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Abstract—In this paper we consider a linear optimization
approach for studying download finish times in peer-to-peer
networks that allow but do not require coding. We demonstrate
that using the network coding framework simplifies analysis even
in scenarios where the optimal solution does not require coding.
For example, we use the network coding framework to disprove
the claim of Ezovski et al. that in the absence of coding, the
sequential minimization of file download times minimizes the
average finish time over all users. We also use this framework
to study the effect of requiring reciprocity, a typical feature
of incentive-compatible protocols. Lastly, we show that for a
dynamically changing network scenario, coding can provide a
robust and optimal solution that outperforms routing.

I. I NTRODUCTION

Peer-to-peer (P2P) file distribution algorithms are an active
field of research in both academic [1] and industrial [2]
settings. P2P algorithms are desirable for their scalability—
allowing efficient and inexpensive file distribution from a
single content provider (server) to thousands of users. P2P
systems achieve these benefits by exploiting the bandwidth of
the peers.

While network coding has been applied to P2P systems
to improve robustness and maximize throughput [3], the
performance gain of network coding over routing in a P2P
system remains a topic for further research. In [4], Deb et al.
consider the dissemination of multiple messages using a gossip
based protocol, showing that in ann-node network, network
coding speeds message dissemination from timeΘ(n log(n))
for uncoded schemes to timeO(n) for random linear coding.
In [5], Mundinger and Weber introduce an uplink sharing
model that assumes a fully connected network where each
peer is constrained only in its upload capacity. In [6], Chiu et
al. show that network coding does not increase multicast
throughput in this scenario. In [7], Mehyaret al. investigate a
few small networks of this type, studying optimal strategies for
minimizing (a) the finish time of the last peer;(b) the average
finish time over all users; and(c) the Min-Min finish time,
which sequentially minimizes the finish time of the remaining
peer with the highest upload capacity until all peers finish their
downloads. In [8], Ezovski et al. present an optimal routing
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solution for minimizing the Min-Min finish time in the uplink
sharing model. They further claim that following the Min-Min
strategy minimizes the average finish time over all routing
strategies.

In Section IV, we use a counterexample to disprove
Ezovskiet al.’s claim that the Min-Min strategy minimizes the
average finish time. Like [7], [8], we assume that all peers stay
in the system after completing their own downloads. We derive
our counterexample using the linear programming approach of
Wu et al. from [9]. We also extend the LP to study the effect
of a reciprocity constraint. Finally, we show that coding can
improve robustness to unexpected network changes.

Our investigations underscore two benefits of the network
coding framework. First, the framework makes the problem of
finding optimal solutions tractable; even when routing suffices
to obtain the optimal performance, finding the optimal routing
solution is often an intractable problem. Second, coding can
provide robustness in dynamically changing network scenar-
ios.

II. PRELIMINARIES

We use the uplink sharing model of [5]. The network is fully
connected, and the upload capacity of each node (including
all peers and the server) is initially the only constraint. We
discuss the system performance in terms of download finish
times when there is a single server with a finite file to distribute
to multiple peers. We consider the following performance
metrics:

1) Min-Min Finish Time:The Min-Min finish time strategy
sequentially minimizes the finish time of the remaining
node with the highest capacity. Precisely, letTi be the
finish time for theith node when nodes are ordered from
largest to smallest upload capacity. Then the Min-Min
strategy is the strategy that achieves

T ∗

1 , minT1 =
(File Size)

(Server Upload Capacity)

T ∗

i , min{Ti|Tj = T ∗

j , ∀j < i}

(1)

The optimization is over all possible routing or coding
schedules that satisfy the nodes’ uplink capacity con-
straints.



2) Min-Avg Finish Time:The Min-Avg finish time strategy
minimizes the average finish time over all users. If peers
stay in the network until all downloads are completed,
then peers finish in the order of highest to lowest upload
capacity as in the Min-Min strategy.

Both metrics can be applied either with or without reci-
procity constraints.

