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Abstract

Flash crowds can cripple a web site’s performance. Since
they are infrequent and unpredictable, these floods do
not justify the cost of traditional commercial solutions.
We describe Backslash, a collaborative web mirroring
system run by a collective of web sites that wish to pro-
tect themselves from flash crowds. Backslash is built on
a distributed hash table overlay and uses the structure
of the overlay to cache aggressively a resource that ex-
periences an uncharacteristically high request load. By
redirecting requests for that resource uniformly to the
created caches, Backslash helps alleviate the effects of
flash crowds. We explore cache diffusion techniques for
use in such a system and find that probabilistic forward-
ing improves load distribution albeit not dramatically.

1 Introduction

Flash crowds have been the bane of many web masters
since the web’s explosion in mainstream popularity. The
term “flash crowd” is used to describe the unanticipated,
massive, rapid increase in the popularity of a resource,
such as a web page, that lasts for a short amount of time.

Although their long term effects are hardly noticeable,
in the short term, flash crowds incur unbearably high
loads on web servers, gateway routers and links. They
render the affected resources and any collocated resource
unavailable to the rest of the world. Flash crowds are also
relatively easy to cause. A mere mention of an interesting
web page address in a popular news feed can result in an
instant flood that lasts as long as the attention span of
the news feed audience. In fact, flash crowds have been
commonly referred to as “the Slashdot effect,” from the
name of the popular news feed, which has caused quite
a few floods with its stories.

Although the concept of a malicious flash crowd is cer-
tainly within the realm of possibility, the intent behind

the effect is usually impossible to distinguish in real time.
Therefore in practice, it is important to understand how
to adapt efficiently to the changing resource demands so
as to distribute the unexpected high load among avail-
able resources, regardless of the intent.

Commercial solutions have previously addressed this
problem for very popular sites, such as large corporations
with extensive web presence. Companies such as Akamai
earn their income by distributing the load of highly traf-
ficked web sites across a geographically dispersed network
in advance. Akamai’s solution focuses primarily on using
proprietary networks and strategically placed dedicated
caching centers to intercept and serve customer requests
before they become a flood.

However, for sites such as non-profit organizations,
schools and governments, which do not generally expect

flash crowds, the cost of a high-profile content distribu-
tion solution such as Akamai’s is not justifiable. Such
sites have currently no recourse other than to overprovi-
sion or to pay the price of the occasional disastrous flash
crowd including unavailability, prolonged recovery, ISP
penalties and loss of legitimate, desirable traffic.

The purpose of this paper is to introduce, motivate, de-
scribe and begin evaluating Backslash, a grassroots web
content distribution system based on peer-to-peer over-
lays. Backslash is a collaborative, scalable web mirror-
ing service run and maintained by a collective of content
providers who do not expect consistently heavy traffic
to their sites. It relies on a content-addressable over-
lay [3, 4, 5, 6] for the self-organization of participants,
for routing requests and for load balancing.

We use the remainder of this paper to identify the re-
quirements from such a system and to present the overall
design in more detail. We focus on the caching aspects of
Backslash and limit the scope of the evaluation section
to cache diffusion issues. We conclude with a research
agenda for further work in this area.
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2 System Requirements

In this section we outline the basic requirements for our
grassroots web mirroring system.

Backslash is intended as a drop-in replacement for cur-
rent web servers and reverse proxy caches. The driving
requirement for its development is to make deployment
completely transparent to the client web browsers.

The setting in which we hope to deploy the system
is, for example, a collective of several universities or
research institutions (possibly up to several thousand).
Each institution dedicates to Backslash a well-connected
low-end PC-grade computer; at the time of this writing
any Pentium II-class computer with 128 MB of RAM
should suffice. Node-to-node links have bandwidths be-
tween one and 10 Mbps, and latencies between 10 and
300ms. Client-to-node link characteristics range from 56
Kbps modems to perhaps cable or ADSL home connec-
tions. Each node stores a complete copy of the data col-
lection published by its hosting site—that is, the Stan-
ford Backslash node holds the entire web collection of
the www.stanford.edu web site— and has enough free
storage for caching. We expect the available free space to
be a small multiple, say two or three times, of the local
collection size.

