
Splash: Fast Data Dissemination with Constructive Interference in Wireless
Sensor Networks

Manjunath Doddavenkatappa, Mun Choon Chan, Ben Leong
National University of Singapore

Abstract

It is well-known that the time taken for disseminating a
large data object over a wireless sensor network is dom-
inated by the overhead of resolving the contention for
the underlying wireless channel. In this paper, we pro-
pose a new dissemination protocol calledSplash, that
eliminates the need for contention resolution by exploit-
ing constructive interference and channel diversity to ef-
fectively create fast and parallel pipelines over multiple
paths that cover all the nodes in a network. We call this
tree pipelining. In order to ensure high reliability, Splash
also incorporates several techniques, including exploit-
ing transmission density diversity, opportunistic over-
hearing, channel-cycling and XOR coding. Our evalua-
tion results on two large-scale testbeds show that Splash
is more than an order of magnitude faster than state-of-
the-art dissemination protocols and achieves a reduction
in data dissemination time by a factor of more than 20
compared to DelugeT2.

1 Introduction

A data dissemination protocol, like Deluge [14], is a
fundamental service required for the deployment and
maintenance of practical wireless sensor networks be-
cause of the need to periodically re-program sensor
nodes in the field. Existing data dissemination proto-
cols employ either a contention based MAC protocol like
CSMA/CA [6, 5, 7, 10, 12, 30, 18, 14] or TDMA [17]
for resolving the multiple access problem of the wireless
channel. As there is a large amount of data that needs
to be disseminated to all the nodes in the network, there
is often severe contention among the many transmissions
from many nodes. Existing MAC protocols incur signif-
icant overhead in contention resolution, and it has been
shown that Deluge can take as long as an hour to program
a 100-node sensor network [27].

In this paper, we propose a new data dissemination
protocol, calledSplash, that completely eliminates con-

tention overhead by exploiting constructive interference.
Splash is scalable to large, multi-hop sensor networks
and it is built upon two recent works: Glossy [9] and
PIP [24]. Glossy uses constructive interference in prac-
tical sensor networks to enable multiple senders to trans-
mit the same packet simultaneously, while still allow-
ing multiple receivers to correctly decode the transmit-
ted packet. Like Glossy, we eliminate the overhead in-
curred in contention resolution by exploiting construc-
tive interference. Raman et al. showed in PIP that a
pipelined transmission scheme exploiting channel diver-
sity can avoid self interference and maximize channel
utilization for a single flow over multiple hops by ensur-
ing that each intermediate node is either transmitting or
receiving at any point of time. Splash uses constructive
interference to extend this approach totree pipelining,
where each level of a dissemination tree serves as a stage
of the pipeline.

While the naive combination of synchronized and
pipelined transmissions achieves substantial gains in the
data dissemination rate by maximizing the transmission
opportunities of the senders, it also creates a significant
reliability issue at the receivers. First, in order to im-
prove efficiency, we need to use a large packet size (i.e. at
least 64 bytes). However, increasing packet size reduces
the reliability of constructive interference as the number
of symbols to be decoded correctly increases [9]. Sec-
ond, channel quality varies significantly among different
channels, and there are typically only a small number of
available channels that are of sufficiently good quality. If
a poor channel is chosen for a stage of the pipeline, the
pipeline transmission may be stalled.

Splash includes a number of techniques to improve
the packet reception rate. (1) We improve the reception
rates over all receivers by exploiting transmitter density
diversity by varying the number of transmitters between
transmission rounds. When the sets of transmitters are
varied, the sets of receivers that can decode the synchro-
nized transmissions correctly also change. Hence, differ-
ent sets of nodes are likely to correctly decode packets

during different transmission rounds. The challenge is
to maximize the differences among different transmis-
sion rounds. (2) We increase reception opportunities by
incorporating opportunistic overhearing which involves
early error detection and channel switching. A node in
Splash identifies a corrupted packet on-the-fly during its
reception and switches its channel to overhear the same
packet when it is being forwarded by its peer nodes in
the dissemination tree. (3) We exploit channel diversity
to improve packet reception ratio by varying the chan-
nels used between different transmission rounds. This
is particularly important since the use of the same bad
channel can stall the pipeline transmission consistently.
(4) Finally, we utilize a simple XOR coding scheme to
improve packet recovery by exploiting the fact that most
receivers would have already received most of the pack-
ets after two transmission rounds.

We implemented Splash in Contiki-2.5 and we eval-
uated the protocol on the Indriya testbed [3] with 139
nodes and the Twist testbed [13] with 90 nodes. We com-
pare Splash to both Deluge [14] in Contiki and to the
much improved DelugeT2 implemented in TinyOS. As
we use DelugeT2 as a baseline, it allows us to compare
Splash to many of the existing dissemination protocols in
the literature as most of them are also compared to Del-
uge. Our results show that Splash is able to disseminate
a 32-kilobyte data object in about 25 seconds on both the
testbeds. Compared to DelugeT2, Splash reduces dis-
semination time on average by a factor of 21, and in the
best case, by up to a factor of 57.8. This is significantly
better than MT-Deluge [10], the best state-of-the-art dis-
semination protocol, which achieves a reduction factor
of only 2.42 compared to Deluge.

The dissemination performance of our current imple-
mentation of Splash achieves anetwork-wide goodput of
10.1 kilobits/sec per node for a multihop network of 139
nodes with up to 9 hops. Splash’s goodput is higher than
that of all the network-wide data dissemination proto-
cols [6, 5, 7, 10, 12, 30, 18, 14, 17] previously proposed
in the literature. Splash’s performance is comparable to
Burst Forwarding [8], the state-of-the-art pipelined bulk
transfer protocol over TCP for sensor networks, which
is able to achieve a goodput of up to 16 kilobits/sec, but
only for a single flow over a single multihop path.

Finally, Splash is also significantly more compact than
DelugeT2 in terms of memory usage. Splash uses 9.63
and 0.68 kilobytes less ROM and RAM respectively than
DelugeT2. Given that it is not uncommon for sensor de-
vices to have only about 48 and 10 kilobytes of ROM and
RAM respectively, these are significant savings in mem-
ory, that will be available for use by sensor applications.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the related work. Section 3 presents
our measurement study of constructive interference on a

practical testbed. We present Splash and the details of its
implementation in Section 4. Section 5 presents our eval-
uation results on the Indriya and Twist testbeds. Finally,
we conclude in Section 6.

2 Related Work

In their seminal work on Glossy [9], Ferrari et al. showed
that constructive interference is practical in wireless sen-
sor networks. They observed that there is a high proba-
bility that the concurrent transmissions of a same packet
will result in constructive interference if the temporal
displacement among these transmissions is smaller than
0.5 microsecond. The implementation of Glossy is able
to meet this requirement and a small packet can be
flooded to all nodes with deterministic delays at the relay
nodes which allows accurate network-wide synchroniza-
tion. Glossy is designed to flood a single packet at a time,
e.g., a control packet. On the other hand, a dissemination
protocol needs to achieve bulk transfer of large packets,
which introduces a new set of problems such as the need
for 100% reliability, pipelining, channel switching, and
scalability in terms of both network size and construc-
tive interference.

The scalability of constructive interference was re-
cently studied by Wang et al. [28]. They showed that
the reliability of constructive interference decreases sig-
nificantly when the number of concurrent transmitters
increases, wherereliability is defined as the probability
that a packet that is concurrently transmitted by multi-
ple transmitters will be decoded correctly at a receiver.
While [28] is the first work to study this problem, it is
based on theory and simulations, and does not include
any experimental evaluation. Our empirical results show
that the scalability problem highlighted is actually more
severe in practice. Wang et al. also proposed Spine Con-
structive Interference based Flooding (SCIF) to mitigate
the scalability problem, but the correctness of SCIF as-
sumes many conditions that are hard to achieve in prac-
tice. For example, length of a network cell is half of
the radio communication range. In contrast, our strat-
egy for handling the scalability problem is a fully prac-
tical solution based on collection tree protocols such as
CTP [11] and the observation that typically more than
50% of nodes in a collection tree are leaf nodes even at
the lowest transmission power where the underlying net-
work is connected [4].

