 2000
cache size = 1000
cache size = 500

Figure 9: Object arrivals improve performance. Cache hit

rates improve with new object arrival rates for fetch-

at-most-once clients because they replenish the supply

of popular objects. This improvement is shown across

varying cache sizes (500 to 8000 objects). The X-axis

shows the global object arrival rate relative to the aver-

age client’s request rate. Since the average client makes

2 requests per day, the point x = 1 implies that 2 new

objects arrive globally per day.

they fall off even more sharply than in Figure 8. Thus, even
if the file-sharing system evolves in a way that increases the
popularity of their most requested objects, the hit rate of ex-
isting clients on existing objects will still decrease towards
zero as clients age.

4.3 New Object Arrivals Improve Performance
The decay of hit rate with client age explains another

surprising characteristic of P2P file-sharing systems: while
Web performance suffers due to object updates, object ar-
rivals are actually beneficial in a file-sharing system. This
is because arrivals replenish the supply of popular objects
that are the source of file-sharing hits.

Figure 9 shows this effect. We repeated the previous sim-
ulation, but this time introduced a non-zero object arrival
rate. Over any realistic range of arrival rate5, hit rates in-
crease, approaching at maximum the hit rate of an equiva-
lent fetch-repeatedly system. For parameters set to the base
values of our model (in which clients average two requests
per day), an object arrival rate as small as twelve new ob-
jects introduced worldwide per day compensates for nearly
all the loss due to client aging.

The arrival of new objects in a P2P file-sharing system is
therefore an important rejuvenating force that counterbal-
ances fetch-at-most-once behavior. Without new popular
objects to choose from, existing clients quickly exhaust the
set of popular objects, after which they are forced to choose
from the remaining heavy tail of unpopular objects. With-
out the infusion of new objects, the workload in a fetch-at-
most-once system loses its locality over time.

4.4 New Clients Cannot Stabilize Performance
Because new clients have higher hit rates than old clients,

it might be possible for new clients joining a P2P file-sharing
system to compensate for the performance loss due to the
aging of existing clients. The infusion of new clients may

5In the limit, when object arrival rate is high enough, cache
hit rate goes back to zero: objects arrive so fast that they are
displaced by even newer objects before two client requests
can be made.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000
days

hi
t r

at
e

0

20000

40000

60000

80000

100000

cl
ie

nt
 a

rr
iv

al
 r

at
e

(c
lie

nt
s/

da
y)

constant client arrival rate

constant hit rate

Figure 10: Client arrivals cannot stabilize performance.

With constant client arrival rate, hit-rate decreases with

time. To maintain constant hit-rate, client arrival rate

must increase exponentially with time.

therefore be an equivalent rejuvenating force to the infusion
of new objects. Unfortunately, in any practical sense, this
turns out not to be the case.

Figure 10 shows two different results. First, we examine
hit-rate over time when new clients are introduced at a con-
stant rate. Initially, new clients bring up the hit-rate, but
eventually the constant arrival rate cannot compensate for
the increasing numbers of old clients. Second, Figure 10
shows an estimate of the arrival rate needed to keep hit rate
constant as the system ages. An arrival rate above this line
improves the average hit rate, while one below allows it to
decrease. This “break-even arrival rate” rises steeply over
time, too steeply to be realized in practice over more than a
short period. That, plus the fact that the overall bandwidth
requirement increases in proportion to population size even
when hit rate is stable, leads us to conclude that the intro-
duction of new clients cannot compensate for the hit-rate
penalty of clients aging in a P2P file-sharing system.

4.5 Model Validation
A primary goal of our model was to capture the peculiar

characteristics of fetch-at-most-once systems and the impor-
tance of new object and client arrivals. While we are confi-
dent about many aspects of our model, some of our assump-
tions cannot be validated against trace data. For example,
we assume that client requests are governed by a Zipf distri-
bution and that object arrivals also obey a variant of Zipf’s
law in terms of where they are placed in the overall popu-
larity distribution. Even though we cannot directly verify
these assumptions, we can verify that the observed behavior
in our trace is consistent with our model.