The objective of Backslash is to offer fair load distri-
bution in the face of flash crowds. Our primary interest
is to limit the load on any participating node so as not
to overwhelm it, by distributing requests among as many
participants as possible. However, we consider the task
of identifying and penalizing documents that consistently
exhibit disproportionately high popularity to be out of
scope for this paper. Similarly, we ignore the security
implications of malicious Backslash nodes, at this early
stage of this work.

Finally, we ignore problems with the mirroring of dy-
namically generated content. The problem of mirroring
static content is, by itself, a formidable one in the grass-
roots context. Consequently, we tackle it first, before
taking on the much harder problem of dynamic content.

3 Design

In the next few sections we describe the design of Back-
slash at a high level. We first present how Backslash
bridges the gap between the resource location subsys-
tem and the traditional browser-server relationship (Sec-
tion 3.1). Then, we describe the resource location sub-
system, which is based on the peer-to-peer Distributed

Hash Table paradigm (Section 3.2). Finally, we go into
cache diffusion in more detail (Section 3.3).

3.1 Redirection

Every Backslash node is primarily a regular web server
for the document collection of the hosting site. During its
normal mode of operation, that is, as long as the request
load perceived by the node is manageable, a Backslash
node does little more than what a normal web server
does.

When an increased request load is perceived, the Back-
slash node switches into one of two special modes of oper-
ation: the pre-overload mode, in which the node sees un-
characteristically high load but is still not overwhelmed,
and the overload mode, in which the node is nearly over-
run with requests. In the pre-overload mode of operation,
the node satisfies all requests that arrive, but diverts sub-
sequent requests to associated resources, such as embed-
ded images, away from itself. In the overload mode, the
node redirects all requests it receives to surrogate Back-
slash nodes and otherwise serves no content. Every node
has two locally defined load thresholds that determine
the boundaries of the normal, pre-overload and overload
modes.

Backslash nodes diffuse some of the load directed at a
flooded document collection via the use of URL rewrit-
ing. A node in pre-overload mode overwrites the em-
bedded URLs of the documents it returns so as to divert
subsequent follow-up requests. Such requests—for exam-
ple, embedded images—are directed instead to surrogate
Backslash nodes. URL rewriting takes advantage of the
two stages of which web requests commonly consist: the
DNS lookup and the HTTP request. In fact, every Back-
slash node runs a simplified DNS server to intercept DNS
requests caused by URL rewrites.

Both types of URL rewrites have the same goal:
to cause the client browser to look elsewhere for
the flooded document. The DNS-based rewrite ac-
complishes this by directing the DNS lookups for
the hostname of the rewritten URL to a Backslash
DNS server. For example, the original URL http:

//www.backslash.stanford.edu/image.jpg is rewrit-
ten as http://<hash>.backslash.berkeley.edu/www.
backslash.stanford.edu/image.jpg, so as to redirect
the requester to a surrogate Backslash node at Berkeley,
where <hash> denotes the base-32 encoding of a SHA-1
hash of the entire original URL.

Similarly, the HTTP-based rewrite accomplishes
the same thing by naming a specific surrogate IP
address within the rewritten URL. For example,
the original URL http://www.backslash.stanford.

edu/image.jpg is rewritten as http://a.b.c.d/www.

backslash.stanford.edu/image.jpg, where a.b.c.d

is the IP address of a Backslash node at Berkeley.
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Although functionally similar, the two rewrite tech-
niques have different performance implications. The
DNS-based rewrite can overlap the document location
task, triggered by an intercepted DNS request at the
surrogate node, with the HTTP/TCP client connection
establishment that follows. On the other hand, DNS
requests can result in long latencies in high-loss envi-
ronments because of UDP time-outs, especially for wire-
less clients. As a result, embedded links served to client
browsers coming from “nearby” network locations use
DNS rewriting, whereas HTTP rewriting is used for more
remote clients, based on local policy.

When URL rewriting is not an option, specifically in
the case of the first request to an overloaded node from
a particular client, plain redirection is used, again ei-
ther via DNS or HTTP. For example, the mini DNS
server responsible for the backslash.stanford.edu do-
main (which is a Backslash node itself) can return the
IP address of a surrogate node when asked for the A

record of www, when the Stanford site is in overload mode.
Similarly, HTTP redirection uses REDIRECT responses to
cause browsers to retry a request at a rewritten URL.

