
Improving Peer-to-Peer File Distribution:
Winner Doesn’t Have to Take All

Ben Leong, Youming Wang, Su Wen,
Cristina Carbunaru, Yong Meng Teo

National University of Singapore
13 Computing Drive
Singapore 117417

{benleong, youming, suw, ccristina,
teoym}@comp.nus.edu.sg

Christopher Chang and Tracey Ho
California Institute of Technology

1200 E. California Blvd.
Pasadena, CA 91125

{cswchang, tho}@caltech.edu

ABSTRACT
Recent work on BitTorrent has shown that the choke/unchoke
mechanism implements an auction where each peer tries to
induce other peers into “unchoking” it by uploading more
data than competing peers. Under such a scenario, fast peers
tend to trade with one another and neglect slower peers. In
this work, we revisit the peer-to-peer (p2p) file distribution
problem and show that this does not have to be the case.
We describe a p2p file distribution algorithm, the Tit-For-
Tat Transport Protocol (TFTTP), that is able to achieve
faster download performance than BitTorrent by employing
a new mechanism called a promise. Our experiments show
that the average throughput for TFTTP is some 30% to
70% higher than that for BitTorrent under controlled and
realistic network conditions. We also show that TFTTP ex-
hibits fairer sharing behavior and avoids the situation where
“winner takes all”.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Applications

General Terms
Algorithms, Design

1. INTRODUCTION
BitTorrent (BT) [4] is undoubtedly the most popular peer-

to-peer (p2p) file sharing application on the Internet to-
day. It has attracted significant research interest in re-
cent years [10, 7, 2]. Among them, Levin et al. recently
showed that BT’s peer selection mechanism, namely the
choke/unchoke mechanism, is analogous to an auction: peers
auction their bandwidth by offering to upload data to other
peers, i.e. by unchoking them, in the hope that the peers
will reciprocate and unchoke them in return [7].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
APSys 2010, August 30, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0195-4/10/08 ...$10.00.

Because BT clients periodically unchoke only a small set
of peers that upload the most file blocks to them, bidders
with inherently low upload bandwidths have a significantly
lower chance of being unchoked when competing with higher
bandwidth peers. We consider this phenomenon a “winner
takes all”situation, where the losers get nothing in return for
uploading blocks. Low bandwidth peers often end up trad-
ing among themselves and are less likely to be reciprocated
by peers with higher upload bandwidths [6, 2].

Previous studies have also shown that notwithstanding
the claim that BT has the right incentives to achieve ro-
bustness [4], its incentive mechanism is not robust to strate-
gic clients [9]. While the addition of a block-for-block con-
straint to the choke/unchoke mechanism can improve fair-
ness, such a mechanism will degrade download performance
significantly [1]. In this paper, we show that not only is a
block-for-block exchange mechanism not inherently bad or
inefficient, it can improve both fairness and efficiency with
a different peer selection algorithm. We argue that it is
time to consider the design of algorithms beyond the BT
choke/unchoke mechanism.

To this end, we present a new p2p file distribution algo-
rithm, called the Tit-For-Tat Transport Protocol (TFTTP).
TFTTP removes the uncertainty in reciprocation associated
with the BT choke/unchoke mechanism, and instead allows
a pair of nodes to set up a guaranteed data exchange as
long as they both possess blocks of interest to each other.
The efficiency of the sharing is further improved with a new
mechanism called a promise, which is an agreement between
a pair of nodes to exchange blocks. The promise allows
nodes to trade not only the blocks they already possess,
but also blocks that are expected to be downloaded in the
near future. For nodes that do not have many blocks at
the beginning of a download session, the promise improves
the availability of file blocks since it allows nodes to set up
trades and start downloading blocks even before they have
received promised blocks.

Our experimental evaluations show that TFTTP outper-
forms BT by 20% to 40% in average finish time and 30% to
70% in average transfer rate for controlled and practical net-
work environments. The goal of our work is not so much to
prove that we can perform better than BT, but to show that
there is still room for the development of p2p algorithms be-
yond BT, and that the tit-for-tat mechanism implemented
with promise is a viable alternative to the choke/unchoke
mechanism for p2p file distribution.

