
PRE-PRINT: IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Mitigating Unfairness due to Physical Layer Capture
in Practical 802.11 Mesh Networks

Wei Wang, Ben Leong, and Wei Tsang Ooi
Department of Computer Science, National University of Singapore

Abstract—In this paper, we describe FairMesh, which is the first attempt at mitigating the unfairness arising from physical layer capture

(PLC) in 802.11 mesh networks. In the presence of PLC, which is surprisingly common in practical mesh networks, existing state-of-

art solutions either fail to correctly identify the sender that needs to be throttled or are too aggressive in reducing the sending rate.

FairMesh is able to accurately detect unfairness quickly and employs a simple CWmin adjustment algorithm to achieve approximate

max-min fairness. Our key insight is that the nodes that cause an unfair situation to arise and can act to remedy it are often distinct from

the ones that can accurately assess the degree of unfairness. To the best of our knowledge, we are the first to decouple the detection

and assessment of unfairness from the remedial action. A key strength of our approach is its simplicity, which makes it amenable for

deployment in practical 802.11 mesh networks to allow an arbitrary number of flows to operate concurrently without modifications to

the 802.11 MAC. We show via simulation and with experiments on a 20-node outdoor 802.11 wireless mesh testbed that FairMesh has

many desirable properties. First, it is fully distributed and has negligible control overhead. Second, it achieves approximate max-min

fairness, and can be modified to support a different notion of fairness (e.g., proportional fairness). Third, it can handle multiple (more

than two) competing links and can scale up to mesh networks with tens of nodes. Fourth, it remains efficient under high data rates

and high loss rates. Finally, FairMesh interacts well with TCP and maintains good fairness when a multi-hop flow competes with a

single-hop flow.

Index Terms—802.11 mesh network, Physical layer capture, Fairness.

✦

1 INTRODUCTION

Ensuring fairness among competing flows in 802.11
mesh networks [17, 21, 22, 24] is a longstanding and
difficult problem. The trouble with unfairness is that if
left unchecked, it can often lead to the starvation of some
flows, rendering wireless meshes practically unusable.
Unfair behavior is known to arise under the asymmetric
topology illustrated in Fig. 1(a). When node C has a
backlog of data to send to node D, node A has little
chance of successfully sending packets to node B as
the data packets (or RTS) from node A would likely
collide with the data packets from node C. Prior work
has shown that the unfairness arising in this topology
can be mitigated by adjusting the contention window
CWmin [22, 24].

In our measurement study of a large number of flow
pairs in a 20-node wireless mesh testbed, we discovered
that in addition to the asymmetric topology, there are
two other common mesh topologies that can cause sig-
nificant MAC unfairness. The key difference between
these topologies compared with the previously well-
studied asymmetric topology [8, 16], is that the unfair-
ness arises because of physical layer capture (PLC), where
packets can still be decoded correctly even in the event
of packet collisions. While MAC unfairness arising from
the capture effect was investigated in [15], the authors
did not consider topologies with hidden-node collisions
that are very common in mesh networks.

The two mesh topologies with capture-induced un-
fairness, which we refer to as direct capture and indirect
capture, are illustrated in Fig. 1(b) and Fig. 1(c), respec-

B C DA

(a) Asymmetric.

B CA

(b) Direct capture.

B C DA

(c) Indirect capture.

Fig. 1. Topologies that can result in MAC unfairness. The
arrows indicate the directions of the data flows, the bold

lines indicate the captured links, and the dashed lines

indicate overheard links.

tively. PLC is surprisingly common. Lee et al. showed
that a 1 dB difference in receive signal strength can result
in link capture for Atheros adapters [28]. In our 20-
node outdoor wireless mesh testbed with these adapters,
92.6% (87/94) and 18.6% (19/102) of the possible 3- and
4-node configurations exhibit direct capture and indirect
capture, respectively.

In the direct capture scenario, node B is able to capture
the packets from node C, and can successfully decode
C’s packets even if they collide with the packets from
node A. This means that the link AB could be starved
if node C has backlogged packets to node B. With
RTS enabled, node A would have a lower throughput
than C because C always wins in the RTS collision at
B. In the indirect capture scenario, node C is able to
capture node D’s packets, and node B is able to capture
node C’s packets. As such, node C can receive D’s
RTS with high probability; also, the CTS from node C

has a high probability of “overriding” any RTS from
node A and preventing node B from sending CTS. This
causes the throughput of the link AB to be significantly

PRE-PRINT: IEEE TRANSACTIONS ON MOBILE COMPUTING 2

lower compared with that of link DC. Even if there is
capture effect at node C but not at node B, link AB still
has smaller throughput than link DC, albeit to a lesser
degree.

For the rest of this paper, we will refer to link AB (in
all the three topologies in Fig. 1) as the victim link and
the link CD (in Fig. 1(a)), link CB (in Fig. 1(b)) and link
DC (in Fig. 1(c)) as the offending links. The sender on the
offending link is referred to as the offender.

Our extensive evaluation of two existing solutions [22,
24] reveals fundamental and practical shortcomings. As
neither of them are explicitly designed to handle PLC,
we found that they are able to achieve reasonable fair-
ness in some, but not for all three, topologies in Fig. 1.
Even in some scenarios where fairness is achieved, total
throughput is reduced.

Motivated by our findings and the need for a simple,
practical and distributed solution to mitigate unfairness
in 802.11 mesh networks, we designed and implemented
FairMesh, a new algorithm for adjusting the contention
windows among competing flows to achieve approx-
imate max-min fairness. Our key insight is that the
nodes that cause an unfair situation to arise and can act
to remedy it are often distinct from the ones that can
promptly detect and accurately assess the unfairness. To
the best of our knowledge, we are the first to decouple
the detection and assessment of unfairness from the
remedial action. A key strength of our approach is
its simplicity, which makes it amenable for immediate
deployment in practical 802.11 mesh networks using off-
the-shelf commodity adapters.

FairMesh has many desirable properties: (i) it is fully
distributed with negligible overhead; (ii) it works not
only in all the three scenarios identified with two
competing flows, with and without Binary Exponential
Backoff (BEB), but is also scalable to more than two
competing flows in a network with tens of nodes; (iii) it
incorporates practical techniques to improve the perfor-
mance in the presence of lossy links, high data rate, and
TCP traffic, and (iv) it can be extended to other notions
of fairness besides max-min fairness.

We show with a comprehensive set of experiments,
both in simulation and on a 20-node outdoor 802.11
wireless mesh testbed, that FairMesh is not only more
fair than 802.11 and prior work, but also achieves near-
optimal max-min fairness allocation. The major contri-
bution of this paper is thus a comprehensive, yet simple
and practical solution to the longstanding problem of
unfairness in 802.11 mesh networks.

The rest of this paper is organized as follows: in
Section 2, we present our measurement study on the
extent of unfairness in various scenarios. We describe
how FairMesh works in Section 3, and evaluate FairMesh
in Section 4. Finally, we present an overview of related
work in Section 5 and conclude in Section 6.

2 UNDERSTANDING MAC UNFAIRNESS

Unfairness among competing links arises only when the
competing links have backlogged traffic, i.e., when there
is an accumulation of packets at the transmission queue.
Such a scenario is not uncommon, especially considering
the prediction that the bandwidth-hungry video traffic is
expected to make up 69% of the Internet traffic in 2017,
more than half of which is carried by WiFi [2]. Thus, we
are only concerned with backlogged-traffic scenarios in
this paper.

2.1 Degree of Unfairness

To understand the degree of unfairness for the topologies
cited in Fig. 1, we simulated the three topologies with the
ns-2 simulator with backlogged UDP flows using the
default 802.11 parameters (CWmin= 15, CWmax= 1023,
and 1,500-byte packets). We implemented the capture
effect in our ns-2 simulation model, by building on the
ns-2 enhancements by Chen et al. [12]. Since Atheros
network adapters do not double the backoff window
after failed transmissions [19], we also investigated the
impact of not using BEB. We verified on our Atheros-
based 802.11 testbed that the results without BEB are
similar to that produced by the ns-2 simulations, vali-
dating the simulation model. BEB cannot be enabled on
our Atheros-based adapters, thus we can only use ns-2
to evaluate scenarios with BEB enabled.

In Fig. 2, we compare the throughput of the victim
link with the offending link on all three topologies, for
data rates of 6 Mbps and 24 Mbps. With BEB enabled,
the victim link in all three topologies is starved (i.e.,
has throughput values that are close to zero). With BEB
disabled and RTS/CTS enabled, the victim link is not
starved for the asymmetric and direct capture topologies
(though unfairness still exists), but is still starved for the
indirect capture topology. Without RTS/CTS, the victim
links are starved for the first two topologies and the
performance is poor for the indirect capture topology.