III. L INEAR PROGRAMMING FORMULATION

Let v0 and v1, . . . , vm denote the server and peers re-
spectively in a single-server,m-peer P2P network. Node
v ∈ {v0, . . . , vm} has uplink capacityc(v). All peers remain
in the network after finishing their downloads. It is therefore
always optimal for higher capacity peers to finish earlier
than lower capacity peers since their greater upload capacity
makes them more useful for serving other peers. We therefore
order the peers from highest to lowest upload capacity giving
c(v1) ≥ c(v2) ≥ · · · ≥ c(vm). We describe each solution for
distributing a file of sizeF from the server to the peers by
describing a sequence of phases. Each phase is a period in
which the upload strategies of all nodes are fixed—that is,
in phaseτ each nodev ∈ {v0, . . . , vm} allocates its upload
capacity according to some fixed flow vector describing the
proportion of nodev’s upload capacity used to upload data
to each of the users in{v1, . . . , vm} \ {v}. The duration of
phaseτ equals the maximum over nodesv ∈ {v0, . . . , vm} of
the total flow from nodev in phaseτ divided by the uplink
capacity of nodev. To make this precise, we represent a full
solution withI phases by the following time-expanded graph.
Let V = {v

(τ)
0 , v

(τ)
1 , . . . , v

(τ)
m }Iτ=1, wherev(τ)i represents node

vi in phaseτ ∈ I , {1, . . . , I}. Let E denote the set of edges
in the time-expanded graph. SetE contains two types of edges:

• Transmission edgee = (v
(τ)
i , v

(τ)
i′ ) corresponds to the

transmission fromvi to vi′ within the τ th phase.
• Memory edgee = (v

(τ)
i , v

(τ+1)
i ) corresponds to the

accumulation of received information from previous time
steps. Memory edges have infinite capacities.

Each transmission edge exists within a single phase. Each
memory edge crosses from one phase to the next. As in [7],
[8], we assume continuous data flow and allow each node to
forward data immediately upon receipt1. Further, each node
can transmit data to multiple nodes simultaneously.

Since there always exists an optimal strategy withI ≤

m [10], we setI = m and treatv(τ)τ , τ ∈ {1, . . . ,m} as the
sink nodes of the time-expanded graph. Lett = (t1, . . . , tm)
denote the vector of phase durations. Peerj finishes its
download in thejth phase, so its finish time isTj =

∑j

k=1 tk.
Both the Min-Avg and Min-Min objective functions can be
described as linear functions of vectort. For Min-Avg, let
d =

[

m
m
, m−1

m
, . . . , 1

m

]

. Then the Min-Avg objective function
is

1This simplifying assumption is not realistic in practice since nodes
typically cannot send out data until they receive at least a block of a certain
size. As a result, optimal download times achieved using this model give
lower bounds on the download times that can be achieved in practice.

d
T
t =

1

m

m
∑

j=1

[

j
∑

k=1

tk

]

.

To represent Min-Min as a linear function oft, we introduce
a weighting vectorω such thatω1 ≫ ω2 ≫ . . . ≫ ωm and set
d =

[

ω1+···+ωm

m
, ω2+···+ωm

m
, . . . , ωm

m

]

. The Min-Min objective
function is

d
T
t =

1

m

m
∑

j=1

ωj

[

j
∑

k=1

tk

]

.

Given this framework, the search for the most efficient
download strategy becomes a linear programming (LP) prob-
lem, as described in [9] and restated below. In this LP, the
optimization variablesfi(e) andx(e) represent the virtual flow
to nodei through edgee ∈ E and the total flow through edge
e ∈ E , respectively. The virtual flowfi(e) is the flow over
edgee that is useful to nodei. The LP is then given by

min
f ,x,t

d
T
t

s.t. x(e) ≥ fj(e), ∀j ∈ {1, . . . ,m}, ∀e ∈ E

∑

v
(τ)
j

x((v
(τ)
i , v

(τ)
j ))

c(vi)
≤ tτ , ∀v

(τ)
i ∈ V, ∀τ ≤ I

fj(e) ≥ 0, ∀j ∈ {1, . . . ,m}, ∀e ∈ E
∑

v
(τ)
k

fj((v
(τ)
k , v

(τ)
i ))−

∑

v
(τ)
k

fj((v
(τ)
i , v

(τ)
k ))

=







F if τ = i
−F if i = 0, τ = 1
0 otherwise







, ∀j ∈ {1, . . . ,m}

(2)

The first constraint sets the total flow on each edge to the
maximum among all virtual flows over the edge; this value
suffices for multicast network coding by [11]. The second
constraint requires that the duration of each phase be the
maximum, over all nodes, of the time required for nodev to
deliver its flow for the given phase; we calculate this value as
the total flow out of nodev divided by the upload capacity of
v. The third constraint requires that all flows be non-negative.
The last constraint guarantees the conservation of flow at all
nodes in the network.

In [9], the LP is stated without an explicit proof. We provide
a proof in the extended version of this paper [10].

IV. M IN-M IN VS. M IN-AVG FINISH TIMES

In this section, we show by example that routing algorithms
achieving Min-Min finish times do not necessarily minimize
the average finish time. This contradicts Claim 1 in [8].