2. RELATED WORK
BitTorrent has been studied extensively in the literature [10,

5, 1, 9, 7]. Previous studies have analyzed various aspects
of the BitTorrent protocol [10, 5, 1]. Qiu and Srikant [10]
were first to model BT dynamics using a fluid model and
showed that block availability, which they referred to as the
effectiveness of sharing, is high for BT using a combinatorial
argument. We verified in our experiments that block avail-
ability is only a transient issue at the beginning of p2p file
transfer for TFTTP.

Bharambe et al. showed that BT utilizes uplink band-
width relatively well and is quite efficient, but there is sig-
nificant “unfairness” in terms of the amount of content up-
loaded per node under heterogeneous conditions [1]. In par-
ticular, higher capacity nodes tend to upload significantly
more blocks than what they download. Their attempts at
enforcing a block-for-block-based tit-for-tat policy in BT re-
sulted in a decrease of upload bandwidth utilization. In
this paper, we demonstrate that a block-for-block exchange
policy does not necessarily cause performance degradation
compared to BT under a different peer selection and trading
mechanism.

Levin et al. showed that BT implements an auction where
clients attempt to induce peers to unchoke them by upload-
ing more data than other peers [7]. Under such an auction,
clients that win the auction receive roughly the same amount
of data regardless of how much they uploaded to win the auc-
tion. To improve fairness, they proposed PropShare, where
the winning peers get a number of blocks proportional to
the amount they uploaded to win the bid. While this makes
the system“fairer” to the winners, the losers still get nothing
in return even though they had “paid” in advance. TFTTP
addresses this issue of fairness by ensuring that all clients
are reciprocated by their peers.

3. OVERVIEW OF TFTTP
In TFTTP, the clients contact a server to obtain informa-

tion about the file and a list of peers. Subsequently, they
bootstrap the sharing process by downloading file blocks
from the server. In other words, in our current implemen-
tation of the TFTTP, the server performs the functions of
both the BT tracker and seed. These two functions can be
decoupled relatively easily to improve scalability, if needed.

The file distribution process can be divided into three
stages: ramp up, steady state, and end stage. During the
ramp up stage, many nodes do not have blocks to trade with
other peers and the availability of file blocks is the key factor
affecting efficiency. Block availability during the ramp up
stage is improved with promises, because the promise helps
to bootstrap the system by making peers without many
blocks become more“attractive”trading partners to the other
peers, including the higher bandwidth ones.

The transfer of several blocks at a time (referred to as
pipelining for BT [4]) can often improve the efficiency of
the transfers [8], so TFTTP nodes trade in sectors. A sec-
tor consists of several consecutive blocks and is traded on a
block-for-block basis. To improve system efficiency, TFTTP
nodes monitor their upload rates and will open just enough
connections to their peers to fully utilize their upload band-
width.

The basic idea of a promise is straightforward: when a
node finds a peer that has a sector of blocks that it needs

and realizes that it has blocks that the peer may want, it
sends a trade request for the sector. The peer can either
reject the request, or accept it by requesting the same num-
ber of blocks from the proposing node in return. After the
nodes both upload the mutually-agreed sectors, they can ini-
tiate a new trade with each other if both have blocks that
the other wants. The financial analogy for the promise is
a forward contract, where two parties negotiate a deal that
is completed at a future point in time. The scheduling of
trades using promises provides peers with a degree of cer-
tainty about the blocks that they will receive in the future.
This helps to ensure that nodes have a pipeline of data that
they will send and receive to achieve high sustained band-
width utilization.

To utilize available bandwidth efficiently, we can show
with a queuing theory argument that a node should attempt
to download from a peer a number of blocks that is propor-
tional to the available bandwidth to the peer. However,
in practice, it is hard to estimate available bandwidth. The
available bandwidth also tends to vary over time. As it turns
out, trading with promises has a nice self-clocking prop-
erty where the process naturally approximates a bandwidth-
proportional download. A node can only have one outstand-
ing trade with each peer and a new trade can only be ini-
tiated after the previous one is complete. Since the trades
with slower peers will take longer to finish, trades will be es-
tablished with slower peers at slower rate and fewer trades
will be made with them overall.