2.2 Design Decisions

A straightforward way to improve fairness is to adjust
the waiting time between consecutive packets, so that
the opportunity of the victim to access the channel can
be increased. There are two important design decisions
that we shall carefully address. The first design decision
is whether to slow down the offender (i.e., increasing the
offender’s waiting time between its consecutive packets)
or to speed up the victim (i.e., reducing the victim’s
waiting time). Through both testbed experiment and
simulation, we found that speeding up the victim is
not sufficient to ensure fairness and sometimes it could
exacerbate the unfairness due to an increased likelihood
of hidden-node collisions. We will show that slowing
down the offender is more effective in achieving fair-
ness. Note that the 802.11e standard employs a similar
“reduced waiting time” mechanism to increase channel
access priority, and is thus not too effective either.

PRE-PRINT: IEEE TRANSACTIONS ON MOBILE COMPUTING 3

 0

 5000

 10000

 15000

 20000

no RTS
6 Mbps

RTS
6 Mbps

no RTS
24 Mbps

RTS
24 Mbps

th
ro

ug
hp

ut
 (

kb
ps

)
asymmetric topology, BEB

AB CD

 0

 5000

 10000

 15000

 20000

no RTS
6 Mbps

RTS
6 Mbps

no RTS
24 Mbps

RTS
24 Mbps

th
ro

ug
hp

ut
 (

kb
ps

)

asymmetric topology, no BEB

AB CD

 0

 5000

 10000

 15000

 20000

no RTS
6 Mbps

RTS
6 Mbps

no RTS
24 Mbps

RTS
24 Mbps

th
ro

ug
hp

ut
 (

kb
ps

)

direct capture, BEB

AB CB

 0

 5000

 10000

 15000

 20000

no RTS
6 Mbps

RTS
6 Mbps

no RTS
24 Mbps

RTS
24 Mbps

th
ro

ug
hp

ut
 (

kb
ps

)

direct capture, no BEB

AB CB

 0

 5000

 10000

 15000

 20000

no RTS
6 Mbps

RTS
6 Mbps

no RTS
24 Mbps

RTS
24 Mbps

th
ro

ug
hp

ut
 (

kb
ps

)

indirect capture, BEB

AB DC

 0

 5000

 10000

 15000

 20000

no RTS
6 Mbps

RTS
6 Mbps

no RTS
24 Mbps

RTS
24 Mbps

th
ro

ug
hp

ut
 (

kb
ps

)

indirect capture, no BEB

AB DC

Fig. 2. MAC unfairness for topologies in Fig. 1.

The second design decision is which MAC parameter
to adjust in order to slow down the offender. There
are two possible options: Arbitrary Inter-Frame Space
(AIFS) [9, 18] and CWmin [22]. The former specifies the
minimum waiting time of a sender after the channel
becomes idle, whereas the latter determines the random
backoff time. Note that, unlike DIFS, AIFS is not fixed,
e.g., from 2 to 7 in the 802.11e standard. We found that
it is possible to mitigate unfairness by adjusting either
AIFS or CWmin in the three topologies in Fig. 1. How-
ever, the drawback of adjusting AIFS is that it is possible
for a sender with large AIFS value to be completely
starved if a neighboring node starts transmitting with the
default MAC parameters. This is because, when a sender
is waiting for the AIFS period to expire and the channel
becomes busy, the sender will start a fresh AIFS period
later after the channel becomes idle. With a large AIFS,
the AIFS period for the sender might not expire before
it is repeatedly renewed, thereby causing starvation. On
the other hand, a sender with large CWmin will not ex-
perience starvation because the backoff counter is frozen
when the channel is busy and resumes decrementing
after the channel becomes idle. Therefore, we choose to
adjust CWmin instead of AIFS.

2.3 Impact of CWmin

To understand the effect of CWmin adjustment, we plot
the average throughput of backlogged UDP traffic for the
three different topologies with different combinations

Fig. 3. Throughput under different combinations of

CWmin, for the topologies in Fig. 1, with RTS/CTS. The
values on the axes are the logarithms of CWmin. Larger

pie size indicates better overall throughput. Identical size

of black and white sectors means perfect fairness.

of CWmin obtained from ns-2 simulations in Fig. 3.
The CWmin ranges from 15 (default) to 1023 (default
value of CWmax). The area of each pie is proportional
to the total throughput. The white and black sectors
represent the throughput of the victim and offending
links, respectively.

We make several observations. First, as expected,
increasing the CWmin of the two flows makes their
throughput more equal but hurts the total throughput,
i.e., the size of the pie reduces. To allow us to trade off
the total throughput against the fairness between the
two flows, some notion of fairness is required. In this
paper, we focus on max-min fairness [7]. In Section 4.6,
we show how we can extend our work to proportional
fairness.

Second, the pie graph in Fig. 3 makes it easy to find the
optimal CWmin combination for max-min fairness, but it
is generally difficult to obtain similar figures for arbitrary
topologies. Since 802.11 adapters often allow CWmin to

PRE-PRINT: IEEE TRANSACTIONS ON MOBILE COMPUTING 4

be set only to a value of 2k−1, where k is an integer, it is
in principle possible to generate Fig. 3 via offline simu-
lation/measurement. However, each figure is specific to
the interaction between a given pair of flows. In practice,
the number of possible interacting flows/links could be
huge and it is not feasible to probe all possible CWmin

values to determine the optimal values for each and
every topology. In addition, although there are existing
proposals [16, 42] to model the asymmetric topology
in Fig. 1(a), it is not trivial to extend these models to
arbitrary topologies.

Third, we note that the pies can be loosely divided into
two contiguous regions: a black-dominant region and
a white-dominant region. The optimal CWmin values
to achieve max-min fairness must lie on the boundary
between the two regions. This observation suggests a
simple approach for approximating the optimal CWmin

values: increase the CWmin of the offender until we reach
the boundary between the two regions and once we get there,
we move along the boundary until we find the allocation
that achieves max-min fairness. While this idea is simple,
implementing it in a distributed way for arbitrary pairs
of links is not entirely straightforward and it involves
many details, which we describe in the next section.

3 FAIRMESH

Unfairness can fundamentally only be mitigated by
slowing down the offender(s) that are sending too fast,
in order to provide the victim node(s) with a fair chance
at accessing the wireless media. Since unfairness does
not occur all the time and depends on both the network
topology and traffic patterns, we should only intervene
when unfairness arises, to avoid interfering with the
normal operation of the 802.11 MAC.

In this light, the general approach to solve this prob-
lem would involve (i) detecting the existence of unfair-
ness in a timely manner, (ii) identifying the offending
link(s) accurately; and (iii) reducing the transmission rate
of the offending link(s) appropriately. In a wireless mesh
network, it is also preferable to achieve the above in a
distributed manner without a central coordinator.

FairMesh detects unfairness and identifies the offend-
ing link(s) by continuously tracking and overhearing
the transmissions to and from the nodes within its one-
hop neighborhood. It turns out that simply overhearing
the transmissions of one-hop neighbors is generally not
sufficient to provide a node with an accurate view of the
transmissions in its locality. As explained in Section 3.1,
we insert an additional short header (between MAC
and IP headers) and piggyback additional information in
order to allow nodes to infer the transmissions of packets
that are not successfully overheard.

A problem, not commonly considered in previous
work, is the coordination among multiple parties that
could detect unfairness concurrently in a practical wire-
less mesh network with multiple flows. To avoid multi-
ple nodes from acting on the same problem and causing

the throughput to be reduced excessively, FairMesh uses
a distributed algorithm (described in Section 3.2) to
elect a unique coordinating node. Also, we have found
situations where the nodes that can detect an unfair
situation are distinct from the ones that can remedy the
problem.

Once an offending link is identified, it remains for
FairMesh to throttle the offender to improve fairness.
There are several possible notions of fairness. FairMesh
adopts max-min fairness [7] because it is simple to
implement and practical. We show in Section 4.6 that
FairMesh can, in principle, be modified to support other
notions of fairness, such as proportional fairness.