A key challenge in implementing pipelining over a
multihop path is self interference: a node’s next packet
can interfere with its immediate previously forwarded
packet. There are two common solutions. First, we can
introduce inter-packet gaps such that the previous packet
would be out of the interference range before attempting
to transmit the next packet [15]. However, this method

would drastically reduce the end-to-end throughput as a
long gap of 5 packet transmission times is required for a
single flow in practice [15]. Moreover, in the case where
multiple data flows are active, this method is ineffective
because of inter-flow interference. The second solution
is to exploit channel diversity [23, 24, 8]. However, we
observe that this approach ignores two practical issues
that can severely degrade the performance of its packet
pipeline. First, although the IEEE 802.15.4 standard de-
fines 16 non-overlapping channels, the number of chan-
nels of usable quality is typically much smaller in prac-
tice because of various factors, e.g., interference from
WiFi channels [21]. Second, the approach ignores the
fact that links for routing are typically chosen on the best
available channel, and the performance of other chan-
nels on such links can be poor in practice. These two
issues can severely degrade the performance by stalling
the packet pipeline.

As dissemination is a fundamental service in sensor
networks, there are numerous protocols in the litera-
ture [6, 7, 10, 12, 18, 14, 17]. Typically, they are epi-
demic approaches incorporating special techniques in or-
der to reduce the incurred overhead. Such techniques
include Trickle suppression [20], network coding [12],
exploiting link qualities [6], virtual machines [19], etc.
While existing protocols differ in their techniques, they
all share a common feature that they employ a MAC pro-
tocol like CSMA/CA or TDMA for contention resolu-
tion, and typically their dissemination times are in the
order of minutes for disseminating full images in prac-
tical networks. Our goal in this paper is to completely
eliminate contention overhead by exploiting constructive
interference and we show that by doing so, we can re-
duce the dissemination time by an order of magnitude
compared to existing approaches.

3 Measurement Study

To understand the behavior of simultaneous transmis-
sions in real-world setups, we conducted a measurement
study of constructive interference on the Indriya [3] wire-
less sensor testbed. In particular, we studied the scalabil-
ity of simultaneous transmissions and correlation among
packet receptions across different nodes decoding such
transmissions.

We used the code from the Glossy [9] project in our
experiments, our experimental methodology is similar to
that adopted by Ferrari et al. in [9]. An initiator node
broadcasts a packet to a set of nodes which in turn for-
ward the received packet concurrently back to the initia-
tor. This results in constructive interference at the initia-
tor, where we measured the reliability of the reception.
Since our goal is to use constructive interference for the
dissemination of large objects, we used the maximum

packet size of 128 bytes in our experiments. In addi-
tion, the payload of each packet was randomized. Our
experiments were carried out on the default Channel 26,
unless specified otherwise. Channel 26 is one of the only
two ZigBee channels that does not overlap with the com-
monly used WiFi channels [21].

3.1 Scalability

In Fig. 1, we plot the reliability of packet reception
against the number of concurrent transmitters for three
randomly chosen initiators on three different floors of the
Indriya testbed. In each experiment, both the initiator
and the randomly chosen set of concurrent transmitters
were located on the same floor. We recorded over 1,000
packet transmissions on each floor on Channel 26. We
see from Figs. 1(a) and 1(b) that reliability generally de-
creases when there are more concurrent transmitters.

In fact, it had been shown by Wang et al. [28]
through analytical model and simulation that the reliabil-
ity of constructive interference decreases when the num-
ber of concurrent transmitters increases, due to the in-
crease in the probability of the maximum time displace-
ment across different transmitters exceeding the required
threshold for constructive interference. Our measure-
ments suggest that the highlighted problem is more se-
vere in practice, and even a small number of three to five
concurrent transmitters can significantly degrade the re-
ception at a receiver.

However, it is sometimes possible for an increase in
the number of concurrent transmitters to result in im-
proved reception reliability. In particular, we see in
Fig. 1(c) that by adding a sixth node, the reliability in-
creases from about 37% to 100%. This is likely caused
by the capture effect since the sixth node was located
some 2 meters away from and within line of sight of the
initiator.

This suggests that the impact of the number of trans-
mitters (transmission density) on reception reliability
does not follow a fixed trend like what was predicted by
Wang et al. [28]. But depends also on the positions of
the concurrent transmitters relative to the receiver. So,
instead of attempting to determine the optimal transmis-
sion density, we can try to transmit at both high and low
transmission densities to improve reception reliability.

3.2 Receiver Correlation

In existing dissemination protocols, it is common for
a node to attempt to recover missing packets from its
neighbors. It is hence important for us to understand
the correlation of the packets received by neighboring
receivers. While Srinivasan et al. had previously investi-
gated the correlation of packets received by the receivers

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5

R
el

ia
bi

lit
y[

%
]

Number of transmitter nodes

(a) Floor 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5

R
el

ia
bi

lit
y[

%
]

Number of transmitter nodes

(b) Floor 2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6

R
el

ia
bi

lit
y[

%
]

Number of transmitter nodes

(c) Floor 3

Figure 1: Plot of reliability against the number of concurrent senders.

in a sensor network [26], they did not study the correla-
tion in the presence of constructive interference.

To this end, we set up an experiment involving 21
nodes spanning an area of 30m× 30m on the 3rd floor of
Indriya. One node was designated as the initiator node,
ten nodes were randomly chosen to serve as relays, and
the remaining ten were used as receivers. The initiator
broadcasts a packet once every second over a duration of
four hours and the relay nodes forward the packet con-
currently, which results in constructive interference at the
various receiver nodes. As Srinivasan et al. had earlier
shown that WiFi interference is the most likely reason
for correlations in packet reception [26], we repeated this
experiment on two separate channels: Channel 26, which
is non-overlapping with the WiFi channels occupied in
the building where Indriya is deployed, and Channel 22,
which overlaps with an occupied WiFi channel.

We investigated the correlation among the packet re-
ceptions at the receiver nodes (R) by computing the
Pearson’s correlation coefficient at a granularity of one
packet. We present the coefficient values for Channels
26 and 22 in Table 1. Note that as a coefficient matrix
corresponding to a channel is symmetric, we represent
data corresponding to the two channels in a single table
(matrix). The values in the lower half of the table (below
the diagonal) correspond to Channel 26 and the upper
half corresponds to Channel 22.

As expected, for Channel 26, which does not overlap
with an occupied WiFi channel, the correlation coeffi-
cients are small. This suggests that the packet recep-
tions across different receivers are effectively indepen-
dent. On the other hand, for Channel 22, which over-
laps with an occupied WiFi channel, the coefficients are
relatively large, indicating that there is significant corre-
lation in the reception at the various receivers. Our re-
sults suggest that it might be hard for a node to recover
missing packets from its neighbors if a noisy channel like
Channel 22 is used, since many neighboring nodes would
likely be missing the same packets.

Table 1: Correlation coefficients observed on Channel 26
(lower half) and Channel 22 (upper half).

R 1 2 3 4 5 6 7 8 9 10
1 1.0 .56 .62 .64 .57 .58 .60 .52 .55 .58
2 .04 1.0 .52 .63 .51 .54 .46 .53 .50 .55
3 0.0 -.02 1.0 .55 .48 .56 .46 .44 .46 .49
4 .05 .23 0.0 1.0 .61 .61 .52 .63 .59 .68
5 .04 .07 .01 .13 1.0 .51 .52 .51 .61 .53
6 .03 .09 -.01 .13 .03 1.0 .46 .48 .50 .53
7 .03 .12 0.0 .16 .06 .09 1.0 .45 .49 .47
8 .02 .11 -.01 .17 .06 .11 .13 1.0 .49 .66
9 .02 .03 .01 .06 .08 .02 .05 .02 1.0 .49
10 .02 .10 0.0 .15 .10 .09 .17 .21 .05 1.0

4 Splash

In this section, we describe Splash, a new data dissemi-
nation protocol for large data objects in large sensor net-
works that completely eliminates contention overhead by
exploiting constructive interference and pipelining.