The combination of URL rewriting and redirection al-
lows unaware client browsers to reach an unloaded sur-
rogate Backslash node that will serve their requests. We
explain how surrogate Backslash nodes serve requests for
content from other sites’ collections in the next section.

3.2 Resource Location

Once a surrogate Backslash node has received a request
for a document of the afflicted site, it has to act as a
gateway between the HTTP client browser and the col-
laborative mirroring portion of Backslash.

Mirroring is implemented on a peer-to-peer overlay fol-
lowing the distributed hash table paradigm. Systems in
this category [3, 4, 5, 6] implement a hash table over a
large number of self-organized nodes. Each node is re-
sponsible for a chunk of the entire hash table. If the hash
function used by the table is uniform, then regardless of
the distribution of resource names stored, resources are
distributed uniformly over the hash space. As long as the
chunks of the hash space assigned to participating nodes
are of roughly equal size, then each node maintains a
roughly equal portion of all resources stored into the dis-
tributed hash table, thereby achieving load balancing.

Backslash is specifically implemented on the Con-
tent Addressable Network [4], but does not rely on the
specifics of CAN for its operation. The overlay used un-
derneath Backslash is mostly interchangeable with any
other distributed hash table. In addition to hash ta-
ble operations, Backslash requires knowledge about the

neighborhood of an overlay node, but all such popular
systems can be easily modified to export this informa-
tion through their APIs.

3.3 Caching and Replication

Although using a distributed hash table, such as a CAN,
explains how we find a copy of a popular document
within the Backslash web mirror, it does not explain how
the copy was created or propagated through the system.
In this section we explain the basic cache diffusion tech-
niques we explore in the context of Backslash.

Each Backslash node has some available storage for
use in caching (a few times the size of its local docu-
ment collection). This storage is split in two categories:
replica space and temporary cache space. On one hand,
a replica is a cached copy of a document that is guar-
anteed to be where it was placed. Replicas are placed
in the overlay by insertion operations of the distributed
hash table. A temporary cache, on the other hand, is
a cached copy of a document that is placed opportunis-
tically at a node of the overlay to speed up subsequent
retrievals. Temporary caches are created in response to
retrieval operations of the distributed hash table and are
not guaranteed to remain where they are placed. In fact,
they might be replaced very soon after they are created if
they are the least recently used temporarily cached docu-
ment of a node. A fixed portion of the available free space
of each node is allocated as replica space. Whatever re-
mains unused in the replica space and the remainder of
the free space is allocated as temporary cache space.

The Backslash replica space is used exclusively for the
first copy of each file in the participating mirrored web
collections. Every Backslash node periodically injects
the documents in its local document collection into the
distributed hash table. The single copy of each such doc-
ument created at insertion time is a replica. In the cache
diffusion schemes we explore in the remainder of this pa-
per we create no other replicas.

The first cache diffusion method we consider is local

diffusion. In local diffusion, each node serving a docu-
ment as a replica or temporary cache monitors the rate
of requests it receives for that document. When the node
determines that the request rate has reached a predeter-
mined push threshold, it pushes out a new temporary
cache of the document one overlay hop closer to the
source of the last request. This technique aims to of-
fload some of the demand by having more nodes in the
locality of an observed flood intercept and serve requests.
In a sense, a node that observes a local flood creates a
“bubble” of temporary caches around itself, diffusing its
load over its neighborhood. The diameter of the bub-
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ble grows in relation to the intensity of the flood, until
no node on the perimeter of the bubble observes high
request rates for the document.

The second cache diffusion method we consider is di-

rectory diffusion. In this method, the distributed hash
table stores directories of pointers to document copies
instead of the document copies themselves. Replicas and
temporary caches are also stored in Backslash nodes, but
their location is not related to the hash table structure.
When a node receives a newly inserted document, it cre-
ates a directory for it, picks a random Backslash node
and stores a replica for the document at that node, doc-
umenting it in its own directory. When the directory re-
ceives a request for the document, it returns as many per-
muted directory entries pointing to individual copies of
the document as it can fit in a single response packet. To
create new temporary caches, the directory node moni-
tors the request rate for the document. When the request
rate reaches a predetermined threshold, the directory re-
sponds to the requester with an invitation to become a
new temporary cache along with the list of pointers to
copies of the file.