After a client has downloaded most of the blocks, it goes
into the end stage where we reduce the sector size to one
block. We call this the packing mode. The rationale for the
packing mode is as follows: near the end of a download, it
is important for a peer to avoid requesting too many blocks
from other peers, since a slow peer can significantly delay the
completion of the download. TFTTP also implements an
end-game mechanism similar to BT, where a node requests
the same block simultaneously from several peers.

The TFTTP protocol is naturally divided into two pro-
cesses: the metadata exchange and the block exchange. Due
to space constraints, only a brief overview of the TFTTP
protocol is described in this section.

3.1 Metadata Exchange
The protocol for the transfer of metadata from nodes to

a server is achieved with the following message exchanges.
File Request. When a node first joins the system to

download a file, it sends a request for the file to the server
together with its current state. We track the state of a file
with a data structure called a file ring. The file ring is a
bitmap of the file blocks arranged in a ring.

Server Accept. If a server decides to accept a node’s
request, it replies with information about the file, a list of
peers and their latest file ring information, and starts to
upload a sector of 5 blocks to the node.

Server Reject. Since a server can only service a finite
number of requests at any one time, rejections are possible
when a server is overloaded. If a client’s request is rejected, it
will wait a random period of time before issuing the request
again. Further rejections will cause it to perform binary
backoff.

File Ring Update. A node will periodically send an
update of its file ring information to the server. This ensures
that the peer list information at the server is up-to-date.

Nodes with complete file rings will be removed from the
peer list that is given to the new nodes, because they have
no incentive to trade with new nodes.

3.2 Block Exchange
The file ring at the client maintains the status of the

blocks it currently possesses. Blocks can be in one of three
states: downloaded, “promised” or uncommitted. We rep-
resent these states with the colors black, grey, and white,
respectively. A downloaded block is one which a node has
fully downloaded from the server or a peer; a “promised”
block is one which a node is currently downloading from ei-
ther the server or a peer; an uncommitted block is one which
a node has yet to confirm where it can be obtained from.

After a node receives the list of peers, it uses the file ring
information contained in the list to decide on a peer to trade
with (see Section 3.3). The node then sends a REQUEST
message to a peer with whom it wants to trade. The RE-
QUEST message contains the requesting node’s file ring and
the requested sector of blocks. If the recipient of the RE-
QUEST message does not have an ongoing trade with the
requesting peer and determines that a trade can be estab-
lished, it will reply with an ACCEPT message that contains
the sector of blocks it wants in return. Otherwise, a RE-
JECT message is sent.

A node can trade with multiple peers at the same time,
but it will only maintain at most one trade with each peer.
Each node will also periodically send an update of its file ring
to the server. A node may receive blocks from the server if
its file ring update contains white blocks. Since the server
has a global view of the blocks in the system from the file
ring updates, it will attempt to send the rarest white blocks.
In this way, a TFTTP server plays a more active role in the
distribution of file blocks than a seed in BT, which merely
serves requests.

3.3 Trading Algorithm
In our implementation, a sector may consist of up to 5

blocks, because our experiments suggest that this works well
in practice. After a node obtains a promise for a sector of
blocks from the server, it will incrementally set up trades
with other peers and monitor the upload (outgoing) band-
width. When the measured upload bandwidth no longer in-
creases, the peer concludes that it has saturated its upload
bandwidth and will not propose new trades. New trades
may however be proposed when the existing trades are com-
pleted.