Raman et al. proposed PIP (Packets in Pipeline) [24]
for transferring bulk data in a pipelined fashion over a
single path of nodes over multiple channels. They ex-
ploit channel diversity to avoid self interference by hav-
ing each intermediate node use a different channel to re-
ceive packets. A key insight of this pipeline approach
is that at any point in time, an intermediate node is ei-
ther transmitting or receiving packets and this achieves
the maximal utilization of air time.

Splash can be considered as an extension of PIP’s ap-
proach that incorporates three key innovations to support
data dissemination to multiple receivers over multiple
paths:

1. Tree pipelining which exploits constructive inter-
ference to effectively create parallel pipelines over
multiple paths that cover all the nodes in a network.
In our approach, a collection tree is used in the re-
verse direction for dissemination which in turn al-
lows us to mitigate the scalability problem of the

��
��
��

��
��
��

��������

P1

P1

P1

P1

P2

P2

P1

P1

P1

P1

P2

P2

P1

P1

P1

P1

Transmitting Receiving Idle

P1

P1

P2

P2

P1

P1

P2

P2

(a) (b)

(c) (d)

Figure 2: Illustration of pipelining over a tree.

constructive interference and to minimize the differ-
ences that exist among the performance of different
channels.

2. Opportunistic overhearing from peers by exploiting
multiple pipelines, which provides each node with
more chances of receiving a packet.

3. Channel cycling that increases the chance of reusing
a good channel while avoiding interference. Dif-
ferent channels are used at different stages of the
pipeline between different transmission rounds to
avoid stalling of the pipeline in case a bad channel
is inadvertently chosen.

In the rest of this section, we discuss in detail various
components of Splash and some of its implementation
details.

4.1 Tree Pipelining

Splash is the first protocol to exploit constructive inter-
ference to support pipelining over a dissemination tree
in which each level of the tree acts as one stage of the
pipeline. This is illustrated in Fig. 2.

In the first cycle (see Fig. 2(a)), the root node (level
zero) transmits the first packet P1. The receivers at the
first level, which are synchronized upon receiving P1,
will simultaneously forward P1 in the second cycle so
that these simultaneous transmissions interfere construc-
tively at the nodes on the second level (see Fig. 2(b)). In
the third cycle (see Fig. 2(c)), while nodes at the second
level forward P1 to the third level, the root node simulta-
neously transmits the second packet P2. Note that these
simultaneous transmissions of different packets do not
interfere with each other as each level of the tree is con-
figured to transmit/receive packets on a different channel.
In Fig. 2(c), P2 is transmitted on the receiving channel of

the first-level nodes while P1 is transmitted on a differ-
ent receiving channel for the third-level nodes. Note also
that a third-level node will receive transmissions from
several second-level nodes, instead of just one. We have
omitted some of the transmission arrows in Fig. 2(c) to
reduce clutter.

This results in a tree-based pipeline in which pack-
ets are disseminated in a ripple-wave-like fashion from
the root. Except for the root node (which only trans-
mits), all the nodes are either transmitting or receiving at
all times once the pipeline is filled (see Fig. 2(d)). This
allows Splash to achieve maximum possible end-to-end
throughput.

The tree structure is needed to allow Splash to coor-
dinate transmissions and channel assignment, also to en-
sure that each transmission is forwarded to every node in
the network. Splash uses an underlying collection pro-
tocol like CTP [11] to derive its tree structure. We be-
lieve that our approach would incur minimal overhead as
a CTP-like collection protocol is an integral part of most
sensor network applications and we can make use of its
existing periodic beacons in order to build the dissemina-
tion tree. Moreover, as CTP-like protocols are typically
data-driven and they are designed to build stable trees by
preferring stability over adaptability [1], diverting some
of its periodic beacons for another use will not affect the
stability of its data collection tree.

In practice, collection protocols often attempt to use
the best links on the best channel (typically Channel
26) to build a tree. However, the performance of the
other channels on such links is often not comparable to
that of the best channel. So, if a dissemination tree is
built using the default channel, the link quality on the
same transmitter-receiver pair may be good on the de-
fault channel but poor on a different channel. On the
other hand, building the dissemination tree on the poorest
channel is also not a viable option since the network may
not even be connected on such channels. Our approach
therefore is to use the best channel (Channel 26) to build
the dissemination tree at a lower transmission power but
to use the maximum transmission power during dissem-
ination. Our hypothesis is that the performance of dif-
ferent channels at the maximum transmission power is
likely be comparable to that of the best channel at a lower
transmission power.

Opportunistic Overhearing. In the transmission
pipeline, each node is either receiving or transmitting.
When a node is unable to successfully decode a trans-
mission, it will be unable to relay the packet to the next
stage. In such instances, instead of idling, such a node
can switch to listening mode and attempt to recover the
missing packet by overhearing the transmissions of its
peers on the same level of the dissemination tree. This
means that each node effectively has two opportunities

Splash
header

Parity

2 bytes

bytes

9−byte header

6 bytes

Data bytes for
which no parity

is calculated

2 bytes

Footer

54 bytes 10 bytes

Data bytes for which parity is calculatedLength

1 byte

64−byte data payload

Figure 3: Packet format used in Splash.

to receive a given packet.
The decision to overhear transmissions has to be made

before a node has completely received and decoded a
packet, because to achieve constructive interference, a
node needs to start calibrating its radio for transmission
even before the packet to be transmitted is completely
read from the radio hardware buffer. By the time a node
completely reads, decodes and identifies packet corrup-
tion, its peers would have started calibrating their ra-
dio for transmission, and they begin transmissions before
the node can switch over to overhearing mode which in-
volves calibrating the radio for reception.

In order to address this issue, we add two bytes of par-
ity information of the data payload bytes that are located
before the last 12 bytes of the packet as the time required
to receive these 12 bytes is the minimum amount of time
necessary for verifying packet corruption and to either
switch channel for overhearing in the case of corruption
or to calibrate the radio for synchronous transmissions
otherwise. Fig. 3 depicts format of a Splash packet with
its default data payload size of 64 bytes. The parity of
the first 54 bytes of data is computed and inserted in the
header. This allows a receiving node to detect any cor-
ruption in these bytes as soon as it receives the 54th data
byte. If bit corruption is detected by the parity check, the
reception of the current packet is aborted and the node
immediately switches its channel to the receiving chan-
nel of its next hop nodes so that it can attempt to overhear
the same packet while it is being forwarded by its peers
in the next cycle. If corruption occurs within the last 12
bytes of the packet, the packet will not be recoverable
with opportunistic overhearing.

4.2 Channel Cycling & Channel Assign-
ment

Channel Cycling. It is well-known that the quality of
channels is a function of both temporal and spatial vari-
ations. To ensure that nodes do not keep using the same
(poor) channel, we use a different channel assignment
between different rounds of dissemination in order to re-
duce the impact of the bad channels. In the case where
the root transmits the same packet twice, by incorpo-
rating opportunistic overhearing and channel cycling, a
node can potentially receive a packet 4 times, and pos-
sibly over 4 different channels. If the reception on one
of the channels is bad, the packet could possibly be suc-

C1 C2 C2 C3 C3 C4 C4C1

C1 C2 C3 C4

2 3 4 5 6 7 8

Splash

PIP

1 2 3 4Root

1Root

Figure 4: Channel assignment.

cessfully decoded on one of the remaining channels.

We coordinate channel switching between different
dissemination rounds of Splash by transmitting a small 7-
byte control packet. After every round of dissemination,
the control packet is flooded from the root node over the
tree pipeline by exploiting constructive interference 20
times. We do so because while there is a probability of
some nodes not receiving this packet if we flood it only
once, it has been shown that the probability that a node
will receive such a small control packet over construc-
tive interference is more than 0.999999 for ten retrans-
missions on Channel 26 [9]. We flood 20 times for good
measure because we do not always use a channel that is
as good as Channel 26. Also, we can afford to do so be-
cause flooding the packet 20 times takes only a few tens
of milliseconds. After the completion of these 20 floods,
a node that received the control packet at least once will
switch to a pre-assigned channel on which it is expected
to receive data packets in the next dissemination round.
If a node still fails to receive the control packet, a timeout
is used and the node recovers any missing data packets
during local recovery.