We validated our model by using it to replicate the ob-
ject popularity distribution measured in our trace. To do
this, we parameterized the model from the trace data to the
extent possible and then compared the popularity distribu-
tions generated by the model (using simulation) with those
observed in the trace. We emphasize that we are not driv-
ing the simulation with the detailed trace and simply getting
out what we put in. The simulation is driven synthetically
from our model, with rate and size parameters set from the
average values measured in the trace. We set distributional
parameters that cannot be obtained from any trace to the
values shown in Table 4.

It is not possible to set λO (the arrival rate of new objects)
with any confidence from our trace data, since our trace can-

1

10

100

1000

10000

1 10 100 1000 10000 100000

object rank

re

qu
es

ts

measured

fetch-at-most-once
(modeled)

fetch-repeatedly
(modeled)

Figure 11: Predicted versus measured object popularity.

The popularity curves from our model and the actual

trace data match remarkably well. This supports our

conjecture that the measured popularity distribution is

non-Zipf because of fetch-at-most-once behavior.

not measure the worldwide introduction of new objects. For
that reason, we leave object arrival rate as a free parameter,
adjusting it to obtain as tight a correspondence between the
model and measured data as possible.

Figure 11 shows the results. With λO set to 5,475 new
objects per year, the popularity distribution predicted by
the model is remarkably close to what we observed. It
also clearly deviates from Zipf because of the influence of
fetch-at-most-once behavior and object arrivals. The value
λO = 5, 475 is reasonable; in comparison, the Internet Movie
Database tracked approximately 10,606 new objects world-
wide during 2002.

4.6 Summary
This section developed a model of P2P file-sharing behav-

ior, with client requests based on an underlying Zipf distri-
bution. Based on this model, our analysis shows that:

1. Fetch-at-most-once client behavior, caused by the im-
mutability of objects in P2P file-sharing systems, leads
to a significant deviation from Zipf popularity distri-
butions.

2. As a result, without the introduction of new objects
and clients, P2P file-sharing system performance de-
creases over time (bandwidth demands rise), because
client requests “slide down the Zipf curve.”

3. The introduction of new objects in P2P file-sharing
systems acts as a rejuvenating force that counter-balances
the impact of fetch-at-most-once client behavior.

4. Introducing new clients does not have a similar effect,
because they cannot counteract the hit rate penalty of
client aging, which occurs at the same rate.

The next section examines a scheme for reducing the ex-
ternal bandwidth consumption predicted by our model and
shown by our measurements.

5. EXPLORING LOCALITY-AWARE
REQUEST ROUTING

Previous studies have shown that a significant fraction of
Internet bandwidth is consumed by Kazaa file-sharing traf-
fic [29]. As a result, many organizations now curb P2P file-
sharing bandwidth consumption through shaping or filtering

88.5%

64.6%

14.0% 11.5%

35.4%

86.0%

0%

20%

40%

60%

80%

100%

all objects large objects small objects

%
 b

yt
es

 tr
an

sf
er

re
d

miss

hit

Figure 12: Bandwidth savings with an ideal proxy cache.

This graph shows the byte hit rate for a simulated ideal

cache (i.e., infinite capacity and bandwidth).

tools. This section explores an alternative strategy, namely,
the exploitation of locality in the file-sharing workload. By
locality exploitation, we mean the more effective use of con-
tent available within an organization to substantially de-
crease external bandwidth usage. We begin by using a cache
simulation to show the potential for locality exploitation and
then explore the benefits of locality-aware P2P file-sharing
request routing within an organization such as a university.

5.1 Measuring Locality in the Workload
The most common technology for capturing locality in

an Internet workload is a proxy cache placed at an orga-
nizational border. A proxy guarantees that every object is
downloaded into the organization at most once, on the cold
miss. Additional requests for a previously downloaded ob-
ject are then satisfied from the proxy without consuming
external bandwidth. Simulating an ideal cache (i.e., infinite
capacity and bandwidth) therefore gives us an upper bound
on the bandwidth savings of any locality-aware mechanism,
because the cache captures and serves all content transferred
into the organization.