The performance of FairMesh depends critically on
the amount of throttling, as it affects both the eventual
efficiency and the fairness of the system. Our investi-
gations into BEB and CWmin tuning, briefly described
in Section 2, suggested that the adjustment of CWmin,
according to the general principle of moving to the
boundary of two unfair regions and then searching along
the boundary, can achieve a good solution. In this light,
we propose the following algorithm to throttle the of-
fender: the coordinator sends a control message to the of-
fender to double its CWmin. Once a change in CWmin is
detected, the coordinator checks if the change improves
the situation. If so, it informs the offender to further
double the CWmin; otherwise, it informs the offender
to roll back the earlier instruction. As we will explain
in Section 3.3, it is challenging to get this algorithm to
work in a general multiple-flow scenario, because after
an offender is slowed down, another node may become
the new offender.

We have considered different solutions based on these
ideas and the final algorithm that we describe in this
section represents a solution that achieves approximate
max-min fairness in a distributed way, guided by the
principles of simplicity and practicality. Our primary
motivation is to develop a reliable algorithm that can al-
low an arbitrary number of flows to operate concurrently
in a fair and consistent way, without reducing overall
efficiency.

3.1 Estimating Throughput Accurately

The degree of unfairness observed at a node is measured
using the number of successfully transmitted packets per
second, which reflects the channel access opportunities
of different senders. If the packet size is constant, the
packet sending rate is directly proportional to through-
put. We track the unfairness on a per-link basis rather
than a per-node basis, as the latter would tend to penalize
the nodes with many neighbors. Alternatively, we can
enforce fairness on a per-node basis by aggregating
per-link information, if desired. Correspondingly, each
outgoing link from a node to a different neighbor also
maintains an independent value of CWmin, which would
be adjusted according to the algorithm to be described
in Section 3.3.

PRE-PRINT: IEEE TRANSACTIONS ON MOBILE COMPUTING 5

Each node has knowledge about all the nodes within
two hops, which can be maintained at negligible cost,
since mesh networks are stationary and relatively stable.
Each time a node transmits, receives, or overhears a data
packet, the node updates the throughput estimates of
all its observed traffic. A sliding-window-based approach
is used to estimate the throughput: for a link AB, the
number of packets successfully transmitted from node
A to node B during a given time window is used as an
estimate of the throughput for link AB. We investigated
different time window sizes in our mesh testbed, ranging
from several hundred milliseconds to a few seconds, and
found that 0.5 to 1 s works well in practice, so we set
the window size to 1 s in our algorithm.

While a node can accurately track the number of pack-
ets it has successfully transmitted to or received from a
neighbor, the same cannot be said for overheard packets.
Overheard packets are often corrupted or missed, since
we are operating in a regime where collisions are com-
mon. This problem causes the throughput of an over-
heard link to be under-estimated. To address the issue,
we introduce a new per-neighbor sequence number and
piggyback this information in the packets by adding it
into the FairMesh header, which is between the IP and
MAC headers. This sequence number is incremented
after every successful packet transmission and a node
can estimate the throughput of an overheard link from
the sequence number instead of by counting packets. If
the packets are not of uniform size, it is straightforward
to modify the implementation to piggyback the number
of successfully transmitted bytes instead. Our approach
works even if rate adaptation [39] is enabled because
fairness is measured by the amount of data transmitted,
not by the underlying transmission rate.

3.2 Detecting Unfairness

All nodes constantly monitor the traffic to and from
its one-hop neighbors. It remains for us to use this
information to (i) detect unfairness and situations where
we can potentially improve fairness; and (ii) elect a
coordinator to coordinate the CWmin adjustment.

Since unfairness only arises when competing links are
backlogged, FairMesh needs only to consider backlogged
links. To identify such links, we piggyback an additional
bit in the FairMesh header to indicate if the transmission
queue for a link is backlogged.

Identifying the Victim. The backlogged links with the
lowest throughput values among all the flows observed
within each node’s neighborhood are the potential victim
links. From the perspective of an observing node, a
potential victim is defined as the link with the smallest
throughput among all the observed links (i.e., among
all the outgoing, incoming, and overheard links); and
the offending link is a link that has a higher throughput
than the victim and also has a conflict with the victim. By
conflict, we mean that their senders cannot successfully
transmit packets at the same time, i.e., a link has at least

one node within the transmission range of either the
sender or receiver of the other link [32]. Note that, if
two links share the same sender, they are not considered
conflicting links, since their packets share the same trans-
mission queue and do not affect each other’s probability
of channel access.

Whether a potential victim link is really a victim
depends on the notion of fairness. In the case of max-
min fairness, which is what FairMesh implements by
default, we consider the link with the largest throughput
(denoted with lO) that has conflict with the backlogged
link with the lowest throughput (denoted with lV). If
the throughput of lO exceeds that of lV by more than
a threshold value δ, we consider lV to be a victim and
execute the CWmin adjustment algorithm to reduce the
rate of lO. The threshold δ is determined by the estimated
error in the throughput estimation, which depends on
the size of the sliding window. If a victim link is not
found, then a node does nothing and continues to mon-
itor the flows within its neighborhood.

Coordinator Election. It is likely that several nodes si-
multaneously detect the same unfair situation (i.e., same
lO and lV). In FairMesh, one of these nodes will become
the coordinator and initiate the CWmin adjustment algo-
rithm described in Section 3.3. To ensure that there is a
unique coordinator for each offender-victim pair, a node
determines whether it should become the coordinator
according to whether the victim and offending links are
incoming, outgoing or overheard links as well as rules
R1 and R2, shown in the following table:

lV

Incoming Outgoing Overheard

lO

Incoming YES R1 R2

Outgoing YES Impossible NO
Overheard YES R1 NO

A cell with “YES” indicates that the node will become
a coordinator; a cell marked R1 and R2 means that the
node will check the following two additional rules to
decide if it should be a coordinator. According to Rule
R1, a node will become the coordinator if the receiver
of the victim link cannot hear the offender. According
to Rule R2, a node will become the coordinator if both
the sender and receiver of the victim link cannot hear
the offender. An example is shown in Fig. 4, where it is
assumed that AB and CD are lV and lO, respectively.
Nodes A, B, and C all detect the same unfair situation
between AB and CD. From A’s perspective, lV (AB) is
outgoing and lO (CD) is overheard, and thus Rule R1 is
checked. A is not elected since the receiver of lV (B) can
hear the offender (C). C is not elected either, and only
B will be elected. The proof of uniqueness for the coor-
dinator in other scenarios is relatively straightforward
by enumeration. Our approach works even when the
network topology changes, because the neighborhood
information required for R1 and R2 is obtained from
and kept up-to-date by the periodic Hello beacons.

PRE-PRINT: IEEE TRANSACTIONS ON MOBILE COMPUTING 6

C DA

B

Fig. 4. Example of multiple nodes detecting the same

unfair situation between lV (AB) and lO (CD).

Algorithm 1 Water-discharging CWmin Adjustment

1: prev MIN ← 0

2: while true do
3: MIN ← the throughput of lV
4: if MIN > prev MIN then
5: lO ← offender
6: prev MIN ←MIN
7: Double the CWmin of lO , using a small control mes-

sage
8: Wait for one time window
9: else

10: Undo the previous doubling, using a new control
message

11: Break
12: end if
13: end while

3.3 CWmin Adjustment Algorithm

FairMesh’s CWmin adjustment algorithm aims to achieve
the max-min fairness between the identified victim and
offending links. The coordinator sends a control message
to the offender in order to adjust its CWmin. In addition
to the per-neighbor sequence number (for throughput es-
timation) and backlog bit (to identify backlogged flows),
each packet also contains the CWmin. This information
allows the coordinator to determine whether its control
message has been executed at the offender.

The classic solution to max-min fairness is the water-
filling algorithm [7], originally proposed for wired net-
works. It is not feasible to apply this algorithm in our
context, because we cannot increase the throughput of
all conflicting links at the same rate. Instead, FairMesh
takes a simpler and more practical approach inspired by
our observations in Fig. 3: we gradually slow down the
offender by doubling its CWmin to increase the victim’s
effective transmission opportunity, until the minimum
throughput among all the links (denoted by MIN) cannot
be improved. We call this the water-discharging algorithm,
and the pseudocode for the case where there are two
competing links is shown in Algorithm 1.

We illustrate the execution of the water-discharging al-
gorithm for a sample asymmetric topology (see Fig. 1(a))
found in our 20-node wireless testbed in Fig. 5. The algo-
rithm is manually activated after 7 s, and the coordinator
B starts slowing down offending link CD. One time
window (1 s) later, node B observes a better MIN and
starts slowing down link AB, which then becomes the
offending link. After another time window, a lower MIN
is observed, so node B rolls back the previous decision
and the algorithm terminates. The resulting CWmin’s
turn out to be the optimal ones according to Fig. 3, and
it took only three messages and about 3 s to find the
CWmin.