Channel Assignment. In Fig. 4, we illustrate the
channel assignment strategies for PIP and Splash using
only four channels (C1, C2, C3, and C4). There are two
key advantages of our assignment strategy. First, it al-
lows more efficient channel cycling than PIP’s method
by allowing to cycle good channels in pairs on consecu-
tive pipeline stages. Second, it supports a longer pipeline
if interference extends to several hops as observed in a
deployment on the Golden Gate Bridge [15]. However,
in our strategy, we need to ensure that we do not use pairs
of adjacent channels on consecutive pairs of stages as ad-
jacent channels interfere with each other [29].

In our current implementation of Splash, we choose
the ZigBee channels in such a way that they are either
non-overlapping or only partially overlapping with the 3
most commonly used WiFi channels (channels 1, 6 and
11). On the testbeds which have network diameters not
more than 9 hops, we observed that Splash’s channel as-
signment strategy needs only four such ZigBee channels
to avoid any interference.

4.3 Exploiting Transmission Density Di-
versity

We had shown in Section 3.1 that the effect of the num-
ber of transmitters (transmission density) on reception
reliability for constructive interference does not follow
a fixed trend but depends on the positions of the concur-
rent transmitters relative to the receiver.

Our key insight is that we can exploitdiversity in
transmission density to improve reliability, not by at-
tempting to determine the optimal number of transmit-
ters, but by transmitting the full data object twice using
different transmission densities. In the first round, data
is disseminated over the dissemination tree but only non-
leaf nodes are asked to transmit. Since typically more
than 50% of nodes in a tree are leaf nodes even at the
lowest transmission power where the underlying network
is connected [4], the number of concurrent transmitters is
significantly reduced. In the second round, transmissions
are made by all the nodes at each level of the tree. By us-
ing more transmitters, some nodes which were not reach-
able in the first round might now be reached. Moreover,
a higher node density is also helpful in specific cases be-
cause of the capture effect as we discussed in Section 3.1.

4.4 XOR Coding

After two rounds of dissemination using different trans-
mission densities, we observed in our experiments (see
Section 5) that a considerable percentage of the nodes
(about 50%) received most but not all the disseminated
packets. This is a bad situation for local recovery be-
cause even though the number of missing packets may
be small, there would be significant wireless contention
if too many nodes attempted to recover the missing pack-
ets locally from their neighbors. This would significantly
reduce the gain achieved through constructive interfer-
ence by the first two rounds of dissemination.

While it is possible to perform a few more rounds of
simple dissemination, we found that the potential gain
was limited. This is because the missing packets are dif-
ferent among the different nodes and the root has no way
of efficiently determining which exact packets are miss-
ing. If all packets are disseminated again, the overhead
is very high with minimal gain.

This motivated us to use a third round of dissemination
based on XOR coding instead. XOR coding is best suited
for recovering missing packets if a node already has most
of the packets and only a small portion is missing. As-
sume that a node already has a fractionp of the total
packets. If the degree of the XOR packet isn (i.e. the
coded packet is constructed by performing an XOR op-
eration onn packets), then the likelihood that the packet
is useful (i.e. that the receiving node had earlier received

n−1 out of then packets successfully) isn(1− p)pn−1.
This likelihood is maximized whenn = −1

ln(p) . We found
in our experiments thatp is about 95% after the first two
rounds of dissemination, so in our current implementa-
tion, we setn = 20≈ −1

ln(0.95) .
In the third round, the payload in each packet is the

result of 20 randomly chosen packets XORed together.
To minimize the overhead, we do not indicate the iden-
tities of the packets used in the XOR operations in the
packet header. Instead, we use the sequence number of
the packet as a seed for choosing these packets based
on a predefined pseudo-random function. This allows a
receiver to decode packets without any additional over-
head. In addition, like the first round of dissemination,
only non-leaf nodes participate in forwarding XORed
packets in the third round.

Naively, it might seem like it is sufficient to send
1
20 = 5% of the total number of packets. However, we
found empirically (see Section 5.2) that such an approach
is not sufficient to achieve a high packet recovery rate.
Instead we send all the original packets with each orig-
inal packet XORed with 19 randomly chosen packets.
This ensures that every single packet is retransmitted at
least once, and it also means that the third dissemination
round is equivalent to the first two rounds in length.

We also considered using a fountain or rateless code
during the “regular” dissemination rounds instead of in-
troducing a third round of simple XOR-coded dissemi-
nation. However, we decided not to do so because of the
associated decoding costs. In the experiments with Rate-
less Deluge [12], the decoding process can easily take
more than 100 seconds for a 32-kilobyte data object. In
comparison, Splash can disseminate the same object in
about 25 seconds with simple XOR coding.

4.5 Local Recovery

After three rounds of dissemination, typically about 90%
of the nodes would have downloaded the complete data
object and most of the remaining nodes would have
downloaded most of the object. This makes local recov-
ery practical. Local recovery also allows the nodes to
exploit spatial diversity and non-interfering nodes in dif-
ferent parts of the network can simultaneously recover
the missing packets from their neighbors.

We implement a very simple CSMA/CA-based local
recovery scheme on the default Channel 26. As Splash
uses an underlying collection tree protocol to build its
dissemination tree, a node will have link quality esti-
mates for its neighboring nodes. A node with missing
packets will send a bit vector containing information on
the missing packets to a neighbor, starting with the one
with the best quality link. If this neighbor has any of
the missing packets, it will forward these packets to the

requesting node; if not, the requesting node will ask the
next neighbor. If a node reaches the end of its neighbor
list and it still has missing packets, it will start query-
ing its neighbors afresh. Because the network is fully
connected, this local recovery procedure is guaranteed
to converge. Also, as most (about 90%) nodes already
have the full data object, it converges quickly (see Sec-
tion 5.2).

4.6 Implementation Challenges

The key requirement for constructive interference is that
nodes have to transmit the same packet at the same time.
Glossy satisfies this requirement as a set of nodes receiv-
ing a packet are synchronized to the SFD (Start Frame
Delimiter) interrupt from the radio hardware (Chip-
Con2420 (CC2420)) signalling the end of the reception
of a packet. Splash is built upon the source code for
Glossy [9]. The challenge is to transform the Glossy
code into a dissemination protocol while retaining its ca-
pability to perform synchronized transmissions.

Channel Switching. First, we added the capability for
switching channels for the pipelining operations. Upon
receiving a packet, a node switches its channel to that
of its next hop nodes, transmits the received packet, and
then switch back to its receiving channel to listen for the
next packet. Channel switching for transmission has to
be performed only after completely receiving an incom-
ing packet and before submitting the transmit request to
the radio for forwarding the received packet. The time
taken for channel switching cannot vary too much across
nodes as such variations desynchronize their submission
of the transmit request.

On the other hand, as the clocks of microcontrollers
are not synchronized across nodes, the time taken for
channel switching can vary from node to node. Our
goal is to minimize such variations by enabling chan-
nel switching by executing only a minimal number of
instructions between the completion of the reception of a
packet and the submission of the request for its transmis-
sion (forwarding).

The operation of channel switching involves writing to
the frequency control register of the radio hardware and
then calibrating the radio for transmission. The action
of writing to a register in turn involves enabling the SPI
(Serial Peripheral Interface) communication by pulling
down a pin on the radio, communicating the address of
the register to be written, writing into the register and
finally disabling the SPI access. Similarly, radio calibra-
tion involves enabling the SPI, transmitting a command
strobe requesting for calibration and disabling the SPI.
While the actual operations of calibration and register
access take more or less constant time, enabling the SPI
twice, once for the register access and another time for

transmitting the command strobe can add to the variabil-
ity and cause desynchronization. In order to avoid this,
we exploit the multiple SPI accesses capability of the
CC2420 radio which allows register access and to send
strobes continuously without having to re-enable the SPI.
Using this feature, we enable the SPI only once at the be-
ginning of a channel switching operation.