Figure 12 graphs the byte hit rate for an ideal, centralized
proxy cache, given our trace as its workload. Over all ob-
jects, a proxy cache would result in an external bandwidth
savings of 86%. In our UW environment, this implies that
86% of the downloaded bytes already existed on other UW-
local clients at the time they were downloaded from UW-
external clients. It is therefore very clear that substantial
untapped locality exists in the Kazaa workload that Kazaa
does not exploit. If the university deployed an internal proxy
cache for P2P file-sharing content, it would save substantial
bandwidth, and therefore money.

In practice, IT departments may not wish to support a
cache that stores P2P file-sharing content, given the cur-
rent legal and political problems this could present. For this
reason, we explore an alternative to the deployment of a cen-
tralized proxy cache: the use of organization-based locality-
aware mechanisms for reducing external downloads. These
schemes favor organization-internal peers whenever possible
to serve data, effectively creating a distributed cache from
local peers. There are many potential implementations of
such a locality-aware architecture, including:

1. Centralized request redirection: instead of de-
ploying a cache, an organization could deploy a redi-

rector at its boundary. The redirector would index
the locations of objects on peers within the organiza-
tion and route internal clients’ requests to other inter-

nal peers whenever possible. The redirector should be
transparent to the P2P file-sharing protocols.

2. Decentralized request redirection: today’s P2P
file-sharing systems often employ the use of supern-

odes, distinguished peers that index content on other
peers. Current architectures such as Kazaa are locality-
unaware, as our data shows. Through the use of topo-
logical distance estimation techniques such as GNP [25],
IDMaps [13], or King [17], it may be possible to infuse
supernodes with locality awareness, resulting in a fully
distributed redirection architecture.

The following sections use trace-based simulation to assess
the potential benefits of these locality-aware mechanisms.

5.2 Methodology
We use trace-based simulation to evaluate a locality-aware

scheme in which all requests from clients in the University of
Washington are redirected (when possible) to other univer-
sity peers. Our simulated locality-aware mechanism is ideal,
in that it has perfect knowledge about which peers are cur-
rently up and which objects each peer is willing to serve.
We assume that: (1) all peers have infinite storage capacity,
(2) once a peer downloads an object, it makes that object
available to other peers when it is up, and (3) each peer can
serve at most 12 concurrent downloads, a number chosen to
approximate the behavior of many P2P file-sharing systems,
including Kazaa and Gnutella. In our model, each peer has
a finite upload bandwidth of 500 Kb/s that is shared across
all of that peer’s concurrent uploads; each external transfer
has a bandwidth of 100 Kb/s. These values approximate the
typical values we saw in our trace. However, we verified that
the qualitative results and conclusions of our experiments do
not differ across a wide range of simulated internal and ex-
ternal bandwidth settings.

Unlike a proxy cache, a locality-aware mechanism cannot
directly control the availability of content. Instead, it re-
lies on peers to make content available. As a result, if an
object exists on only one local peer, the object becomes un-
available whenever that peer is disconnected. Effectiveness
is therefore limited by object availability. Given the cru-
cial importance of availability, we provide a lower bound on
the benefits of locality awareness by making an extremely
conservative assumption, namely, that peers are available as
servers only during periods in which our trace shows them
to be actively transferring objects. In reality, peers will be
much more available than we simulate, so a locality-aware
architecture should be able to achieve at least the perfor-
mance benefits that we show below.

The rest of this section explores whether a locality-aware
scheme using internal peers can realize object availability,
and therefore external bandwidth savings, competitive with
a dedicated, centralized proxy cache.