Both cache diffusion techniques require that a node
serve a request if it holds a copy of the requested doc-
ument. We explore a modification of this requirement
whereby a node may choose (at random) to forward a
request even if it already holds a copy of the requested
document. This allows the node to shed probabilistically
a fraction of the request load it observes, without creat-
ing new temporary caches. We introduce this variation,
called probabilistic forwarding, to increase the reuse of
already existing caches and curtail the creation of new
ones. This is especially the case for the local diffusion
method, where all requests originating outside the “bub-
ble” are handled by the nodes at the perimeter, leaving
caches inside the bubble practically unused. Probabilis-
tic forwarding enables the use of caches in the interior.

4 Evaluation

In our preliminary evaluation efforts, we have focused on
the behavior of cache diffusion techniques. The mecha-
nisms responsible for interjecting Backslash into the pro-
tocol stream of unaware client browsers (delineated in
Section 3.1) or for building simple self-maintained over-
lays (pointed to in Section 3.2) are available and pose
no significant challenges for the purposes of our target
application.

Our experimental setup involves 1,000 nodes partici-
pating in a single two-dimensional CAN overlay. Each
node has twice the size of its own collection in available

free space, of which exactly half is allocated to replicas,
and the other half to temporary caches. For simplicity,
the document collection owned by each node consists of
a single document and all documents have exactly the
same size. We present a brief preliminary exploration of
two particular design choices in our cache diffusion mech-
anism: diffusion agility and probabilistic forwarding.

Diffusion agility is the speed with which Backslash re-
acts to a new flash crowd. A highly agile diffusion mech-
anism spreads out cached copies of the flooded document
rapidly, so as to reach a state where the downpour of re-
quests for that document can be served collectively by
as many nodes as possible. However, high agility also
carries an early commitment of heavy resources (storage
space, cache diffusion bandwidth) to a flood that might
not necessitate them. By controlling agility, we allow the
system to moderate the amount of resources it commits
to a particular flood.

We represent this agility parameter by a push thresh-

old, the number of requests a node must serve before it
decides to push to its neighbors a copy of the flooded file.
A push threshold of one means that every time a Back-
slash node receives a request, it also pushes out a copy of
the requested file to the neighbor that forwarded it the
request for caching. A push threshold of 100 means that
the node only pushes out a new cache of a requested file
after every 100-th request.

To illustrate the effects of the push threshold, we have
simulated a scenario where two floods are handled at the
same time by Backslash. The first flood starts alone and
manages to saturate the system by causing a copy of the
first flooded file to be placed at every node. After satura-
tion, and while the first flood is ongoing, the second flood
begins, gradually displacing cached copies of the first file
for copies of the second file. Finally, the second flood
terminates, allowing the first file to saturate the system
again. Figure 1(a) shows how the diffusion evolves in this
scenario for a push threshold of one. Note how agility is
very high; the system responds very rapidly to changes
in offered load.

The benefits of using lower push thresholds are illus-
trated in Figure 1(d). The figure graphs the cumulative
load distribution over the system for the short second
flood for three representative thresholds: 1, 22 and 43.
On one hand, with a threshold of one, the second flood
causes no higher a load than 300 requests to any node.
On the other hand, with the highest threshold of 43 only
600 nodes participate in caching the second file at any
one time and the maximum per node load reaches almost
800 requests.

However, higher agility makes the satisfaction of re-
quests for the second file more expensive. For the same
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Figure 1: The simultaneous flash crowd scenario discussed in the text. (a) Cache diffusion during the evolution of the
scenario. (b) Number of cache pushes as a function of the push threshold. (c) and (d) Cumulative load distribution of
requests served as a function of the number of requests served per node for the first, long flood and the second, short flood,
respectively.

number of requests satisfied, higher thresholds result in
much fewer cache pushes in the face of contention. Fig-
ure 1(b) graphs the total number of cache pushes as a
function of the push threshold. Threshold one results in
almost 25,000 cache pushes, of which 23,000 are mainly
due to the oscillations caused by contention between the
first and second files. The hysteresis introduced by the
highest threshold of 43 mitigates this effect, as indicated
by the almost tenfold reduction in cache pushes shown in
the graph. Note, however, that the actual point where
the benefit of lower threshold justifies the cost is spe-
cific to the underlying topology and resource restrictions
of each Backslash participant, for whom a temporarily
high load might be justified by overall lower traffic.