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 4

 5

 6

 7

 8

 9

pa
ck

et
s

pe
r

w
in

do
w

C
W

m
in

 (
lo

g
sc

al
e)

time (s)

pkt per window (C->D)

pkt per window (A->B)

CWmin (C->D)

CWmin (A->B)

Fig. 5. The evolution of CWmin and the corresponding

packet count per window, for a window size of 1 s. The
CWmin values are in logarithm.

Multiple Offending Links. If multiple offending links
exist, the coordinator will slow down the fastest offender.
As the fastest offender is slowed down, another offender
might end up taking its place as the new fastest of-
fender, while the victim remains the same without any
throughput improvement. In this case, the coordinator
does not roll back the CWmin of the previous offender,
but proceeds to slow down the new fastest offender. This
process repeats until either (i) the MIN is improved,
and then the coordinator moves to next iteration; or
(ii) all offenders have been slowed down without any
improvement to the MIN, and the coordinator rolls back
all their CWmin in a batch before terminating.

Possible Abort. Note that if a coordinator detects an
unexpected change in the CWmin for any of its mon-
itored links when running the water-discharging algo-
rithm, the algorithm will abort and the coordinator will
roll back to the previous state with the best MIN. Again,
this step avoids several coordinators from modifying the
network state simultaneously.

Hysteresis. We found that the natural variation in the
throughput estimates for one link is approximately 10%
with our chosen window size of 1 s. In other words,
the actual throughput for a link can be expected to vary
as much as 10% from the estimated value, so we set δ,
the threshold for lO and lV , at 10%. We also introduce
a 10% hysteresis in the water-discharging algorithm and
only consider a step to have improved the MIN when
the new minimum value is more than 10% larger than
the previous MIN. After each CWmin doubling, the
coordinator will monitor the offending link to check
that its control message is executed. Once executed, the
coordinator will wait for one window of time to get a
updated view of the throughput of the various links that
it is monitoring before it executes the next iteration of the
water-discharging algorithm.

Periodic Updates. After increasing CWmin, a link
does not stay at this new CWmin value indefinitely,
otherwise in the long term, it would itself suffer from
unfairness. Rather, the link will halve its CWmin every τ

time windows if the CWmin is larger than the default
value of 15. This automatic decay of CWmin allows
links to return to the default state over time after the
original backlogged victim link stops transmissions. If

PRE-PRINT: IEEE TRANSACTIONS ON MOBILE COMPUTING 7

an offender halves its CWmin prematurely and causes
unfairness, the water-discharging algorithm would kick
in and cause the CWmin to be inflated again. In our
implementation, τ is set at 10.

3.4 Handling Indirectly Overheard Links

The basic solution presented above is based on the
implicit assumption that, between two conflicting links,
at least one node (of these two links) can hear both the
senders. In other words, at least one node is aware of
the actual degree of unfairness between the two links,
using the throughput estimation technique described in
Section 3.1. It turns out that for the indirect capture
topology shown in Fig. 1(c), this assumption does not
hold. Under this unfair situation, none of the nodes
overhear both senders simultaneously and hence cannot
detect the unfairness.

To detect the unfairness due to indirect capture, we
enhance the throughput estimation algorithm to estimate
the throughput of an indirectly overheard link by count-
ing the ACK from the receiver of the indirect link. In
particular, for the topology in Fig. 1(c), node B estimates
the throughput of DC by counting the ACK from node
C. A minor technical challenge is that an ACK message
only contains the receiver’s MAC address and not the
sender’s MAC address. To circumvent this problem, we
use the RSSI reading of a node as a signature to identify
the ACK sender. The RSSI reading is obtained from
either the periodic Hello beacon or a recently transmitted
data packet, and the RSSI changes on a time scale that is
slow enough for this signature method to be relatively
accurate. Note that this unknown-sender problem may
not exist for the 802.11n standard, in which the Block
ACK frame includes both the sender’s and receiver’s
MAC addresses.

A drawback of this ACK counting method is that it
tends to under-estimate the throughput, which makes
it difficult to achieve the required max-min fairness.
In addition, to address the indirect capture scenario,
the coordinator cannot send control messages to the of-
fender directly, but instead will need to have a common
neighbor forward the control messages. For example in
Fig. 1(c), when node B finds that link AB is the victim
link and link DC is the offending link, it would slow
down link DC by sending the control message to node
D through node C.

To improve the accuracy of ACK counting, we also
implemented a per-neighbor sequence number in the
ACKs, like in the data packets. Our current implemen-
tation is naive and only works for a fixed packet size,
but it is straightforward to support different packet sizes
by incrementing the sequence number in byte count.
Unfortunately, we are not able to modify the ACK in our
802.11 testbed directly, and are only able to implement
this feature in our ns-2 simulations.

Fig. 6. Illustration of packet aggregation.

3.5 Optimizations

In this section, we describe the optimizations to handle
high data rates and also to improve TCP performance.

Handling High Data Rates. FairMesh enables
RTS/CTS to mitigate hidden node collisions, which can
lead to significant overhead at high data rates. Because
we are working with backlogged transmissions, we im-
plemented packet aggregation in order to improve effi-
ciency at the higher data rates. This idea is not new and
a similar technique has been incorporated in the 802.11n
standard: instead of sending one packet per RTS/CTS,
we send several packets per RTS/CTS for the higher
rates to improve overall throughput.

In addition to reduced overhead, packet aggregation
also allows FairMesh to achieve approximate max-min
fairness in terms of transmission air time instead of
throughput. As illustrated in Fig. 6, link CB transmits
multiple packets during one RTS/CTS, so that the pack-
ets from AB and CB have comparable transmission
times in the air even though they are sending at different
data rates. Although with packet aggregation, the lower
rate link AB sends fewer packets, the time it gives up
is more efficiently utilized by the higher rate link CB,
thereby improving the overall throughput (in kbps). In
other words, with packet aggregation, FairMesh is able
to achieve approximate max-min fairness in terms of
transmission air time and does not unduly penalize the
link with a higher data rate.

Preventing TCP Starvation. Significant contention in
a wireless mesh often leads to high packet loss, causing
TCP to go into exponential backoff [31] and to starve.
We found that we can prevent TCP starvation if we
retransmit failed packets up to three more times using
a second hardware queue, even after 802.11 gives up.
This method keeps the packet loss rate below 5%. We
are mindful that additional retransmissions will increase
latency and may cause TCP timeouts, but we found that
three retransmissions achieves a good trade off between
latency and reliability in practice.

4 EVALUATION

We now present our evaluation of FairMesh through an
extensive set of experiments, both on an 802.11 wireless
mesh testbed and in ns-2 simulation. We begin with
evaluating FairMesh using the three basic problematic
topologies in Section 4.2. We then evaluate FairMesh
with more complex topologies, consisting of multiple

PRE-PRINT: IEEE TRANSACTIONS ON MOBILE COMPUTING 8

competing links, in Section 4.3. In Section 4.4, we com-
pare FairMesh with two existing proposals to mitigate
unfairness. Section 4.5 evaluates the interaction between
links with different data rates under FairMesh. The
performance of FairMesh in the presence of high packet
loss rates is evaluated in Section 4.6. We then extend the
evaluation to large topologies (on our 20-node testbed
and a 50-node Berlin topology [30] in simulation) in
Section 4.7. Finally, the impact of FairMesh on multi-hop
TCP is evaluated in Section 4.8.

4.1 802.11 Wireless Mesh Testbed

Our testbed is deployed in a college dormitory at the
National University of Singapore [4] over an area that is
approximately 350 m × 200 m. The dormitory consists of
tall and dense buildings, and thus 802.11 radio signals
experience significant attenuation. The network has an
average node degree of 4.5 and the network diameter
is 6 hops. The deployment map of our testbed can be
found in [41].

Hardware. The testbed consists of 20 ALIX boards [1].
We use Compex IEEE 802.11abg adapters [3], with the
Atheros AR5414 chipset. All the experiments are con-
ducted using the 802.11a mode. The Atheros adapters
have several characteristics that are worth highlighting.
First, the BEB mechanism in our adapters cannot be
enabled [19]. As such, we have to resort to ns-2 sim-
ulations to investigate the behavior of FairMesh with
BEB. Second, the capture effect in our Atheros adapters
is similar to that of the adapters in [28]. Third, like the
TFA testbed [10], our Atheros adapters do not employ
energy detection in the Clear Channel Assessment (CCA)
mechanism. Instead, the channel is considered busy if
the hardware is able to successfully decode the preamble
and the PLCP header. In other words, the carrier sense
range is the same as the transmission range at 6 Mbps.