5.3 Benefits of Locality-Awareness
Figure 13 shows the external bandwidth savings that an

ideal locality-aware scheme can obtain. The chart accounts
for all bytes downloaded by internal peers, broken down ac-
cording to whether they were hits (successfully redirected
to internal peers) or misses (requiring external bandwidth).
The chart shows that locality awareness obtains an impres-
sive 68% byte hit rate for large objects and a 37% byte hit
rate for small objects, saving about 22.3TB and 1.5TB of

0%

20%

40%

60%

80%

100%

all objects large objects small objects

%
 b

yt
es

 tr
an

sf
er

re
d

cold
busy
unavailable
hit

67.9%

11.5%

19.8%

0.7%
busy

37.1%

35.4%

26.9%

0.7%
busy

0.8%
busy

63.2%

14.0%

21.9%

Figure 13: Bandwidth savings with ideal locality-aware

request redirection. This graph accounts for all bytes

transferred to peers when using an ideal locality-aware

scheme. A request hits if an available local host can serve

it. Otherwise, it misses and downloads from an external

host. Misses may be cold misses, busy misses (the object

exists locally but all available hosts with it are busy), or

unavailable misses (the object exists locally but no hosts

with it are available).

1

10

100

1000

1 10 100 1000 10000 100000

object # (sorted by popularity)

re

qu
es

ts

0

0.2

0.4

0.6

0.8

1

1.2

by
te

 h
it

ra
te

byte hit rate

requests

Figure 14: Correlating byte hit rate with popularity (large

objects). Hit rate and popularity appear to be related:

popular objects are “naturally” replicated, leading to a

high byte hit rate.

external traffic, respectively. These savings occur despite
our extremely conservative estimates of peer availability.

Cold misses, which result in unavoidable external band-
width consumption, account for 12% of large object bytes
and 35% of small object bytes. Busy misses, in which the
object exists on an available internal peer, but that peer
is serving its maximum number of concurrent transfers, are
insignificant. For both large and small objects, a substan-
tial number of miss bytes are attributable to unavailable

objects, i.e., the objects exist on local peers that are unavail-
able when a request occurs. If the locality-aware mechanism
could avoid these misses using techniques like data replica-
tion or placement, it would reduce the overall miss rate by
62% for large objects and 43% for small objects.

5.4 Accounting for Hits and Misses
To understand which objects account for these unavail-

ability misses, we first explored the relationship between the
hit rate an object experiences and that object’s popularity.
Figure 14 shows the byte hit rate that each large object ex-
periences, plotted on the same graph as object popularity;
we see similar results for small objects. Popularity is related
to byte hit rate: the more popular an object, the more that
object is “naturally” replicated in a P2P file-sharing system.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1000 2000 3000 4000 5000 6000 7000 8000

peers (ranked by availability)

%
 o

f b
yt

es
 (

C
D

F
)

bytes consumed

bytes served

Figure 15: Highly available peers carry the load. A CDF

of bytes served and bytes consumed by the peers under

a locality-aware mechanism, with peers sorted by avail-

ability, for large objects. Most of the bytes served and

consumed come from highly available peers.

As a result, popular objects enjoy higher hit rates.
The fact that a locality-aware scheme would work well in

spite of our conservative peer availability model surprised
us. To understand why this happened, we generated a CDF
of the bytes served by peers, with peers sorted by availability
(Figure 15). This graph shows that most of the bytes were
served by the highly available peers, while few bytes were
served by the less available peers. We also show a CDF of
bytes consumed by peers on the same graph. As expected,
the highly available peers tend to consume most of the bytes
in the system, as well as serving them. Highly available peers
have more objects than less available peers, which is another
reason why they may end up serving more bytes.

It is intuitive that more available peers will serve more
bytes. However, it is conceivable that the set of less avail-
able peers would also be able to provide adequate object
availability. To evaluate this, we re-ran our simulation, at-
tempting to “spread” the load to different subsets of the
peer population. First, we concentrated the load on the
most available peers: the “including head, excluding tail”
line on Figure 16 shows the redirector hit rate as a function
of the number of peers that we permitted to serve bytes,
selecting highly available peers for inclusion in the group.
Next, we concentrated the load on the least available peers;
the “excluding head, including tail” line shows the hit rate
as a function of the number of peers that we excluded from
serving bytes, excluding highly available peers first.