A counterexample with five peers is shown in Fig.1. The
source has upload capacity32, and each peer has upload
capacity8. We use the LP (2) to find optimal flow solutions for
Min-Avg and Min-Min. We then show that routing is sufficient
to achieve the optimal solutions in both cases. We prove the
existence of an optimal routing solution by explicitly labeling
the identities of the flows (see Fig.2). The labeling procedure
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(a) Min-Avg finish time solution : Finish times {8, 8.669, 11.956, 15.004, 18.125} and average finish time: 12.351

t1=8 t2=0.669 t3=3.287 t5=3.121t4=3.047

t1=8 t2=0.615 t3=3.385 t5=3.082t4=3.038

5.59

(b) Min-Min finish time solution : Finish times {8, 8.615, 12, 15.039, 18.120} and average finish time: 12.355

File size: 256, Upload capacity for the server: 32, Upload capacities for all peers: 8
( A peer stays after completing download  )

Fig. 1. Optimal flow solutions for a P2P network with5 peers and upload capacity constraintsc(0) = 32 andc(i) = 8, i ∈ {1, . . . , 5}. Each graph shows
a single phase. Edges are labeled with the total amount of flow along the edge in that phase. Recall thatti denotes the duration of theith phase. Min-Avg
scheduling (a) has smaller average finish time than Min-Min scheduling (b). The main difference comes from the bold link in red.
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Fig. 2. A routing realization of the optimal network coding solution from Fig. 1. Each edge carries the same amount of information as the corresponding
edge from Fig.1. Edges are labeled with the identity of the information beingtransmitted. The correctness of the first two phases is easy toverify. In the
later phases,C2 ⊆ C, D2 ⊆ D, D3 ⊆ D, E3 ⊆ E \ E2, E4 ⊆ E can be any subsets satisfying causality. The other data flowsX,Y, Z, U,W are from
nodes that have the entire file.

is simplified by noting that by theith time step, the firsti peers
each have all of the data. As a result, for the(i+1)th phase, we
only need to check if peersi+2, i+3, . . . ,m can send distinct
data to peeri + 1. In this example, the average finish time
for Min-Avg is less than that of the Min-Min solution, which
contradicts Claim 1 in [8]. Let M be the maximal number of
users that can finish in the “bottleneck time,” F/c(0). In [8],
the authors tried to prove Claim1 by first showing that it
is necessary to minimize

∑M+1
i=1 Ti in order to minimize the

average finish time
∑m

i=1 Ti. However, the counterexample in
Fig. 1 shows that minimizing

∑M+1
i=1 Ti is not necessary for

minimizing
∑m

i=1 Ti.

In the example of Fig.1, the main difference between
the two strategies occurs in the first phase. For Min-Min

scheduling, peer5 sends data to peers1 and2 only. For Min-
Avg scheduling, peer5 sends data to peers1, 2, and3 (the bold
link in red in Fig. 1(a)). Sending data to peer3 delays peer
2’s finish time in the second phase but significantly reduces
the duration of the third phase.

We observe empirically that the Min-Avg and Min-Min
strategies can differ for networks with more than4 peers.
For most randomly generated capacity values, the difference
between the finish times resulting from the two strategies is
nonzero but small. When the peers all have the same upload
capacities, the gap increases with the number of peers. The
difference between the finish times of Min-Avg and Min-Min
is 0.032% for the 5 peer example in (Fig.1), and0.171% for
an example with 10 peers, all with capacity constraint8.



This example illustrates the power of the network coding
framework for routing problems. Finding an optimal routing
solution directly is often extremely difficult. Using the given
LP, we can find an optimal coding solution in polynomial
time. In some cases, applying our labeling strategy to the
resulting coding solution allows us to demonstrate that the
optimal solution is also achievable with routing alone.

V. RECIPROCITYCONSTRAINTS

Reciprocity is a concept used in incentive-compatible pro-
tocols to encourage users to operate in a manner that benefits
the entire network. In this section, we show how the LP
approach can be used to study the effect of reciprocity. The
goal of reciprocity constraints is to encourage peers joining
the network to help in distributing information to other users.
A number of simple models for reciprocity are possible. For
example, one model of reciprocity sets a reciprocity constant
ρ ∈ [0, 1] and imposes the constraint thatvi should send tovj
approximately the same amount of information asvj sends to
vi in each phase—more precisely, the two flows should differ
by at most a factorρ. The reciprocity constraint can be applied
to virtual flows as

ρfi(v
(τ)
j , v

(τ)
i ) ≤ fj(v

(τ)
i , v

(τ)
j ) ≤ fi(v

(τ)
j , v

(τ)
i )

or to actual flows as

ρx(v
(τ)
j , v

(τ)
i ) ≤ x(v

(τ)
i , v

(τ)
j ) ≤ x(v

(τ)
j , v

(τ)
i ).