Software. The board runs OpenWRT Kamikaze 7.09
with kernel version 2.6.25. The driver for the wireless
adapter is MadWifi (version 0.9.4) with a default MAC
retry limit of 10 and runs in monitor mode. We modified
the MadWifi driver to insert a small 4-byte FairMesh
header between MAC and IP headers (as shown in
Fig. 7), and also to support per-packet CWmin adjust-
ment. To avoid the performance degradation described
in [35], both the Transmit Antenna Diversity and the Am-
bient Noise Immunity features were disabled. FairMesh
was implemented using the Click modular router [13]
(version 1.6.0) in user space. Iperf was used to generate
traffic and the default packet size is 1,500 bytes. The
transmission queue size in our FairMesh implementation
is 50 packets.

4.2 Basic Scenarios

We first run FairMesh on the three problematic topolo-
gies in Fig. 1 to understand its basic behavior, and
compare it with 802.11 with and without RTS/CTS, and
with and without BEB. Note that since the testbed does

MAC Header IP Packet

FairMesh Header (4 bytes)

Current CWmin (1 byte)

Per−neighbor seq number (2 bytes)
Backlog indication (1 byte)

Fig. 7. Format of FairMesh header in our implementation.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

802.11
no RTS

802.11
RTS

FairMesh

th
ro

ug
hp

ut
 (

kb
ps

)

asymmetric topology, BEB

AB
CD

optimal

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

802.11
no RTS

802.11
RTS

FairMesh

th
ro

ug
hp

ut
 (

kb
ps

)

asymmetric topology, no BEB

AB
CD

optimal

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

802.11
no RTS

802.11
RTS

FairMesh
th

ro
ug

hp
ut

 (
kb

ps
)

direct capture, BEB

AB
CB

optimal

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

802.11
no RTS

802.11
RTS

FairMesh

th
ro

ug
hp

ut
 (

kb
ps

)

direct capture, no BEB

AB
CB

optimal

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

802.11
no RTS

802.11
RTS

FairMesh

th
ro

ug
hp

ut
 (

kb
ps

)

indirect capture, BEB

AB
DC

optimal

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

802.11
no RTS

802.11
RTS

FairMesh

th
ro

ug
hp

ut
 (

kb
ps

)

indirect capture, no BEB

AB
DC

optimal

Fig. 8. Comparison between 802.11 and FairMesh: BEB

enabled in simulation, and BEB disabled in testbed.

not support BEB, the evaluation without BEB is done
using the testbed, while the evaluation with BEB is done
in ns-2 simulation using a configuration similar to that
on the testbed. In all our experiments in this paper
(except in Section 4.8), all source nodes send saturating
UDP traffic at the maximum data rate because our goal is
to evaluate unfairness under worst case conditions. The
average throughput values are summarized in Fig. 8.
The error bars indicate the magnitude of the standard
deviation in the data points, each of which is the average
throughput over a 1-s interval. Each experiment lasts for
300 s and produces a total of 300 data points.

FairMesh vs. 802.11. As shown in Fig. 8, there is signif-
icant unfairness in all three topologies without RTS/CTS.
The victim link AB is starved in most cases. As before,
we see that BEB will also exacerbate the unfairness. With
BEB disabled, RTS/CTS can significantly improve the
throughput for the asymmetric topology and somewhat
improve that for the two capture topologies. On the
other hand, FairMesh is able to achieve significantly
better fairness in all scenarios, without affecting the
total throughput. In view that the performance of 802.11
without RTS/CTS is so bad, 802.11 will be used with

PRE-PRINT: IEEE TRANSACTIONS ON MOBILE COMPUTING 9

A

B

C

D

Fig. 9. Scenario where disabling BEB results in catas-

trophic failure. The packets from A and C are captured by

D and B, respectively.

RTS/CTS enabled by default for the remainder of this
paper.

To BEB or not to BEB? FairMesh seems to be able
to achieve similar or better fairness without BEB in all
cases. For 802.11 with RTS/CTS, the improvement in
fairness is especially significant when BEB is disabled.
This makes it tempting to completely disable BEB.

It turns out, however, that if we disable BEB, there
are scenarios which can result in catastrophic failure and
complete starvation. One such scenario is illustrated in
Fig. 9. In this example, A is trying to send packets to B,
and C is trying to send packets to D. The packets from
A and C are captured by D and B, respectively.

When RTS/CTS is enabled and BEB is disabled, B

and D will keep overhearing RTS packets from C and A

respectively. This will cause the NAV at both B and D

to increase progressively and prevent them from sending
CTS packets to A and C. Consequently, both AB and CD

will get starved.

When RTS/CTS and BEB are both disabled, each
sender will continuously send data packets that collide
and corrupt the data packet of the other. Since the de-
fault inter-packet gap is small (because BEB is disabled)
compared to the data packet, the packets will always
collide, which again results in starvation.

We confirmed that this scenario indeed results in
catastrophic failure when BEB is disabled on both our
testbed and in simulation. Unfortunately, FairMesh is not
able to improve the situation for this scenario because we
cannot even detect the traffic to begin with. Overall, our
view is that although it is possible to mitigate unfairness
to some extent by disabling BEB, caution has to be
exercised when doing so in practice.

4.3 Optimal Capacity & Multiple Links

Having shown that FairMesh performs well in the three
basic topologies with two competing links, we evaluate
FairMesh in a more complex scenario with multiple
competing links. We chose a 6-node topology from our
testbed (see Fig. 10(a)) and configured each node to
transmit to a neighbor. We replicated this topology in
the ns-2 simulator to evaluate the performance of the
same topology with BEB enabled.

To compute the optimal max-min allocation of
throughput for this topology, we used a classic conflict-
graph-based algorithm [6, 22]. The vertices in a conflict
graph are the links with backlogged traffic, and there
exists an edge between two vertices if the associated

A

B

C
D

E

F

17

16 17

17 33

32

32

32 15
16

(a) Network topology.

AB

BA

CD

DE

ED

FE

3/8

3/8

1/4

1/4

1/4

1/4

(b) Conflict graph.

Fig. 10. Network topology and its conflict graph: the

numbers in (a) are RSSI values, and the numbers in (b)
are the nominal capacity for the links.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

AB BA CD DE ED FE

th
ro

ug
hp

ut
 (

kb
ps

)

802.11, BEB

throughput
optimal

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

AB BA CD DE ED FE

th
ro

ug
hp

ut
 (

kb
ps

)

FairMesh, BEB

throughput
optimal

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

AB BA CD DE ED FE

th
ro

ug
hp

ut
 (

kb
ps

)

802.11, no BEB

throughput
optimal

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

AB BA CD DE ED FE

th
ro

ug
hp

ut
 (

kb
ps

)

FairMesh, no BEB

throughput
optimal

Fig. 11. Actual throughput and the optimal allocation: with
BEB in simulation, and without BEB in testbed.

links are in conflict with each other1. Each maximal clique
in the conflict graph initially has a nominal capacity of 1.
The algorithm iteratively computes the nominal capacity
assigned to each node in the conflict graph (or each link
in the actual graph). To convert to the absolute capacity,
the nominal value is multiplied by the maximum link
throughput of 5,100 kbps. The corresponding conflict
graph of the 6-node topology and the computed optimal
nominal capacity for each link are shown in Fig. 10(b).

Fig. 11 compares the performance of FairMesh with
802.11 in the above topology both on the testbed (with
BEB disabled) and ns-2 simulator (with BEB enabled).
The computed optimal throughput is plotted as well. The
results show that the throughput of FairMesh is much
closer to the optimal capacity compared with 802.11.
This is especially true for the case with BEB, where CD

and FE are starved for 802.11. We verified that ns-2
yielded similar results as our testbed for the case with
BEB disabled.

Table 1 summarizes the median CWmin values of the
six links and the total number of control messages sent
by each node during the experiment. The CWmin values
with BEB enabled are generally larger than those with
BEB disabled, as the victim links contend much less ag-

1. On our testbed, we consider two links to be in conflict if one link
has a node (either sender or receiver) that has a packet delivery ratio of
at least 50% to either the sender or receiver of the other link at 6 Mbps.