Our results indicate that the highly available peers are both

necessary and sufficient to obtain high hit rates. If only the
top 1000 most available peers served bytes, we would still
obtain a hit rate of 64%. However, if we excluded the top
1000 available peers and relied only on the least available
6153 peers, our hit rate would drop to 41%.

5.5 Benefits of Increased Availability
To explore the impact that our conservative estimates of

availability had on our results, we re-ran our simulations, ar-
tificially augmenting the availability of the peers. To do this,
we added a constant number of “hours” of availability to the
population to increase the overall average peer availability,
but we explored spreading this extra availability across the
population in different ways.

First, we added the availability to the most available peers
in the population, preferentially adding to the most avail-

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000 7000 8000

peers included in "head" (ranked by availabilit y)

by
te

 h
it

ra
te

including head, excluding tail

excluding head, including tail

Figure 16: Spreading the load around. The “includ-

ing head, excluding tail” line shows locality-aware per-

formance with load concentrated on the most available

peers; the “excluding head, including tail” line shows

performance if the most available peers were excluded

from serving content. All data are for large objects only.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 20% 40% 60% 80% 100%

availability (relative to entire trace)

by
te

 h
it

ra
te

improve head

improve tail
improve uniformly

base availability from trace

Figure 17: Hit rate vs. availability. The effect of in-

creased average peer availability on byte hit rate. The

“improve head” line shows the effect of increasing the

availability of the most available peers, the “improve

tail” line shows the effect of increasing the availability of

the least available peers, and the “improve uniformly”

line shows the effect of increasing availability uniformly

across peers. All data are for large objects only.

able peer until that peer was 100% available, then adding to
the next-most available peer, and so on; the results of this
are shown as the “improve head” line in Figure 17. Next,
we added availability to the least available peers, using a
similar methodology; this is the “improve tail” line. Finally,
we spread the availability around the population uniformly
across peers; this is the “improve uniformly” line.

The results show that the impact on hit rate depends on
which hosts are made more available. Adding an extra hour
of availability to the most available host pays a higher hit
rate dividend than adding that hour to the least available
host. We believe this is because the most available hosts
also have more files available, as shown in Figure 15.

5.6 Summary
This section demonstrates that there is a tremendous am-

ount of untapped locality in the Kazaa workload. As a
result, a large percentage (86%) of externally downloaded
bytes in our workload could be avoided by using an or-
ganizational proxy. As an alternative to proxy caching,
we used trace-driven simulation to explore locality-aware

mechanisms that reduce external bandwidth consumption
by maximizing the use of content stored at local peers. Our
results show that even with very conservative availability as-
sumptions, a locality-aware P2P file-sharing protocol or an
organizational redirector can achieve significant bandwidth
reductions in our environment.

6. RELATED WORK
Several measurement studies have characterized the ba-

sic properties of peer-to-peer file-sharing systems. Saroiu et
al. [30] analyzed the behavior of peers inside the Gnutella
and Napster file-sharing systems, showing that there is sig-
nificant heterogeneity in peers’ bandwidth, availability, and
transfer rates. A study of AT&T’s backbone traffic [32]
confirmed these results, and revealed significant skew in the
distribution of traffic across IP addresses, subnets, and au-
tonomous systems. Bhagwan et al. [6] measured the avail-
ability of hosts in the Overnet file-sharing system to under-
stand the impact of IP aliasing on measurement methodol-
ogy. Leibowitz et al. [22] performed a cache study based on
measurements of FastTrack-based P2P systems, including
Kazaa. Several studies [21, 23] have explored how host dy-
namics within peer-to-peer networks affect performance and
reliability. Our Kazaa trace is over a substantially longer
time period than most other peer-to-peer file sharing stud-
ies, which allows us to draw conclusions about long-term
behavior.