We further minimize the number of in-between in-
structions to be executed by splitting the channel switch-
ing into two phases. In the first phase, we enable the SPI
access and communicate the address of the frequency
control register to the radio. In the second phase, we
write into the register and transmit the command strobe
to start transmit calibration. The number of in-between
instructions is minimized by the fact that we overlap the
first phase with the packet reception by the hardware.
This way we execute only the second phase between the
completion of the reception of a packet and the submis-
sion of the request for its transmission.

Accessing External Flash. Another important re-
quirement for a dissemination protocol is that the data
object has to be written into the external flash because
typical sensor devices only have a small amount of RAM.
In Splash, since a node is always either transmitting or
receiving a packet at any given point of time, flash ac-
cess has to be overlapped with a radio operation, so we
write a packet to the flash while it is being transmitted by
the radio. As flash access is faster than the radio trans-
mission rate [8], the write operation completes before the
radio transmission and does not cause any synchroniza-
tion issues.

Handling GCC Compiler Optimizations. Although
the arrival of the SFD interrupt indicating completion of
the reception of a packet is synchronized across nodes,
its service delay varies from node to node. The key im-
plementation feature of Glossy is that each node executes
a different number of “nop” assembly instructions based
on its interrupt service delay so that all the nodes sub-
mit a request to the radio hardware at the same time for
forwarding the received packet.

The most challenging problem faced during imple-
mentation is the fact that the optimization feature of the
GCC compiler affects the service delay for the SFD in-
terrupt (perhaps for some other interrupts too). Without
enabling compiler optimizations, the resulting binary (a
collection application coupled with Splash) was too large
to fit into a sensor device. However, with optimizations
enabled, minor changes to parts of the code could change
the service delay, making it difficult to set the number of
“nop” instructions to be executed. However, this issue
can be handled as changes to the code will change the
minimum duration required for servicing the SFD inter-
rupt. While it is tedious, we can account for this change
by measuring the minimum service delay after making a

change that affects the service delay. The same proce-
dure was followed in the development of Glossy.

5 Performance Evaluation

In this section, we present the results of our evaluations
carried out on the Indriya [3] and Twist [13] testbeds.

Indriya is a three-dimensional sensor network with
139 TelosB nodes spanning three floors of a building
at the National University of Singapore. We compare
Splash against TinyOS’s DelugeT2, the de facto stan-
dard data dissemination protocol for sensor networks.
For Splash, a low power setting of -10 dBm is used to
build the dissemination tree and the maximum transmis-
sion power of 0 dBm is used for dissemination. For
DelugeT2, we use the maximum transmission power of
0 dBm on Channel 26. We disseminate a 32-kilobyte
data object for both Splash and DelugeT2.

Splash has a data payload of 64 bytes in every packet.
We will show in Section 5.3 that the performance of Del-
ugeT2 varies depending on the packet size, but there is no
clear relationship between packet size and performance.
Also, the impact of packet size is relatively insignificant.
In this light, we adopted the default payload size of 22
bytes for DelugeT2 in our experiments on Indriya, un-
less otherwise stated.

The Twist sensor testbed is deployed at the Berlin
University and currently it has 90 Tmote Sky devices.
The experimental settings on Twist are similar to that
on Indriya, except for the following differences: first,
we use a lower transmission power of -15 dBm to build
the dissemination tree for Splash, as Twist is a much
smaller deployment than Indriya. Second, instead of us-
ing TinyOS’s DelugeT2, we use Contiki’s Deluge. This
is because to execute TinyOS’s DelugeT2, we need to ex-
ecute some tools on a machine connected to base-station
nodes (root nodes) which is difficult in a case of a remote
testbed like Twist. We retain default settings of Contiki’s
Deluge including 0 dBm transmission power and Chan-
nel 26. Moreover, its default payload size of 64 bytes is
also retained as Twist is a smaller deployment with stable
links of good quality.

We execute Splash as a part of Contiki collection pro-
tocol [16] and Splash accesses the collection protocol’s
data in order to build the dissemination tree. We exe-
cute DelugeT2 as a part of TinyOS collection protocol,
CTP [11] by coupling the DelugeT2 with the TinyOS’s
standard “TestNetwork” application with its default set-
tings. We also compare Splash against DelugeT2 run-
ning as a standalone golden image (GI) without CTP.
Note that the standalone version is seldom used in prac-
tice, as a dissemination protocol is only useful when cou-
pled with a real application.

5.1 Summary of Testbed Results

The summary of our results on Indriya and Twist are
shown in Tables 2 and 3 respectively. For each exper-
imental run, we randomly picked a node as the root of
the dissemination tree. In the tables, “size” indicates
the depth of the Splash’s dissemination tree, and R1, R2
and R3 indicate the averagereliability per node after the
first, second and third rounds of dissemination respec-
tively. By reliability, we refer to the fraction of the data
object that has been successfully downloaded by a node.
NR3−100% is the proportion of nodes that have 100% of
the disseminated data object after the third round. Recall
that XOR coding is employed in the third dissemination
round. Rlr indicates the average reliability per node af-
ter local recovery.TSplash is the time taken for Splash to
complete the dissemination, i.e. whenevery node in the
network has successfully downloaded the entire data ob-
ject. Similarly, TDelugeT 2+CTP, TDelugeT2GI , andTDeluge

are the corresponding times taken for DelugeT2 with
CTP, DelugeT2 as standalone golden image, and Con-
tiki’s Deluge respectively, to complete the dissemination.

Indriya Testbed. We observe from Table 2 that on av-
erage Splash takes about 25 seconds (seeTSplash) to com-
plete the dissemination of a 32-kilobyte object, while
DelugeT2 coupled with CTP takes about 524 seconds.
Splash reduces dissemination time by an average factor
of 21.06 (93.68% reduction). Splash also outperforms
DelugeT2 running as a standalone golden image by a
factor of 12.43 (89.2% reduction). One obvious draw-
back of DelugeT2 is that there is a large variation in its
dissemination time, ranging from 209 seconds to 1300
seconds. This is likely due to variations in the conditions
of the default Channel 26 since DelugeT2 uses a fixed
channel. By using multiple rounds of dissemination, op-
portunistic overhearing, and channel cycling, Splash is
more resilient to variations in the channel conditions. In
particular, a node in Splash has the potential to receive a
packet up to 6 times, and more importantly, on up to 6
different channels. If the quality of one or two channels
is bad, a packet can potentially be successfully decoded
on one of the other remaining channels.

We also observe that the dissemination time for Del-
ugeT2 as golden image is usually less than DelugeT2
with CTP. This is because dissemination traffic in the
latter case has to contend with CTP’s application traf-
fic. While Splash relies on Contiki’s Collection Protocol
to build its dissemination tree, like Glossy [9], Splash
disables all the interrupts other than the Start Frame De-
limiter interrupt during its three rounds of dissemination
where constructive interference is exploited. This means
that any underlying application will be temporarily sus-
pended and most of the Splash’s traffic will be served ex-
clusively without interference from any application traf-

Table 2: Summary of results for 139-node Indriya testbed.

Splash DelugeT2
Tree No. size R1 R2 R3 NR3−100% Rlr TSplash TDelugeT2+CT P TDelugeT2GI

[hops] [%] [%] [%] [%] [%] [sec] [sec] [sec]
1 5 84.54 97.23 98.47 91.30 100.00 22.49 1300 924
2 6 86.52 96.91 98.58 92.03 100.00 22.61 286 160
3 7 76.68 94.62 97.80 86.23 100.00 23.18 209 286
4 7 88.02 96.12 97.78 92.75 100.00 23.74 218 158
5 9 76.97 93.65 96.69 81.88 100.00 23.86 649 180
6 7 76.73 95.27 98.16 89.86 100.00 25.98 610 160
7 7 80.75 93.51 96.98 89.13 100.00 26.25 365 379
8 7 83.57 94.43 96.01 87.68 100.00 26.89 377 277
9 5 82.46 95.26 97.47 85.51 100.00 28.09 676 313
10 8 84.28 94.92 96.70 86.23 100.00 28.39 550 216

Average 82.05 95.19 97.46 88.26 100.00 25.15 524 305.3

Table 3: Summary of results for 90-node Twist testbed.