PRE-PRINT: IEEE TRANSACTIONS ON MOBILE COMPUTING 10

TABLE 1
Summary of median CWmin values for each link

& total number of control messages from each node.

CWmin

links AB BA CD DE ED FE

BEB 15 63 63 255 511 255
no BEB 31 31 63 31 31 15

Overhead

nodes A B C D E F

BEB 28 36 26 32 21 22
no BEB 10 77 42 23 37 45

gressively with BEB enabled. We make two observations
about the number of control messages initiated by each
node. First, every node was elected at some point as a
coordinator, since we can see that they each sent some
control messages. Second, compared with the number
of data packets (approximately 33,000 per node for the
whole experiment), the number of control messages is
insignificant, demonstrating that FairMesh incurs very
little overhead.

4.4 Comparison with Prior Work

Next, we compare FairMesh with two previous propos-
als that also address MAC unfairness, one by Huang and
Bensaou [22] (denoted with HB), and another by Jian and
Chen [24] (called PISD), to demonstrate that FairMesh
performs better than existing solutions for mitigating
MAC unfairness. The HB method uses naive packet
counting to estimate throughput, and does not consider
throughput at the granularity of individual links like
FairMesh. Besides, for the HB method, a node only
adjusts its own CWmin, and thus is unable to handle
the indirect capture scenario. PISD tries to do away
with overhearing by emulating the AIMD mechanism in
802.11 networks. Links with queue lengths larger than a
threshold would use a small CWmin to jam the channel,
thereby creating a congestion signal. We found, however,
that such jamming signals are not always propagated to
the appropriate nodes, especially when BEB is enabled.

Both HB and PISD were implemented for the ns-2

simulator. Our implementation of HB is an approximate
one—the original proposed algorithm has a component
that estimates the max-min fair throughput; in our sim-
ulation, we implemented an oracle that feeds the exact
values for the max-min fair throughput into the main
HB algorithm. Our HB implementation is thus equally or
more accurate than what the proposed HB can achieve.
Both HB and PISD operate with RTS/CTS enabled.

Fig. 12 shows the comparison of FairMesh to both
HB and PISD, using the three topologies in Fig. 1. HB
performs well for the asymmetric topology, but is less
efficient for the direct capture topology. It is also unable
to react correctly for the indirect capture topology. PISD
is unable to achieve fairness in the asymmetric topology
with BEB enabled. This is because the jamming signal
from node A does not propagate promptly to node C,
and link AB reduces its rate more frequently than link
CD. We discovered that most of the evaluations in [24]

 0

 1000

 2000

 3000

 4000

 5000

 6000

FairMesh PISD HB

th
ro

ug
hp

ut
 (

kb
ps

)

asymmetric topology, BEB

AB
CD

optimal

 0

 1000

 2000

 3000

 4000

 5000

 6000

FairMesh PISD HB

th
ro

ug
hp

ut
 (

kb
ps

)

asymmetric topology, no BEB

AB
CD

optimal

 0

 1000

 2000

 3000

 4000

 5000

 6000

FairMesh PISD HB

th
ro

ug
hp

ut
 (

kb
ps

)

direct capture, BEB

AB
CB

optimal

 0

 1000

 2000

 3000

 4000

 5000

 6000

FairMesh PISD HB

th
ro

ug
hp

ut
 (

kb
ps

)

direct capture, no BEB

AB
CB

optimal

 0

 1000

 2000

 3000

 4000

 5000

 6000

FairMesh PISD HB FairMesh
(modified

ACK)
th

ro
ug

hp
ut

 (
kb

ps
)

indirect capture, BEB

AB
DC

optimal

 0

 1000

 2000

 3000

 4000

 5000

 6000

FairMesh PISD HB FairMesh
(modified

ACK)

th
ro

ug
hp

ut
 (

kb
ps

)

indirect capture, no BEB

AB
DC

optimal

Fig. 12. Comparison of FairMesh to HB and PISD for all

three problematic topologies in simulation.

were conducted with the senders all within the carrier
sense range of each other, which is why jamming was
reported to be effective. PISD performs better in the
direct capture scenario because the CTS from node B

to node C can be overheard by node A, which prevents
node A from “blindly” accessing the channel as in the
asymmetric topology case.

If we compare the results of FairMesh for the indirect
capture scenario without BEB in the testbed (shown
in Fig. 8) with that in the ns-2 simulation (shown in
Fig. 12), we see that the improvement in the fairness
for FairMesh is better for the testbed. We found that
this is because node B overheard fewer of node C’s
ACKs in the simulation, while node B was able to
successfully overhear more of these ACKs in the testbed.
Nevertheless, in both cases, FairMesh is still slightly
more fair than both HB and PISD.

In Section 3.4, we explained that we can improve
the accuracy of ACK counting by introducing a per-
neighbor sequence number in ACKs, but because we
cannot modify hardware ACKs, we can only implement
this ACK modification in simulation. In Fig. 12, we
also include the results of FairMesh with the modified
ACK for the indirect capture topology. Because the se-
quence number in ACK enables node B to accurately
assess the throughput of DC, FairMesh is now able
to achieve almost equal share between AB and DC.
Note that the modified ACK only provides additional
information to assist in the throughput assessment of
indirectly overheard links, and it does not interfere with
the performance of FairMesh in other topologies. For the
rest of the paper, we will not consider the modified ACK

PRE-PRINT: IEEE TRANSACTIONS ON MOBILE COMPUTING 11

Mbpsx

A C

6 Mbps

B

(a) Higher data rates scenario.

 0

 5000

 10000

 15000

 20000

 25000

9 18 36 54

th
ro

ug
hp

ut
 (

kb
ps

)

data rate of CB (Mbps)

802.11

FairMesh

FM-aggr

CB
AB

(b) BEB

 0

 5000

 10000

 15000

 20000

 25000

9 18 36 54
th

ro
ug

hp
ut

 (
kb

ps
)

data rate of CB (Mbps)

802.11

FairMesh

FM-aggr

CB
AB

(c) no BEB

Fig. 13. Evaluation of 802.11, FairMesh, and FairMesh
with packet aggregation (FM-aggr) under selected higher

data rates via simulation.

optimization to keep the FairMesh implementation for
the testbed consistent with that for the ns-2 simulation.

4.5 Higher Data Rates

To evaluate FairMesh with higher data rates, we consider
the direct capture scenario shown in Fig. 13(a), where
link AB uses 6 Mbps and the stronger link CB uses
higher data rate of x Mbps, where 9 ≤ x ≤ 54. To im-
plement the packet aggregation technique in Section 3.5,
we aggregate multiple packets of link CB into one so
that links AB and CB have the same air time per
packet. In this way, FairMesh ensures fairness in terms of
transmission air time of each link, instead of the original
throughput-based fairness.

Fig. 13(b) and Fig. 13(c) show the results of 802.11,
FairMesh, and FairMesh with packet aggregation (la-
belled as “FM-aggr”), via simulation (we are unable
to do packet aggregation on the testbed due to the
limited MTU size of our hardware). As compared with
802.11, the original FairMesh achieves almost the same
throughput between AB and CB (i.e., better fairness).
However, the total throughput of FairMesh is smaller
than that of 802.11 (i.e., reduces overall efficiency). This
is because FairMesh re-allocates certain amount of trans-
mission air time from the fast link CB to the slow
link AB. With packet aggregation, FairMesh significantly
increases the total throughput, with only a slight drop
in the throughput for AB.

4.6 Lossy Links & Proportional Fairness

Next, we demonstrate that FairMesh works well even
with lossy links, and that FairMesh can be easily mod-
ified to work with a different notion of fairness besides
max-min fairness.

Take the sample testbed topology in Fig. 14(a) for
example, where node B can capture C’s packets and
link AB has a loss rate of 42% due to poor RSSI.
FairMesh is still able to produce comparable throughput
for the two links. However, the transmission opportunity
given up by link CB does not translate into the same

number of effective transmissions for link AB. With 42%
losses, for every 5 transmissions given up by link CB,
link AB would only gain approximately 3 successful
transmissions. This leads to a significant loss in overall
efficiency and this is one situation where proportional
fairness [26] would allow us to trade off fairness for
better efficiency.

FairMesh can be easily modified to support propor-
tional fairness, by checking whether a utility function∑

ln(ri) improves in the water-discharging algorithm,
rather than the MIN, where ri is the throughput of an
observed link i. Fig. 14(b) and Fig. 14(c) show the results
of FairMesh (max-min), FairMesh (proportional fairness)
and 802.11 for the scenario in Fig. 14(a). Compared with
FairMesh (max-min), FairMesh (proportional fairness)
achieves a higher total throughput at the expense of
slightly less equal allocations between AB and CB.