Lemma1 shows that the two definitions are equivalent since
fj(i, j) = x(i, j) for all i, j. A variety of other definitions
of reciprocity are possible. One alternative way to model
reciprocity is to set a limit on the absolute difference between
the cumulative amount sent in each direction. Since both of
these constraints are linear, either one can be added to the LP.
The examples that follow use the first model.

Lemma 1. For any P2P file distribution network there exists
an optimal solution in which

fj(v
(τ)
i , v

(τ)
j ) = x(v

(τ)
i , v

(τ)
j ) for all (i, j), τ

By Lemma1, definitions of reciprocity in terms offj(i, j)
and those in terms ofx(i, j) are always equivalent.

Proof: For a given flow solution, we consider two cases:
1) fj(v

(τ)
i , v

(τ)
j ) < x(v

(τ)
i , v

(τ)
j ) and 2) fj(v

(τ)
i , v

(τ)
j ) =

x(v
(τ)
i , v

(τ)
j ). For the first case, we partition the total flow

x(v
(τ)
i , v

(τ)
j ) into the portion that contains the virtual flow

fj(v
(τ)
i , v

(τ)
j ) and the part that does not. Note that the sec-

ond part contains information that is linearly dependent on
information already received at peervj . As a result, nodevj
can serve any nodevk that relies on this information without
sending this part of the transmission. The following argument
makes this precise.

We wish to show that there exists an optimal solution
such thatfj(v

(τ)
i , v

(τ)
j ) = x(v

(τ)
i , v

(τ)
j ) for all i, j. Sup-

pose that an optimal solution has an edge(v
(τ)
i , v

(τ)
j ) for
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Fig. 3. The minimum average finish time versus reciprocity constantρ. Recall
that ρ = 0 means no reciprocity, andρ = 1 means a strict reciprocity. The
graphs plot average finish times of Min-Avg and Min-Min scheduling for (a)
heterogeneous (Upload capacities: server32 and peers{16, 8, 6, 4, 2}) and
(b) homogeneous (Upload capacities: server32 and peers8) upload capacities.

which fj(v
(τ)
i , v

(τ)
j ) < x(v

(τ)
i , v

(τ)
j ). Since x(v

(τ)
i , v

(τ)
j ) =

maxk fk(v
(τ)
i , v

(τ)
j ), there exists somek 6= j for which

fk(v
(τ)
i , v

(τ)
j ) = x(v

(τ)
i , v

(τ)
j ). Since x(v

(τ)
i , v

(τ)
j ) >

fj(v
(τ)
i , v

(τ)
j ), the given solution sendsx(v(τ)i , v

(τ)
j ) −

fj(v
(τ)
i , v

(τ)
j ) bits from peervi to peervj for use by peer

vk, but all of these bits are linearly dependent on bits already
known to peervj . As a result, we can remove these redundant
x(v

(τ)
i , v

(τ)
j )−fj(v

(τ)
i , v

(τ)
j ) linearly dependent bits fromv(τ)i

to v
(τ)
j leaving the rest of the solution unchanged.

When considering incentive-compatible mechanisms such
as reciprocity where non-altruistic peers leave upon comple-
tion, there is an inherent design tension between optimizing
individual and average finish times, in that average finish time
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can be improved by delaying the completion time for fast peers
so that they continue to contribute upload capacity. We simply
note that for any given objective function and ordering of peers
finishing, we can use the LP formulation (2) with the following
additional linear constraint—requiring all outgoing flows from
a peer that completed its download to be zero after its finish
time:
∑

v
(τ)
j

x((v
(τ)
i , v

(τ)
j )) ≤ c(v

(τ)
i ) = 0, ∀v

(τ)
i ∈V, i < τ ≤ I

(3)

Figure 3 shows Min-Avg and Min-Min finish times for
example heterogeneous and homogeneous P2P networks. In
both examples the upload capacity of the server is32. The
upload capacities for the peers are(16, 8, 6, 4, 2) in the het-
erogeneous network and(8, 8, 8, 8, 8) in the homogeneous
network. Results for reciprocity coefficients varying from0
to 1 are included, whereρ = 0 means no reciprocity, and
ρ = 1 means strict reciprocity (i.e.,x(e) = x(e′) for all pairs).
Reciprocity constraints are applied to all nodes except forthe
server.