Splash Deluge
Tree No. size R1 R2 R3 NR3−100% Rlr TSplash (for a 32KB file) TDeluge (for a 2KB file)

[hops] [%] [%] [%] [%] [%] [sec] [sec]
1 4 90.58 97.09 99.22 94.38 100.00 20.07 356.60
2 4 81.08 94.70 99.31 92.13 100.00 20.19 431.48
3 4 86.53 96.19 98.00 91.01 100.00 22.79 351.67
4 4 78.64 94.10 98.12 84.09 100.00 23.37 518.19
5 4 81.42 93.95 97.98 89.89 100.00 23.41 467.00
6 4 78.04 93.55 96.82 85.39 100.00 26.66 439.81
7 4 83.90 95.18 97.54 89.89 100.00 26.79 345.28
8 4 83.70 93.64 96.45 84.27 100.00 27.32 388.68
9 6 81.58 93.35 97.02 85.39 100.00 27.45 484.10
10 5 80.78 93.09 97.11 85.39 100.00 29.25 397.59

Average 82.62 94.48 97.76 88.18 100.00 24.73 418.04

fic. On the other hand, because DelugeT2 is built on
TinyOS services, it is not possible to completely dis-
able all the interrupts during its execution. DelugeT2 as
golden image provides us with the baseline performance
without interference from application traffic. Note that
application suspension in Splash is not a problem as
most sensor applications have no real-time requirements.
Moreover, interrupts are re-enabled long before the com-
pletion of dissemination, before starting the round of lo-
cal recovery that dominates the dissemination time (see
Fig. 7). Applications are suspended for only about 8.2
seconds while disseminating the 32-kilobyte object.

Twist Testbed. As shown in Table 3, Splash’s per-
formance on Twist is similar to that on Indriya. It takes
about 25 seconds on average to complete the dissemi-
nation of a 32-kilobyte object. On the other hand, be-
cause the Contiki implementation of Deluge is less effi-
cient, it takes about 418 seconds to disseminate a much
smaller object of 2 kilobytes. Note that Contiki Del-
uge is a thin implementation with minimal function-
ality that allows only minimal changes to its settings.
Hence, Splash is able to significantly outperform Con-
tiki’s Deluge even when disseminating a data object that
is 16 times larger. Splash effectively achieves anetwork-
wide goodput of above 10 kilobits/sec per node on both

Indriya and Twist testbeds, which is higher than that
of all existing network-wide data dissemination proto-
cols [6, 5, 7, 10, 12, 30, 18, 14, 17] in the literature.

Memory Consumption. Splash not only outperforms
DelugeT2 in terms of speed, it is also much more effi-
cient than DelugeT2 in terms of memory usage. Splash
requires only 11.38 kilobytes of ROM and 0.13 kilobytes
of RAM whereas DelugeT2 requires 21.01 and 0.81 kilo-
bytes of ROM and RAM respectively. Hence, Splash
uses 9.63 kilobytes of ROM and 0.68 kilobytes of RAM
less than DelugeT2. Given that it is not uncommon for
sensor devices to have only about 48 and 10 kilobytes of
ROM and RAM respectively, these are significant sav-
ings in memory, that will be available for use by sensor
applications.

Comparison to Existing Protocols. Because we were
not able to obtain the code for the state-of-the-art dissem-
ination protocols ECD [6] and MT-Deluge [10], we used
an indirect method to compare Splash against them and
other existing dissemination protocols [5, 12, 30, 18]. It
turns out that these protocols are all evaluated against
Deluge and so we have a convenient common baseline
with which to compare against without having to im-
plement and evaluate them individually. We present the
relative performance of Splash to these protocols in Ta-

Table 4: Comparison of Splash to existing protocols.

Protocol No. of File Reduction
nodes size [KB] factor

MNP ([18], 2005) 100 5 1.21
MC-Deluge ([30], 2005) 25 24.3 1.6

Rateless Deluge ([12], 2008) 20 0.7 1.47
ReXOR ([5], 2011) 16 4 1.53

ECD ([6], 2011) 25 10 1.44
MT-Deluge ([10], 2011) 20 0.7 2.42

Splash 139 32 21

ble 4. In the fourth column, we present the reduction
factor achieved by each of these algorithms compared to
Deluge. It is evident that Splash’s performance is signif-
icantly better than that of the state-of-the-art protocols.
Not only is Splash faster by an order of magnitude, but
we also achieve this improvement on a larger testbed and
with a bigger file than all the previous algorithms. Note
also that most of the results for the existing protocols in
Table 4 are compared against classical Deluge (Deluge
2.0 of TinyOS 1), which is in fact slower than DelugeT2,
against which we have compared Splash.

Energy Consumption. Duty cycling is typically
adopted by applications that transmit a data packet once
in a while, and not for dissemination that involves trans-
fer of large amounts of data [25]. As duty-cycled trans-
missions involve a large overhead such as the transmis-
sion of a long preamble before sending every packet [22],
they make dissemination significantly more expensive in
terms of both time and energy. This drives most of the
dissemination protocols in the literature [14, 12, 5, 6, 10,
30] to keep the radio awake during dissemination as re-
quired in Splash. Therefore, energy consumption is di-
rectly proportional to the dissemination time. This means
Splash reduces energy consumption by the same factor
by which it reduces dissemination time.

5.2 Contribution of Individual Techniques

In order to achieve a high reliability, Splash incorporates
four key techniques: (1) XOR coding; (2) transmission
density diversity; (3) opportunistic overhearing; and (4)
channel cycling. We now evaluate the contribution of
these techniques together with local recovery.

XOR Coding. We employ XOR coding in the third
round of dissemination. The goal of using XOR coding
is to significantly increase the number of nodes that suc-
cessfully receive the entire file so that local recovery will
be much more efficient. We present the proportion of
nodes that achieve a reliability of 100% before and af-
ter the third round of XORed dissemination on Indriya
in Table 5. The largest improvement was observed for
the fifth tree where the use of XOR coding increases the
percentage of nodes having the full object from 9.42% to
81.88%. On average, the number of nodes with the full

Table 5: Proportion of nodes with 100% reliability before
and after the third round of XOR coding on Indriya.

Tree No. Before XOR After XOR
1 57.25 91.30
2 50.72 92.03
3 21.74 86.23
4 33.33 92.75
5 9.42 81.88
6 26.09 89.85
7 23.91 89.13
8 47.10 87.68
9 51.45 85.51
10 48.55 86.23

Avg. 36.96 88.26

data object is more than doubled. Similar results were
observed on the Twist testbed.

To validate our hypothesis that XOR’s effectiveness
comes from helping the nodes that already have most of
the packets, we plot in Fig. 5(a) the average number of
nodes per tree found in the three different bins of reliabil-
ity for Indriya, namely<90%, between 90% and 100%,
and 100%. We see that before the third dissemination
round, there are about 20 nodes in the first bin with relia-
bility less than 90% and 67 nodes in the second bin with
reliability between 90% and 100%. XOR coding is able
to move most of these nodes in the first 2 bins into the
third bin with 100% reliability. In particular, XOR cod-
ing can reduce the size of the second bin from 67 to 7, to
give a total of 122 nodes in the 100% bin. Similar results
were observed on the Twist testbed.

For the 32-kilobyte file that we used in our experi-
ments, we XOR coded and transmitted each of the 500
packets (with a packet payload size of 64 bytes) consti-
tuting the file. One pertinent question is whether we can
do with fewer packets since an XORed packet already
contains the information of 20 packets. In Fig. 5(b),
we present a plot ofNR3−100% against the number of
XOR coded packets transmitted, averaged over five ex-
perimental runs on different dissemination trees. Note
that only about 37% of the nodes have downloaded the
whole file after the first two rounds of dissemination. It is
clear from Fig. 5(b) that 100 packets is not enough, and
that there is a significant improvement inNR3−100% as
we transmit more coded packets until about 400 packets.
From 400 to 500 packets, we obtain only a small increase
of about 2% inNR3−100% (about 3 nodes). While the im-
provement is small, since local recovery over CSMA/CA
can be expensive, we decide to transmit all the 500 coded
packets for completeness since the extra 100 transmis-
sions take only an extra 0.56 seconds.