Because distributed systems and networks have complex
behavior, many researchers have sought to find high-level
trends or summary statistics that capture essential proper-
ties of their workloads. Breslau et al. [7] explore the impact
of Zipf’s law with respect to Web caching, showing that Zipf-
like popularity distributions cause cache hit rates to grow
logarithmically with population size, as well as other effects.
In this paper, we perform a similar analysis, demonstrating
that Kazaa traffic does not exhibit Zipf-like behavior, and
that this has a resulting impact on caching. Crovella and
Bestavros [9] argue that several factors converge to cause
self-similarity in Web traffic, including document size distri-
butions, caching, and user “think time.” In a similar spirit,
we show how fetch-at-most-once behavior leads to the flat-
tening of the Zipf curve.

Many researchers have proposed models of Web and file-
sharing systems. Barford and Crovella [5] proposed a gen-
erative model of Web traffic, based on ON-OFF behavior of
Web clients. Ge et al. [15] proposed an analytical model of
P2P file-sharing networks and used it to explore the impact
of freeloaders on system performance; however, their model
focuses on query characteristics only and is not trace-driven.
Wolman et al. [38] derived an analytical model of Web sys-
tems to explore how Web caching performance scales with
population size, and to demonstrate the limits of cooper-
ative Web caching. In our work, we proposed a model of
P2P file-sharing traffic based on fetch-at-most-once client
behavior and the rate at which objects and clients join the
system. While Wolman’s study shows that Web caching is
ultimately limited by the rate of change of documents, our
study shows that file-sharing performance is ultimately lim-
ited by the birth rates of objects and clients.

Request redirection has been explored in the context of
content-distribution networks, most recently by Wang et
al. [36], who show how redirection strategies affect load bal-
ancing, locality, and proximity. We consider the effective-

ness of request redirection at a different scale (within organi-
zations) and to explore different goals (cache performance).

7. CONCLUSIONS
Peer-to-peer file sharing now dominates all other sources

of traffic on the Internet, yet the basic forces that drive this
workload are still poorly understood. In this paper, we an-
alyzed a 200-day trace of Kazaa P2P file-sharing traffic col-
lected at the University of Washington in order to dig deeper
into the nature of file-sharing workloads. Our results show
that P2P file-sharing workloads are driven by considerably
different processes than the Web. Kazaa is a batch-mode
system with extremely patient users who often wait days, or
even weeks, for their objects to fully download. As Kazaa
clients age, they demand less from the system, partially be-
cause of attrition. The objects that Kazaa users exchange
are large, immutable video and audio objects, causing the
typical client to fetch any given object at most once. The
popularity of Kazaa objects changes over time: popularity
tends to be short-lived, and popular objects tend to be re-
cently born.

Based on these results, we conclude that client births and
object births are the fundamental processes driving P2P file-
sharing workloads; in contrast, the Web is largely driven by
changes to objects. We demonstrated that the “fetch-at-
most-once” behavior of clients causes the aggregate popular-
ity distribution of objects in Kazaa to deviate substantially
from Zipf curves we typically see for the Web.

We also demonstrated that there is significant locality in
the Kazaa workload, and therefore substantial opportunity
for caching to reduce wide-area bandwidth consumption.
We evaluated the impact of topological proximity aware-
ness on Kazaa by simulating an ideal version of the system
in which nearby clients act as a distributed cache of Kazaa
objects for each other. Even with extremely conservative
trace-driven estimates of client availability, our simulation
results in a 63% cache hit rate over the population. If de-
ployed in an environment such as the university we traced, a
distributed cache would achieve substantial traffic savings.