4.7 Large-Scale Experiments

Having shown that FairMesh performs well in the three
basic topologies with two competing links, we evaluated
FairMesh in a more complex scenario with large-scale
arbitrary competing links. We used our 20-node testbed to
study the case without BEB, and used ns-2 simulation
to study the case with BEB. In these experiments, each
node sends saturating UDP traffic to one randomly
chosen neighboring node. The point is not to attempt
to simulate real traffic, but to investigate how FairMesh
and existing algorithms hold up under conditions of
severe contention, where unfairness is most likely to
manifest. As a benchmark for comparison, we used the
classic conflict-graph-based algorithm [22] to compute the
optimal max-min allocation of throughput.

Testbed. We randomly selected 20 links in the 20-node
testbed to evaluate FairMesh with multiple concurrent
flows. Fig. 15 shows the performance of 802.11 and
FairMesh on the testbed. We plot the optimal max-
min throughput allocation with a blue dashed line. The
links are sorted in descending order of throughput. We
observed that the distribution of the link throughput for
FairMesh is significantly closer to the optimal max-min
fair allocation. Also, the overall throughput of 802.11 is
slightly higher than that of FairMesh, as the throughput
reduction of one link can cause a throughput increase in
multiple links, i.e., 802.11 exploits spatial diversity more
efficiently at the expense of fairness. The total rate of
the control messages for the entire network is about 1.48
packets per second, which is negligible compared to the
data throughput.

Simulation. We next performed a large-scale simu-
lation study of FairMesh on a 50-node topology with
an average degree of 3.6, generated using the Berlin
network methodology [30]. This simulation allows us
to study the behavior of FairMesh with BEB in a large
network, as well as to compare FairMesh with HB and
PISD. Like before, each node randomly selects a neigh-
bor as receiver and sends saturating UDP traffic. We

PRE-PRINT: IEEE TRANSACTIONS ON MOBILE COMPUTING 12

42% loss

A CB

(a) Lossy link scenario.

 0

 1000

 2000

 3000

 4000

 5000

 6000

802.11 FairMesh
(max-min)

FairMesh
(Prop.)

th
ro

ug
hp

ut
 (

kb
ps

)

AB
CB

total

(b) no BEB (testbed).

 0

 1000

 2000

 3000

 4000

 5000

 6000

802.11 FairMesh
(max-min)

FairMesh
(Prop.)

th
ro

ug
hp

ut
 (

kb
ps

)

AB
CB

total

(c) BEB (simulation).

Fig. 14. Scenario with lossy link: max-min and

proportional fairness have different impacts.

 0

 500

 1000

 1500

 2000

 2500

 3000

th
ro

ug
hp

ut
 (

kb
ps

)

links

throughput
optimal

(a) 802.11

 0

 500

 1000

 1500

 2000

 2500

 3000

th
ro

ug
hp

ut
 (

kb
ps

)

links

throughput
optimal

(b) FairMesh

Fig. 15. Comparing FairMesh to 802.11 in the real 20-node

testbed. The links are sorted according to their throughput results
in descending order.

plot the resulting throughput in Fig. 16. Again, FairMesh
achieves a throughput allocation that is much closer to
the optimal max-min fair allocation than 802.11, which
has a large number of nearly starved links. To help us
visualize the differences in fairness among FairMesh, HB
and PISD, we also plot the CDF of the throughput ratio
between the achieved throughput and the optimal max-
min throughput, for the 50 links in Fig. 17. FairMesh
achieves a throughput allocation that is closer to the
optimal max-min allocation than both PISD and HB.
In particular, PISD does not perform well in terms of
fairness improvement. On the other hand, while HB
achieves better fairness, it has poorer overall efficiency.

We investigated the convergence performance of
FairMesh. As a link in FairMesh periodically halves
its CWmin to increase throughput, its CWmin does not
converge to a fixed value but varies within certain range
of the possible seven CWmin levels (i.e., from 4 to 10 in
logarithmic value). To evaluate the variation of CWmin

in FairMesh, we recorded the interdecile range (i.e., from
10% to 90%) of each link’s CWmin logarithmic values
during the 300-s experiment above. We found that the
majority of the links (88%) have their interdecile range
of CWmin equal to or less than 3. This implies that
FairMesh does not cause significant fluctuations in the
CWmin.

4.8 TCP & Multi-Hop Flows

Finally, we show that FairMesh can improve the fair-
ness perceived by TCP. To evaluate the efficacy of the
additional retransmissions in FairMesh (see Section 3.5),
we compared FairMesh with 802.11 and the counter-
starvation policy proposed by Shi et al. [34] (denoted
as “fixed CWmin”). To implement Shi et al.’s counter-
starvation policy, we set the CWmin for the nodes near
the gateway to 255. For our evaluation, we randomly
selected various “1-hop vs. N -hop” topologies (1 ≤

N ≤ 4) from our testbed (see Fig. 18(a)), and ran two
concurrent TCP flows on them. Typically, the N -hop
flow not only experiences contention within itself but
also gets overwhelmed by the 1-hop flow, because of

the capture effect at the destination (which acts like a
gateway).

Fig. 18 summarizes the results. As expected, all the N -
hop TCP flows are starved for vanilla 802.11 due to fre-
quent TCP exponential backoff. The counter-starvation
policy improves fairness for N = 1 and N = 2, but
not for N > 2. In fact, we found that the 4-hop TCP
flow occasionally got starved, as the packet loss rate was
still relatively high. While 802.11 with retransmissions
can prevent starvation, the N -hop TCP flows suffer
significant throughput degradation because the under-
lying MAC unfairness is not addressed. FairMesh with
retransmission improves the TCP throughput for the N -
hop TCP flows significantly, especially for large N . An
interesting observation is that, because FairMesh seeks
to achieve per-link fairness, it achieves almost equal
throughput for N = 1 and N = 2, i.e., where all the
links compete with each other and end up sharing the
air time equally.

5 RELATED WORK

Prior work on PLC mostly focused on characterizing its
effect. Lee et al. studied Wistron 802.11a adapters with
the Atheros chipset [28], which have similar characteris-
tics as our adapters. Ganu et al. were the first to eval-
uate how manually changing various MAC parameters
affects the unfairness arising from PLC, but they did not
consider the topologies with hidden-node collisions and
offered no solution for automatically adjusting these pa-
rameters to improve fairness [15]. Chang et al. modelled
the effect of PLC on slotted ALOHA MAC [11]. Han et
al. [20] also studied the effect of PLC on 802.11 WLANs,
but they did not address hidden nodes collisions. PLC
has been widely observed in other 802.11 adapters [10,
25, 27, 36], and even in sensor radio [38] and cellular
systems [43].

Much prior work on improving the fairness in 802.11
networks exists. One category of proposals directly tack-
les the intrinsic MAC unfairness by adjusting the con-
tention window. Liu et al. proposed a utility-based opti-
mal CSMA scheme [29], but testbed experiments in [33]
showed that this scheme does not solve the unfairness

PRE-PRINT: IEEE TRANSACTIONS ON MOBILE COMPUTING 13

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000
th

ro
ug

hp
ut

 (
kb

ps
)

links

throughput
optimal

(a) 802.11

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

th
ro

ug
hp

ut
 (

kb
ps

)

links

throughput
optimal

(b) FairMesh

Fig. 16. Comparing FairMesh to 802.11 (with BEB) via simulation. The links

are sorted according to their throughput results in descending order.

 0

 0.2

 0.4

 0.6

 0.8

 1

10% 50% 100% 200%

C
D

F

ratio of throughput to optimal

HB
FairMesh

PISD

Fig. 17. CDF of throughput ratio to

optimal, of the large-scale simula-

tion experiment.

1−hop N−hop

(a) 1-hop vs. N -hop TCP.