Transmission Density Diversity. To understand the
effectiveness of our attempt to exploit transmission den-
sity diversity, we disseminate a 32-kilobyte data object
without the leaf nodes transmitting (Round-1). Imme-

 20

 40

 60

 80

 100

 120

Before XOR After XOR

N
um

be
r

of
 te

st
be

d
no

de
s

<90%
[90%, 100%)

100%

(a) Distribution of avg. no. nodes across three reli-
ability bins.

 55

 60

 65

 70

 75

 80

 85

 90

 100 200 300 400 500

N
R

3-
10

0%

Number of XOR coded packets

(b) NR3−100% Vs. no. of XOR coded transmissions.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Node 1 Node 2 Node 3 Node 4

R
el

ia
bi

lit
y

[%
]

Round-1 Round-2 Round-3

(c) Effectiveness of transmission density diversity.

Figure 5: Contributions of XOR coding and transmission density diversity.

Table 6: Performance of Splash with and without oppor-
tunistic overhearing.

With overhearing Without overhearing
No. Nlrpkts NR3−100% TSplash Nlrpkts NR3−100% TSplash

[sec] [sec]
1 1860 78.99 28.28 5536 79.71 44.07
2 1433 89.13 23.64 2415 84.06 36.19
3 1876 89.13 27.00 2531 85.51 34.98
4 420 93.48 21.94 1529 90.58 24.73
5 1356 90.58 22.68 1131 83.33 26.75

Avg. 1389 88.26 24.71 2628.4 84.64 33.34

diately after that, the object is disseminated again but
with all the nodes transmitting (Round-2). Finally, we
repeated the transmission without the leaf nodes trans-
mitting (Round-3). This approach allows us to determine
whether a node gains from a low transmission density or
a node gains from a high transmission density. The same
channel assignment is used for all three rounds.

We run this experiment five times on a dissemination
tree. As an illustration, we present the reliability ob-
served on four nodes in each of the three rounds of an ex-
perimental run in Fig. 5(c). Nodes 1 and 2 benefit from a
low transmission density (without leaves) as the achieved
reliability is higher in the first and third rounds of dissem-
ination. On the other hand, nodes 3 and 4 benefit from
a high transmission density with all nodes transmitting.
On average, we found that 38.7% of the nodes benefit
from a low transmission density and achieve higher reli-
ability than that for the higher transmission density. The
proportion of nodes that benefit from a high transmission
density is lower, about 18.1% achieve higher reliability at
the higher transmission density compared to that for the
lower transmission density. Nevertheless, the key insight
is that by varying the number of transmitters between
transmission rounds, different sets of nodes will correctly
decode packets over different transmission rounds.

Opportunistic Overhearing. Table 6 compares the
performance of Splash with and without opportunistic
overhearing on five dissemination trees on Indriya. The
table shows the total number of packets to be recovered

during local recovery (Nlrpkts) together withNR3−100%

andTSplash. We found thatTSplash is increased by 8.6 sec-
onds on average when opportunistic overhearing is not
employed. Quite clearly, this is because the number of
corrupted/missed packetsNlrpkts is typically larger when
there is no overhearing, as observed on the first four of
the five considered trees. In the case of the fifth tree,
we found that overhearing did not lead to a smaller num-
ber of corrupted/missed packetsNlrpkts. However, Splash
with overhearing is still faster because the proportion
of nodes that have downloaded the full data object af-
ter 3 dissemination rounds (NR3−100%) is larger. In other
words, overhearing helps not just by increasing the like-
lihood that packets are transmitted successfully, it also
helps by ensuring that more nodes have downloaded the
complete file.

Channel Cycling. In order to evaluate the effective-
ness of channel cycling, we compare Splash with channel
cycling against Splash without channel cycling i.e., by
using the same channel assignment in all three dissemi-
nation rounds. We plot the resulting performance for five
dissemination trees on Indriya in Table 7. Without chan-
nel cycling, there is a drop in both reliability (R3) and
the percentage of nodes having the full data object after
the third round of dissemination (NR3−100%). In addi-
tion to better average-case performance, we also see that
channel cycling can significantly reduce the variance in
performance. We see thatTSplash varies between 22.49 s
and 28.39 s with channel cycling, while it varies between
26.24 s and 45.08 s without.

Local Recovery. After three rounds of dissemination,
about 88% of the nodes would have successfully received
the entire data object on average on both of the testbeds
(see ColumnNR3−100% in Tables 2 and 3). In Fig. 6,
we plot the CDF of the reliability of those nodes that
did not successfully receive the complete file after three
rounds of dissemination. We see that among these nodes,
only about 3% and 1% have less than 10% of the data
on Indriya and Twist respectively. About 40% have at
least 90% of the data object. In Fig. 7, we present the

Table 7: Performance of Splash with and without channel
cycling.

With cycling Without cycling
No. R3 NR3−100% TSplash R3 NR3−100% TSplash

[sec] [sec]
1 96.98 89.13 26.25 92.33 76.81 45.08
2 98.16 89.86 25.98 95.56 86.23 26.24
3 96.69 81.88 23.86 92.15 73.19 34.79
4 98.47 91.30 22.49 91.86 79.71 34.58
5 96.70 86.23 28.39 95.61 85.51 31.51

Avg. 97.40 87.68 25.39 93.50 80.29 34.44

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

C
D

F

Reliability [%]

Indriya
Twist

Figure 6: Distribution of the reliability of nodes with re-
liability less than 100%.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 10 15 20 25 30

T
im

e
(s

ec
s)

File size (KB)

completion time
local recovery
3 rounds time

Figure 7: Breakdown of completion time for different
file sizes.

time taken for local recovery for data objects of different
sizes on Indriya. We also present the time taken for the
first three rounds of dissemination and the completion
time on the same graph. As expected, the time spent in
the first three rounds increases linearly with the object
size whereas time taken for local recovery is not strictly
linear due to the variations in the number of packets to be
recovered and the randomness involved in CSMA/CA.

5.3 Effect of Packet Size

It is well-known that the reliability of constructive inter-
ference decreases as packet size increases [9, 28]. To
justify our choice of 64 bytes for the Splash payload,
we compare the performance of Splash for the default
payload size against the maximum possible payload size
of 117 bytes (which results in a maximum-sized packet

Table 8: Performance of Splash for two different payload
sizes.

64 bytes 117 bytes
R1 R2 R3 NR3−100% R1 R2 R3 NR3−100%

85.12 96.82 98.68 92.03 78.19 91.60 94.47 78.26
86.35 96.64 98.30 91.30 80.58 92.04 93.52 78.99
89.41 96.90 98.83 93.48 81.91 94.65 96.45 82.61
84.64 96.20 97.67 88.41 78.96 92.59 95.20 82.61
84.49 96.99 98.29 89.13 72.08 87.54 90.35 70.29
86.00 96.71 98.35 90.87 78.34 91.68 94.00 78.55

 0

 200

 400

 600

 800

 1000

 1200

1 2 3 4 5 6 7 8 9 10

D
is

se
m

in
at

io
n

tim
e

(s
ec

s)

Tree no.

Splash
22-bytes DelugeT2

64-bytes DelugeT2
107-bytes DelugeT2

Figure 8: Comparison of Splash against DelugeT2 con-
figured with different payload sizes on Indriya.

of 128 bytes) for five dissemination trees on Indriya
in Table 8. As expected, reliability decreases with the
larger payload size, so we set the default payload size for
Splash to 64 bytes.

It is known that the performance of DelugeT2 varies
with packet size [2], so in order to compare Splash fairly
to DelugeT2, we also investigated the performance of
DelugeT2 for different payload sizes. We constructed 10
random dissemination trees on Indriya, and on each of
them we disseminated a 32-kilobyte object using Splash
and DelugeT2 configured with payload sizes of 22 bytes
(default), 64 bytes, and the maximum value of 107 bytes.
We ensured that Splash and the three versions of Del-
ugeT2 were executed back-to-back on each of the dis-
semination trees so as to minimize the temporal varia-
tions in channel conditions across these executions. The
results are shown in Fig. 8. For DelugeT2, we found
that while there was some variation in the average dis-
semination times depending on the payload size and the
payload size that achieves the best performance depends
on the actual network conditions, the differences in per-
formance are not significant, at least not when compared
to the dissemination times achieved by Splash.