As expected, the minimum average finish time increases
as ρ increases. We note, however, that in these examples,
increasing reciprocity from0 to 1 increases the minimal
average finish times for Min-Min and Min-Avg strategies by
less than10%. In Fig. 4, we show an optimal Min-Avg flow
solution for a sample case with a strict reciprocity (ρ = 1)
and hetherogeneous upload capacities and peers (a) stay or
(b) leave the network after completing their downloads.

VI. ROBUSTNESSBENEFIT OFCODING

In this section, we show that network coding can improve
the P2P networks robustness against unforeseen events suchas
changes in upload capacity, changes in connectivity, or nodes
joining or leaving the network unexpectedly.

For instance, consider the following scenario with a file of
size256, a server of capacity32, and 6 peers whose capacities
are {16, 8, 8, 8, 8, 8}. For the static case without reciprocity,
we obtain an optimal flow solution from (2) and find a
corresponding routing solution, as described in SectionIV (see
Fig. 5). Now suppose that the network follows an optimal
solution up to the fourth phase, when an unexpected event
occurs. By then, the fastest three peers have finished their
downloads. As a result, these peers have the complete file, and
we treat them as part of an augmented server. This effectively
increases the server’s capacity from32 to 64. In the optimal
routing solution,v(4)5 andv(4)6 use phase4 to send tov(4)4 some
of the data thatv5 andv6 received from the server in previous
phases. (The relevant flows are highlighted in red in Fig.5.)
The rest of the data is sent tov(4)4 by the server. Therefore,v(4)4

receives directly from the source some of the same information
that v(4)5 and v

(4)
6 have previously received from the server.

Before the fourth phase, bothv5 andv6 receive data only from
the server and only in the first phase. In a routing solution,
the server can only time share between sending information
known to v5 and information known tov6 and information
known to both. In contrast, in a network coding solution, the
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Fig. 5. Optimal flow graph for the example of SectionVI for both coding and routing. Note that in this case,v1 and v2 finish at the same time in the
first phase (the second phase has zero duration). In the static network, the duration of the fourth phase is2.6967s. Note that neitherv5 nor v6 can send the
whole data that were received from the server in the first phase (highlighted in red). Instead, the server (including seeds) should compensate by sending the
repeated data. Before the end of the fourth phase, atT = 12.4038s, an interruption occurs. Until then,v4 receives the repeated data, the amount of4.5037.

TABLE I
FINISH TIMES FOR EACH CASE(SERVER CAPACITY IS DECREASED TO0.1)

Coding Routing (half) Routing (worst)
Finish Time ofv4 18.00 40.52 63.04
Finish Time ofv5 38.19 40.52 63.04
Avg. Finish Time∗ 16.27 21.25 30.25
* Finish times for the first 3 peers are same for all cases.

server can send linear combinations of these subsets of the
data.

Now suppose that at timeτ ∈ (T3, T4), the connectivity be-
tween the augmented server and the remaining peers decreases
greatly, and, probabilistically, eitherv(4)5 or v

(4)
6 leaves the

system. Without prior knowledge of which peer will leave the
system, any particular choice from the family of time sharing
routing solutions will have a worse expected average finish
time than the coding solution.

To give a specific numerical example, suppose that the
network disruption occurs at12.4038 seconds (2.6263 seconds
after the beginning of the fourth phase). Note that in the fourth
phase, the server sends an amount163.56 of innovative data
in the first2.5559 seconds, and an amount4.5037 of repeated
data in the remaining0.0704 seconds before the disruption. At
the time of the disruption, the capacity of the augmented server
decreases to0.1, and eitherv5 or v6 leaves the network. In
the case wherev6 leaves the system, TableI shows the finish
times when coding is used, when routing is used and the server
sends equal amounts of data known tov5 and v6, and when
routing is used and the server sends onlyv5’s data.

Note that the performance gap between coding and routing
can be made arbitrarily large by reducing the capacity be-
tween the augmented server and the remaining peers after the
disruption.

VII. C ONCLUSION

In this paper, we apply a linear programming approach
based on network coding to analyze download finish times
in a P2P network. We disprove the claim in [8] that Min-
Min scheduling achieves the minimum average finish time for
routing. We also investigate the effect of reciprocity using the
LP. Lastly, we show that coding can provide a robust optimal
solution, outperforming routing in dynamically changing net-
work scenarios. Ultimately, we expect that the LP can be used
to gain insights into how to design practical P2P algorithms,
and to predict how different factors will affect the strategies
that can be used in practice and the resulting performance.
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