8. ACKNOWLEDGEMENTS
We wish to thank Brian Youngstrom, who helped us with

our tracing infrastructure, and David Richardson, Art Dong,
and the other members of the Computing and Communica-
tions organization at the University of Washington for their
continued support. The guidance of our shepherd, John
Wilkes, and our anonymous reviewers was invaluable. We
also gratefully acknowledge Tom Anderson, Brian Bershad,
Azer Bestavros, Jeff Chase, Mark Crovella, Peter Druschel,
Anna Karlin, Scott Shenker, and Andrew Whitaker, whose
feedback and discussions sharpened both our research and
the presentation of our results. This material is based upon
work supported by the National Science Foundation under
Grants ITR-0121341 and CCR-0085670 and by a gift from
Intel Corporation.

9. REFERENCES

[1] S. Acharya, B. Smith, and P. Parnes. Characterizing user
access to videos on the World Wide Web. In Proceedings of
ACM/SPIE Multimedia Computing and Networking,
January 2000.

[2] E. Adar and B. Huberman. Free riding on Gnutella. In
First Monday, 5(10), October 2000.
http://www.firstmonday.dk/issues/issue5_10/adar/.

[3] J. Almeida, J. Krueger, D. Eager, and M. Vernon. Analysis
of educational media server workloads. In Proceedings of
the 11th International Workshop on Network and
Operating Systems Support for Digital Audio and Video
(NOSDAV ’01), Port Jefferson, NY, June 2001.

[4] V. A. F. Almeida, M. G. Cesario, R. C. Fonseca, W. M. Jr.,
and C. D. Murta. Analyzing the behavior of a proxy server
in light of regional and cultural issues. In Proceedings of the
Third International WWW Caching Workshop,
Manchester, England, June 1998.
http://hermes.wwwcache.ja.net/events/workshop/.

[5] P. Barford and M. Crovella. Generating representative Web
workloads for network and server performance evaluation.
In Proceedings of the ACM SIGMETRICS ’98, Madison,
WI, June 1998.

[6] R. Bhagwan, S. Savage, and G. Voelker. Understanding
availability. In Proceedings of the 2nd International
Workshop on Peer-to-peer Systems, Berkeley, CA,
December 2002.

[7] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
Web caching and Zipf-like distributions: Evidence and
implications. In Proceedings of IEEE INFOCOM 1999,
March 1999.

[8] L. Cherkasova and G. Ciardo. Characterizing locality,
evolution, and life span of accesses in enterprise media
server workloads. In Proceedings of the 12th International
Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSDAV ’02), Miami Beach,
FL, May 2002.

[9] M. E. Crovella and A. Bestavros. Self-similarity in world
wide Web traffic: Evidence and possible causes.
IEEE/ACM Transactions on Networking, 5(6):835–846,
December 1997.

[10] A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling
policies for an on-demand video server with batching. In
Proceedings of ACM Multimedia 1994, October 1994.

[11] F. Douglis, A. Feldmann, B. Krishnamurthy, and J. C.
Mogul. Rate of change and other metrics: a live study of
the World Wide Web. In Proceedings of the 1997 USENIX
Symposium on Internet Technologies and Systems, Dec.
1997.

[12] R. P. Doyle, J. S. Chase, S. Gadde, and A. M. Vahdat. The
trickle-down effect: Web caching and server request
distribution. In Proceedings of the Sixth International
Workshop on Web Caching and Content Delivery, Boston,
MA, June 2000.

[13] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y.Shavitt, and
L. Zhang. IDMAPS: a global Internet host distance
estimation service. In IEEE/ACM Transactions on
Networking, October 2001.

[14] S. Gadde, J. Chase, and M. Rabinovich. Web caching and
content distribution: A view from the interior. In Proc. of
the 5th International Web Caching and Content Delivery
Workshop, May 2000.

[15] Z. Ge, D. R. Figueiredo, S. Jaiswal, J. Kurose, and
D. Towsley. Modeling peer-peer file sharing systems. In
Proceedings of INFOCOM 2003, Santa Fe, NM, October
2003.

[16] C. Griwodz, M. Bar, and L. C. Wolf. Long-term movie
popularity models in video-on-demand systems. In
Proceedings of ACM Multimedia 1997, Seattle, WA,
November 1997.