6 Conclusion

We propose Splash, a fast and scalable dissemination
protocol for wireless sensor networks, that exploits con-
structive interference and channel diversity to achieve
speed and scalability. To achieve high reliability, Splash
incorporates the use of transmission density diversity,
opportunistic overhearing, channel-cycling, and XOR
coding. We demonstrated with experiments on two large
multihop sensor networks that Splash can achieve an or-
der of magnitude reduction in dissemination time com-
pared to state-of-the-art dissemination protocols.

Acknowledgements

We would like to thank the anonymous reviewers and our
shepherd, Rodrigo Fonseca for their valuable comments
and suggestions. This work was partially supported by
the NRF Singapore through the SMART (R-252-002-
430-592) program.

References

[1] A LIZAI , M. H., LANDSIEDEL, O., LINK , J. A. B., GOTZ, S.,
AND WEHRLE, K. Bursty Traffic over Bursty Links. InProceed-
ings of SenSys (2009).

[2] C., R. K., SUBRAMANIAN , V., ULUAGAC , A. S.,AND BEYAH ,
R. SIMAGE: Secure and Link-Quality Cognizant Image Distri-
bution for Wireless Sensor Networks. InProceedings of GLOBE-
COM (2012).

[3] DODDAVENKATAPPA, M., CHAN , M. C., AND ANANDA , A.
Indriya: A Low-Cost, 3D Wireless Sensor Network Testbed. In
Proceedings of TRIDENTCOM (2011).

[4] DODDAVENKATAPPA, M., CHAN , M. C., AND LEONG, B. Im-
proving Link Quality by Exploiting Channel Diversity in Wire-
less Sensor Networks. InProceedings of RTSS (2011).

[5] DONG, W., CHEN, C., LIU , X., BU, J., AND GA , Y. A
Lightweight and Density-Aware Reprogramming Protocol for
Wireless Sensor Networks. InIEEE TRANSACTIONS ON MO-
BILE COMPUTING (2011).

[6] DONG, W., LIU , Y., WANG, C., LIU , X., CHEN, C., AND BU,
J. Link Quality Aware Code Dissemination in Wireless Sensor
Networks. InProceedings of ICNP (2011).

[7] DONG, W., LIU , Y., WU, X., GU, L., AND CHEN, C. Elon:
Enabling Efficient and Long-Term Reprogramming for Wireless
Sensor Networks. InProceedings of SIGMETRICS (2010).

[8] DUQUENNOY, S., ÖSTERLIND, F., AND DUNKELS, A. Lossy
Links, Low Power, High Throughput. InProceedings of SenSys
(2011).

[9] FERRARI, F., ZIMMERLING , M., THIELE, L., AND SAUKH ,
O. Efficient Network Flooding and Time Synchronization with
Glossy. InProceedings of the IPSN (2011).

[10] GAO, Y., BU, J., DONG, W., CHEN, C., RAO, L., , AND L IU ,
X. Exploiting Concurrency for Efficient Dissemination in Wire-
less Sensor Networks. InProceedings of DCOSS (2011).

[11] GNAWALI , O., FONSECA, R., JAMIESON, K., MOSS, D., AND

LEVIS, P. Collection Tree Protocol. InProceedings of SenSys
(2009).

[12] HAGEDRON, A., STAROBINSKI, D., AND TRACHTENBERG, A.
Rateless Deluge: Over-the-Air Programming of Wireless Sensor
Networks using Random Linear Codes. InProceedings of IPSN
(2008).

[13] HANDZISKI , V., KOPKE, A., WILLIG , A., AND WOLISZ, A.
TWIST: A Scalable and Reconfigurable Testbed for Wireless
Indoor Experiments with Sensor Network. InProceedings of
REALMAN (2006).

[14] HUI , J. W.,AND CULLER, D. The Dynamic Behavior of a Data
Dissemination Protocol for Network Programming at Scale. In
Proceedings of SenSys (2004).

[15] K IM , S., PAKZAD , S., CULLER, D. E., DEMMEL , J., FENVES,
G., GLASER, S., AND TURON, M. Health Monitoring of Civil
Infrastructures Using Wireless Sensor Networks. InProceedings
of IPSN (2007).

[16] KO, J., ERIKSSON, J., TSIFTES, N., DAWSON-HAGGERTY, S.,
DURVY, M., VASSEUR, J., TERZIS, A., DUNKELS, A., AND

CULLER, D. Beyond Interoperability: Pushing the Performance
of Sensor Network IP Stacks. InProceedings of SenSys (2011).

[17] KULKARNI , S. S.,AND ARUMUGAM , M. INFUSE: A TDMA
based Data Dissemination Protocol for Sensor Networks. Tech.
rep., Michigan State University, 2004.

[18] KULKARNI , S. S.,AND WANG, L. MNP: Multihop Network
Reprogramming Service for Sensor Networks. InProceedings of
ICDCS (2005).

[19] LEVIS, P.,AND CULLER, D. Mate: a Virtual Machine for Tiny
Networked Sensors. InProceedings of ASPLOS (2002).

[20] LEVIS, P., PATEL , N., CULLER, D., AND SHENKER, S. Trickle:
A Self-Regulating Algorithm for Code Propagation and Main-
tenance in Wireless Sensor Networks. InProceedings of NSDI
(2004).

[21] L IANG , C.-J. M., PRIYANTHA , N. B., , LIU , J.,AND TERZIS,
A. Surviving Wi-Fi Interference in Low Power ZigBee Networks.
In Proceedings of SenSys (2010).

[22] MOSS, D., AND LEVIS, P. BoX-MACs: Exploiting Physical and
Link Layer Boundaries in Low-Power Networking. Tech. rep.,
Technical Report SING-08-00, Stanford University, 2008.

[23] OSTERLIND, F., AND DUNKELS, A. Approaching the Maxi-
mum 802.15.4 Multihop Throughput. InProceedings of HotEm-
Nets (2008).

[24] RAMAN , B., CHEBROLU, K., BIJWE, S., AND GABALE , V.
PIP: A Connection-Oriented, Multi-Hop, Multi-Channel TDMA-
based MAC for High Throughput Bulk Transfer. InProceedings
of SenSys (2010).

[25] ROSSI, M., BUI , N., ZANCA , G., STABELLINI , L., CREPALDI,
R.,AND ZORZI, M. SYNAPSE++: Code Dissemination in Wire-
less Sensor Networks Using Fountain Codes. InIEEE TRANSAC-
TIONS ON MOBILE COMPUTING (2010).

[26] SRINIVASAN , K., JAIN , M., CHOI, J. I., AZIM , T., KIM , E. S.,
LEVIS, P.,AND KRISHNAMACHARI , B. The K-Factor: Inferring
Protocol Performance Using Inter-link Reception Correlation. In
Proceedings of Mobicom (2010).

[27] WANG, Q., ZHU, Y., AND CHENG, L. Reprogramming Wireless
Sensor Networks: Challenges and Approaches. InIEEE Network
Magazine (2006).

[28] WANG, Y., HE, Y., MAO, X., L IU , Y., HUANG, Z., AND YANG

L I , X. Exploiting Constructive Interference for Scalable Flood-
ing in Wireless Networks. InProceedings of INFOCOM (2012).

[29] WU, Y., STANKOVIC , J. A., HE, T., LU, J., AND L IN , S. Re-
alistic and Efficient Multi-Channel Communications in Wireless
Sensor Networks. InProceedings of INFOCOM (2008).

[30] X IAO , W., AND STAROBINSKI, D. Poster Abstract: Exploiting
Multi-Channel Diversity to Speed Up Over-the-Air Programming
of Wireless Sensor Networks. InProceedings of SenSys (2005).