Each peer employs the following algorithm to determine
a list of peers and the corresponding sector to request from
each peer. Each node estimates the rarity of the blocks that
it is currently missing from the file ring information of its
peers. Each node first computes the possible trades involv-
ing only black blocks, starting with the rarest blocks. If after
considering all the black blocks available from its peers, a
node is still unable to set up a trade, it will try to set up
trades involving both black and grey blocks. Black blocks
are preferred to grey ones because trades for grey blocks will
fail if the intermediate forwarding node fails. Typically, a
node will attempt to propose trades in sectors of 5 contigu-
ous blocks, though smaller trades will be proposed if such a
sector cannot be found.

When the number of remaining white blocks in its file
ring falls below a threshold, a node will enter the packing

Table 1: Summary of results for EC2.
Algorithm Download Throughput

Time (s) (kB/s)
BT 2,062 53

TFTTP 1,571 70
TFTTP (without packing) 1,598 68
TFTTP (without promise) 1,706 65

TFTTP (without end-game) 1,731 61

mode. When packing mode is activated, the sector size for
each trade is reduced to one block and only black blocks are
requested. The end-game mode kicks in when all blocks in
the file ring are either black or grey. When this happens,
the node will try to download some grey blocks from several
peers in parallel. This is analogous to the end-game mode
for BT.

4. EVALUATION
The complete TFTTP implementation incorporates all

three mechanisms: the promise, the packing mode, and the
end-game mode. To better understand the contribution of
each optimization technique, we also implemented variants
of TFTTP that are each missing one technique: (i) without
promise, (ii) without packing, and (iii) without end-game.
Our current implementation of TFTTP is written in Java
and in our experiments, we use one server (or seed) to dis-
tribute a 100 MB file. All peers join the swarm at approxi-
mately the same time and a peer leaves as soon as it down-
loads the entire file and fulfills all its outstanding trades. In
other words, a peer that has completed the download will
not propose or accept new trades.

We compared the performance of TFTTP and its variants
to a BitTorrent-4.4.0 (Python) implementation. We modi-
fied the BT client to also quit as soon as the file download
is complete. Our experiments were conducted on two plat-
forms: the Amazon Elastic Computing Cloud (EC2) and
PlanetLab.

4.1 Amazon EC2
EC2 provided us with a controlled network environment to

compare the effect of the various optimization techniques on
TFTTP. We set up dedicated EC2 instances to run Fedora 8
with a 1.7 GHz CPU. Each instance’s uploading bandwidth
is capped with the unix tc-htb command. We set up 25
nodes, consisting of 24 peers and 1 server. The server was
configured with a maximum upload rate of 300 kB/s. The
clients were configured in three groups of eight nodes each,
with upload bandwidths capped at 50 kB/s, 100 kB/s, and
150 kB/s.

Table 1 and Figure 1 summarize the results from the EC2
experiments. In Table 1, we present the average download
time and effective average throughput of the experiments.
We found that the TFTTP variants outperformed BT by
16% to 24% in terms of average finish time, and by 15% to
32% in terms of average throughput.

From Figure 1, we see that the end-game and promise
mechanisms achieved the most significant performance im-
provements. End-game mode improves the performance of
fast nodes, while the promise improves the performance of
slow nodes. The packing mechanism only marginally im-
proves the overall performance. We note that the fast nodes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500 1000 1500 2000 2500 3000 3500

TFTTP (full)
TFTTP w/o packing
TFTTP w/o promise

TFTTP w/o end game
BitTorrent-4.4.0C

u
m

u
la

ti
v
e

d
is

tr
ib

u
ti

o
n

Finish time (s)

Figure 1: Cumulative distribution of finish times.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 200 400 600 800 1000 1200 1400

TFTTP (full)
TFTTP w/o promise

Time (s)

A
g
g
re

g
a
te

u
p
lo

a
d

ra
te

(k
B

/
s)

Figure 2: System aggregate upload rate over time.

finished at around the same time for both BT and TFTTP,
but the medium and slower nodes ended up significantly
slower for BT. This supports our claim that slower peers are
disadvantaged in BT.