[17] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King:
Estimating latency between arbitrary internet end hosts. In
Proceedings of the Second SIGCOMM Internet
Measurement Workshop (IMW 2002), Marseille, France,
November 2002.

[18] K. A. Hua and S. Sheu. Skyscraper broadcasting: A new
broadcasting scheme for metropolitan video-on-demand

systems. In Proceedings of ACM SIGCOMM 1997, Cannes,
France, September 1997.

[19] Kazaa. Homepage http://www.kazaa.com, July 2003.
[20] Keynote Systems Inc. Homepage at

http://www.keynote.com, July 2003.
[21] J. Ledlie, J. Taylor, L. Serban, and M. Seltzer.

Self-organization in peer-to-peer systems. In Proceedings of
the 2002 SIGOPS European Workshop, St. Emilion,
France, September 2002.

[22] N. Leibowitz, A. Bergman, R. Ben-Shaul, and A. Shavit.
Are file swapping networks cacheable? Characterizing P2P
traffic. In Proc. of the 7th Int. WWW Caching Workshop,
August 2002.

[23] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis
of the evolution of peer-to-peer networks. In Proceedings of
2002 ACM Conference on the Principles of Distributed
Computing, Monterey, CA, July 2002.

[24] S. McCanne and V. Jacobson. The BSD packet filter: A
new architecture for user-level packet capture. In
Proceedings of the Winter USENIX Conference, pages
259–270, 1993.

[25] E. Ng and H. Zhang. Predicting Internet network distance
with coordinates-based approaches. In Proceedings of IEEE
INFOCOM 2002, NewYork, NY, June 2002.

[26] Nielsen Netratings, Inc., August 2003.
http://www.nielsen-netratings.com.

[27] V. N. Padmanabhan and L. Qiu. The content and access
dynamics of a busy Web site: Findings and implications. In
Proceedings of ACM SIGCOMM 2000, August 2000.

[28] D. Plonka. University of Wisconsin-Madison, Napster
traffic measurement, March 2000. Available at
http://net.doit.wisc.edu/data/Napster, March 2000.

[29] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and
H. M. Levy. An analysis of internet content delivery
systems. In Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation (OSDI
2002), Boston, MA, December 2002.

[30] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
measurement study of peer-to-peer file sharing systems. In
Proceedings of Multimedia Computing and Networking
(MMCN) 2002, January 2002.

[31] J. Segarra and V. Cholvi. Distribution of video-on-demand
in residential networks. Lecture Notes in Computer
Science, 2158:50–61, 2001.

[32] S. Sen and J. Wang. Analyzing peer-to-peer traffic across
large networks. In Proceedings of the Second SIGCOMM
Internet Measurement Workshop (IMW 2002), Marseille,
France, November 2002.

[33] W. Tang, Y. Fu, L. Cherkasova, and A. Vahdat. Long-term
streaming media server workload analysis and modeling.
Technical Report HPL-2003-23, HP Laboratories, January
2003.

[34] The Internet Movie Database, August 2003.
http://www.imdb.com.

[35] Video Store Magazine, March 2000. Published by Avanstar
Communications, http://www.videostoremag.com.

[36] L. Wang, V. Pai, and L. Peterson. The effectiveness of
request redirection on CDN robustness. In Proceedings of
the Fifth Symposium on Operating Systems Design and
Implementation (OSDI 2002), Boston, MA, December
2002.

[37] A. Wolman, G. Voelker, N. Sharma, N. Cardwell,
M. Brown, T. Landray, D. Pinnel, A. Karlin, and H. Levy.
Organization-based analysis of Web-object sharing and
caching. In Proceedings of the 2nd USENIX Symposium on
Internet Technologies and Systems, Oct. 1999.

[38] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin,
and H. Levy. The scale and performance of cooperative
Web proxy caching. In Proceedings of the 17th ACM
Symposium on Operating Systems Principles, Dec. 1999.