As described in Section 3.3, in local diffusion cached
copies of a flooded document inside a cache “bubble” are
only used by requests initiated locally, whereas caches
on the perimeter of the bubble are used locally and
also by requests initiated outside the bubble. This
makes perimeter caches much hotter than internal bub-
ble caches. We explore the use of probabilistic forwarding
as a method to spread out the load of the perimeter in-
curred by requests initiated outside the bubble over all
the nodes within the bubble.

We use a probability function that assigns a linearly
decreasing forwarding probability to every bubble node
on the path from an external request originator to the
authority node. In this way, a cache at the perimeter of
the bubble has a maximum forwarding probability (60%
in our experiments). Subsequent next hop nodes toward
the center of the bubble decrease their forwarding proba-
bility proportionally as they get closer to the center. We
would expect to see a better load distribution among the
nodes of a bubble as a result of this technique.

In Figure 2(b) we show the effects of using proba-

bilistic forwarding during a single flood. We have cal-
ibrated the push threshold of the probabilistic run so
as to achieve similar diffusion patterns between the two
runs (see Figure 2(a)). Surprisingly, although we initially
expected probabilistic forwarding to even out the distri-
bution of load among nodes with caches of the flooded
file, the graph shows only a very small improvement;
specifically, there are slightly more lower-load nodes and
slightly fewer higher-load nodes. We ascribe this surpris-
ing result to the monolithic fashion in which we measure
load in our simulations. We conjecture that although
the cumulative load per node in the duration of the ex-
periment seems only a little affected by the use of prob-
abilistic forwarding, it is the distribution of that load
over time within a single node that improves, that is,
becomes less bursty, in this case. Deterministic forward-
ing creates high bursts of load at the perimeter of the
bubble since all nodes must service their requests. Upon
reaching its threshold, the bubble expands outward and
a new perimeter services incoming requests. Once a node
is no longer at the perimeter of the bubble, it does not
receive requests from outside and its load drops signifi-
cantly. Probabilistic forwarding allows interior nodes to
continue servicing requests even after they are no longer
at the perimeter of the bubble.

The results are similar when two floods of equal inten-
sity compete against each other. Figure 2(d) shows the
difference in load distribution with and without proba-
bilistic forwarding for one of the two simultaneous floods.
While probabilistic forwarding evens out the load distri-
bution in favor of lower loads, the effect is not quite as
significant as we had anticipated. We hope to experi-
ment with different forwarding probability functions to
achieve a more pronounced benefit.

This is a very preliminary evaluation of cache diffu-
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Figure 2: The effects of probabilistic forwarding in one flood ((a) and (b)), and in two concurrent floods of equal intensity
((c) and (d)). (a) and (c) graph cache diffusion during the evolution of the two experiments, as achieved by calibrating the
push threshold in the probabilistic experiments to 220; the standard experiments used a threshold of 500. (b) and (d) show
the cumulative load distributions for the two flood scenarios with and without probabilistic forwarding.

sion in Backslash. We hope to perform a more thorough
analysis in the near future.

5 Related Work

Our work shares many goals with the pioneering work
done in the Adaptive Web Caching project [1]. Our local
diffusion method is similar to the diffusion method used
by AWC. However, AWC offers the benefits of a proxy
cache, whereas Backslash replaces a reverse proxy cache.

A lot of work has been done on building self-
maintainable overlay networks that follow the distributed
hash table paradigm [3, 4, 5, 6]. We use results from that
area extensively.

A set of HTTP extensions for the “content address-
able web” were proposed recently [2]. Backslash would
certainly benefit from the extended HTTP functionality
offered by this work.

6 Conclusions

There exists a need for a cost effective method to com-
bat flash crowds. Backslash addresses this problem and,
given preliminary results, is a promising method of mit-
igating flash crowd effects.

The next steps in this research involve a deeper explo-
ration of different forwarding probability functions and
their interactions with the other aspects of cache dif-
fusion, the development of a hybrid local/directory dif-
fusion method to exploit the benefits of both methods,
closer cooperation with a cache invalidation scheme, and
a higher-fidelity simulation and trial deployment plan.
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