The end-game mechanism improves the finish times of fast
nodes most significantly by allowing them to avoid waiting
on slow peers for the last few blocks. The promise mecha-
nism improves the bootstrapping at the beginning of a ses-
sion because it allows the nodes to set up a pipeline of block
transfers even before any of them downloads a single block
from the server. Figure 2 shows that the aggregate sys-
tem upload rate for TFTTP increases much more rapidly at
the beginning of the session than that for TFTTP (without
promise). In addition, Figure 2 also confirms that TFTTP
can maintain a high sustained upload bandwidth utilization
during the steady state. The drop at around 1,000 s is caused
by fast peers finishing their downloads and leaving the sys-
tem.

4.2 PlanetLab
For PlanetLab, each experiment is conducted as follows:

we select a random set of geographically-dispersed nodes,
and pick one of them at random as the server. First, the
client nodes use BT to download the file. After all the clients
have completed their download with BT, we repeat the same
process with TFTTP using the same set of server and client
nodes. This procedure allows us to minimize variations in
the network conditions and provide us with a fair basis for
comparison. We ran the experiments with about a hundred
different sets of nodes and the number of clients nodes rang-

Table 2: Summary of results for PlanetLab.
Average Value TFTTP BT

Download Time (s) 173 305
Throughput (kB/s) 973 547

ing from 5 to 44. We ran BT with default parameters and a
block size of 256 kB, and TFTTP with the same block size.

Table 2 shows that TFTTP achieves on average download
times 45% faster than BT on PlanetLab. We observed that
the fast nodes for BT are comparable to those for TFTTP,
but the slow nodes are often significantly slower. In partic-
ular, when we consider the performance of individual nodes,
TFTTP is faster than BT about 80% of the time, and is
more than twice as fast 40% of the time, and more than
three times faster about 20% of the time.

4.3 Clustering for TFTTP
Legout et al. observed a clustering behavior for BT in a

heterogeneous environment [6]. By examining the unchoke
durations of every pair of peers, they showed that some
slower BT peers unchoke faster ones but will not get simi-
lar unchoke time in return. Also, peers with similar upload
bandwidths showed a clear preference to unchoke similar
peers.

We first consider an optimal p2p distribution schedule
under a heterogeneous network environment. The optimal
schedule is computed centrally using a linear program (LP)
that minimizes the average finish time subject to upload
bandwidth constraints of each peer and the constraint of
reciprocity (i.e. each pair of peers must send the same amount
of data to each other) [3]. We run simulations on a network
consisting of 25 nodes with 1 server and 24 peers, with the
upload bandwidth constraints for server and peers as stated
in Section 4.1. Figure 3 shows the data exchange matrix
from the LP computations and that generated by a exper-
iment with our implementation of TFTTP on EC2. We
found that TFTTP exhibits a similar clustering distribution
as the optimal case, in terms of the relative amounts of data
exchanged among and within groups, which is comparable
to the results for BT in [6].

In Figure 4, we plot the clustering index for the period
when all nodes are active in the system (i.e. the period before

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

Fast
Medium

Slow

Peer ID

T
im

e
cl

u
st

er
in

g
in

d
ex

Figure 4: Distribution of time clustering index for
different classes of peers with a well-provisioned
server. Nodes 0 to 7 are fast peers, nodes 8 to 15 are
medium peers, and nodes 16 to 23 are slow peers.

 0 5 10 15 20

 0

 5

 10

 15

 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

D
ow

n
lo

a
d
in

g
p
ee

r
ID

Uploading peer ID

(a) Optimal solution obtained by linear programming.

 0 5 10 15 20

 0

 5

 10

 15

 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

D
ow

n
lo

a
d
in

g
p
ee

r
ID

Uploading peer ID

(b) Distribution for TFTTP on EC2.

Figure 3: Plots of total data uploaded among peers. Node 24 is the server. Nodes 0 to 7 are fast peers, nodes
8 to 15 are medium peers, and nodes 16 to 23 are slow peers. The right color bar shows the amount of data
uploaded in terms of the fraction of the whole file.

any of the peers finish downloading the file). The clustering
index for a node is the fraction of total upload time the node
spends in uploading to each class of peers. Unlike BT, where
nodes tend to upload about 65% of the time to other nodes
within the same class [6], our results shows that for TFTTP,
the clustering index is between 20% to 45% for all nodes and
all classes of nodes. The situation where “winner takes all”
does not happen because fast nodes are willing to trade with
slow nodes and not only among themselves. Also, all nodes,
even the slow ones, tend to upload for a longer duration to
fast nodes, rather than to the nodes within the same class.

5. CONCLUSION & FUTURE WORK
In this paper, we present the TFTTP protocol for p2p

file distribution. TFTTP substitutes the peer selection al-
gorithm of BT, i.e. the chock/unchoke algorithm, with a
new block-for-block trading strategy that is naturally fair.
Another key contribution in the design of TFTTP is a new
promise mechanism. Promises improve the efficiency of trades
between peers by allowing nodes to trade blocks to be re-
ceived in the near future, and allow us to implement a block-
for-block mechanism without sacrificing block availability.

Our experiments show that TFTTP can achieve average
throughput that is 30% to 70% higher than that for BT and
that TFTTP exhibits a fairer sharing behavior than BT.
While we have an implementation of TFTTP that works
well, we have not fully explored and evaluated the design
space for TFTTP. The tuning of parameters like sector size
and peer size can possibly be improved. There might also
be other server mechanisms that can potentially improve the
peer trading performance.

It is clear that block-for-block exchange will not allow us
to fully exploit the available bandwidth. This is because
once the fast nodes have downloaded most of the file, they
have little incentive to upload to the rest. Even with mul-
tiple concurrent downloads in end-game mode, it might not
be enough to saturate their upload bandwidth. We plan
to look into how we can relax the block-for-block mecha-
nism by introducing altruism while keeping the algorithm
incentive compatible. We are also working on mechanisms
to enforce/police the promises and to address the problem
of possible Sybil attacks.

ACKNOWLEDGMENT
This work was supported by the Singapore Ministry of Ed-
ucation grant R-252-000-348-112.

6. REFERENCES
[1] A. R. Bharambe, C. Herley, and V. N. Padmanabhan.

Analyzing and improving a BitTorrent network’s
performance mechanisms. In Proceedings of IEEE
INFOCOM ’06, April 2006.

[2] D. Carra, G. Neglia, and P. Michiardi. On the impact
of greedy strategies in BitTorrent networks: The case
of BitTyrant. In Proceedings of P2P ’08, September
2008.

[3] C. Chang, T. Ho, M. Effros, M. Medard, and
B. Leong. Issues in peer-to-peer networking: A coding
optimization approach. In Proceedings of NetCod ’10,
March 2010.

[4] B. Cohen. Incentives build robustness in BitTorrent.
In Proceedings of the P2P Economics Workshop, 2003.

[5] M. Izal, G. Uroy-Keller, E. Biersack, P. A. Felber,
A. A. Hamra, and L. Garces-Erice. Dissecting
BitTorrent: Five months in a torrent’s lifetime. In
Proceedings of PAM ’04, April 2004.

[6] A. Legout, N. Liogkas, E. Kohler, and L. Zhang.
Clustering and sharing incentives in BitTorrent
systems. In Proceedings of the ACM SIGMETRICS’07,
pages 301–312, New York, NY, USA, 2007. ACM.

[7] D. Levin, K. LaCurts, N. Spring, and
B. Bhattacharjee. BitTorrent is an auction: Analyzing
and improving BitTorrent’s incentives. In Proceedings
of SIGCOMM ’08, August 2008.

[8] P. Marciniak, N. Liogkas, A. Legout, and E. Kohler.
Small is not always beautiful. In Proceedings of IPTPS
’08, February 2008.

[9] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy,
and A. Venkataramani. Do incentives build robustness
in BitTorrent? In Proceedings of NSDI ’07, April 2007.

[10] D. Qiu and R. Srikant. Modeling and performance
analysis of BitTorrent-like peer-to-peer networks. In
Proceedings of SIGCOMM ’04, September 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