 0

 1000

 2000

 3000

 4000

 5000

N=1 N=2 N=3 N=4

th
ro

ug
hp

ut
 (

kb
ps

)

1-hop N-hop

(b) 802.11

 0

 1000

 2000

 3000

 4000

 5000

N=1 N=2 N=3 N=4

th
ro

ug
hp

ut
 (

kb
ps

)

1-hop N-hop

(c) 802.11 + fixed CWmin

 0

 1000

 2000

 3000

 4000

 5000

N=1 N=2 N=3 N=4

th
ro

ug
hp

ut
 (

kb
ps

)

1-hop N-hop

(d) 802.11 + retrans

 0

 1000

 2000

 3000

 4000

 5000

N=1 N=2 N=3 N=4

th
ro

ug
hp

ut
 (

kb
ps

)

1-hop N-hop

(e) FairMesh + retrans

Fig. 18. Impact of FairMesh on TCP: 1-hop TCP vs. N -

hop TCP. The 1-hop flow has higher RSSI and its packets
can be captured by the common destination. Maximum

1-hop TCP throughput is 4,600 kbps.

problem when the senders are hidden from each other.
Haas et al. [17] and Heusse et al. [21] considered the
case with no hidden node collisions, while Huang and
Bensaou [22] and Jian and Chen [24] considered more
general scenarios with hidden nodes. As shown in Sec-
tion 4, FairMesh works with hidden nodes and achieves
better performance than the latter two schemes [22, 24].

Another category of work attempts to directly limit the
rate at which packets are passed down to the MAC layer,
thereby reducing the number of backlogged senders and
circumventing the MAC unfairness problem. Xu et al.
tried to limit this rate by setting appropriate values for
TCP congestion window [40]. Adaptive pacing [14] tries
to control the sending rate from the gateway by schedul-
ing a packet every “four-hop propagation delay” down
to the MAC of the gateway. The Cooperative Neighbor-

hood Airtime-limiting (CNA) [23] scheme continuously
allocates airtime usage based on the rate at which a
node is sending packets to its MAC layer. FairMesh
is compatible and complementary to these higher-layer
fairness solutions.

Besides improving MAC fairness, CWmin adjustment
can improve the performance of the transport layer
in wireless meshes. Previous works have adopted this
technique to prevent TCP starvation [34], to reduce
congestion along a multi-hop path [37], and to smoothen
out the fluctuation of the queue length along a multi-hop
path [5]. None of these address the unfairness issue com-
prehensively – they either assume a specific topology [34]
or do not explicitly address the unequal channel access
opportunity at the MAC layer [5, 37].

6 CONCLUSION

In this paper, we investigate the MAC unfairness prob-
lem for 802.11 mesh networks arising from physical layer
capture. By improving throughput estimation, and em-
ploying a per-neighbor CWmin adjustment mechanism,
FairMesh is able to achieve a channel access allocation
that closely approximates optimal max-min fairness in
a distributed manner. We show that FairMesh can effec-
tively mitigate unfairness in various practical scenarios.
Since the root causes (asymmetric topologies and capture
effect) of the MAC unfairness in 802.11 are also present
in many other wireless technologies, we believe that the
basic design of FairMesh would be broadly applicable to
other networks beyond 802.11 mesh networks.

REFERENCES

[1] ALIX system board (ALIX2c2) by PCEngines. http://www.
pcengines.ch/.

[2] Cisco visual networking index forecast (2012-2017). http://www.
cisco.com/go/vni.

[3] miniPCI Wireless Adapters (WLM54AG-23) by Compex. http:
//www.compex.com.sg/.

[4] NUS Mesh Networks. http://mesh.ndslab.net.
[5] A. Aziz, D. Starobinski, P. Thiran, and A. El Fawal. EZ-Flow:

removing turbulence in IEEE 802.11 wireless mesh networks
without message passing. In Proceedings of CoNEXT ’09, Dec. 2009.

[6] A. Bar-Noy, A. Mayer, B. Schieber, and M. Sudan. Guaranteeing
fair service to persistent dependent tasks. In Proceedings of SODA
’95, Jan. 1995.

PRE-PRINT: IEEE TRANSACTIONS ON MOBILE COMPUTING 14

[7] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, 1992.
[8] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. MACAW:

a media access protocol for wireless LAN’s. In Proceedings of
SIGCOMM ’94, Aug. 1994.

[9] G. Bianchi, I. Tinnirello, and L. Scalia. Understanding 802.11e
contention-based prioritization mechanisms and their coexistence
with legacy 802.11 stations. IEEE Network, 19(4):28–34, Jul.-Aug.
2005.

[10] J. Camp, V. Mancuso, O. Gurewitz, and E. W. Knightly. A
measurement study of multiplicative overhead effects in wireless
networks. In Proceedings of INFOCOM ’08, Apr. 2008.

[11] H. Chang, V. Misra, and D. Rubenstein. Fairness and physical
layer capture in random access networks. In Proceedings of SECON
’07, Jun. 2007.

[12] Q. Chen, F. Schmidt-Eisenlohr, D. Jiang, M. Torrent-Moreno,
L. Delgrossi, and H. Hartenstein. Overhaul of IEEE 802.11
modeling and simulation in ns-2. In Proceedings of MSWiM ’07,
Oct. 2007.

[13] Click. The click modular router. http://read.cs.ucla.edu/click/.
[14] S. M. ElRakabawy, A. Klemm, and C. Lindemann. Gateway

adaptive pacing for TCP across multihop wireless networks and
the Internet. In Proceedings of MSWiM ’06, Oct. 2006.

[15] S. Ganu, K. Ramachandran, M. Gruteser, I. Seskar, and J. Deng.
Methods for restoring MAC layer fairness in IEEE 802.11 net-
works with physical layer capture. In Proceedings of REALMAN
’06, May 2006.

[16] M. Garetto, J. Shi, and E. W. Knightly. Modeling media access in
embedded two-flow topologies of multi-hop wireless networks.
In Proceedings of MobiCom ’05, Aug. 2005.

[17] Z. Haas and J. Deng. On optimizing the backoff interval for
random access schemes. IEEE Transactions on Communications,
51(12):2081–2090, Dec. 2003.

[18] B. Han, L. Ji, S. Lee, R. R. Miller, and B. Bhattacharjee. Channel
access throttling for improving WLAN QoS. In Proceedings of
SECON ’09, Jun. 2009.

[19] B. Han, A. Schulman, F. Gringoli, N. Spring, B. Bhattacharjee,
L. Nava, L. Ji, S. Lee, and R. Miller. Maranello: practical partial
packet recovery for 802.11. In Proceedings of NSDI ’10, Apr. 2010.

[20] S.-J. Han, T. Nandagopal, Y. Bejerano, and H.-G. Choi. Analysis of
spatial unfairness in wireless LANs. In Proceedings of INFOCOM
’09, Apr. 2009.

[21] M. Heusse, F. Rousseau, R. Guillier, and A. Duda. Idle sense: an
optimal access method for high throughput and fairness in rate
diverse wireless LANs. In Proceedings of SIGCOMM ’05, Aug.
2005.

[22] X. L. Huang and B. Bensaou. On Max-Min fairness and scheduling
in wireless ad-hoc networks: analytical framework and implemen-
tation. In Proceedings of MobiHoc ’01, Oct. 2001.

[23] K.-Y. Jang, K. Psounis, and R. Govindan. Simple yet efficient,
transparent airtime allocation for TCP in wireless mesh networks.
In Proceedings of CoNEXT ’10, Nov. 2010.

[24] Y. Jian and S. Chen. Can CSMA/CA networks be made fair? In
Proceedings of MobiCom ’08, Sep. 2008.

[25] G. Judd and P. Steenkiste. Characterizing 802.11 wireless link
behavior. Wireless Networks, 16(1):167–182, Jan. 2010.

[26] F. Kelly, A. Maulloo, and D. Tan. Rate control in communica-
tion networks: shadow prices, proportional fairness and stability.
Journal of the Operational Research Society, 49(3):237–252, Mar. 1998.

[27] A. Kochut, A. Vasan, A. U. Shankar, and A. Agrawala. Sniffing out
the correct physical layer capture model in 802.11b. In Proceedings
of ICNP ’04, Oct. 2004.

[28] J. Lee, W. Kim, S.-J. Lee, D. Jo, J. Ryu, T. Kwon, and Y. Choi. An
experimental study on the capture effect in 802.11a networks. In
Proceedings of WiNTECH ’07, Sep. 2007.

[29] J. Liu, Y. Yi, A. Proutiere, M. Chiang, and H. Poor. Towards
utility-optimal random access without message passing. Wireless
Communications and Mobile Computing, 10(1):115–128, Jan. 2010.

[30] B. Milic and M. Malek. NPART - node placement algorithm for
realistic topologies in wireless multihop network simulation. In
Proceedings of Simutools ’09, Mar. 2009.

[31] A. Mondal and A. Kuzmanovic. Removing exponential backoff
from TCP. SIGCOMM Computer Communication Review, 38(5):17–
28, Oct. 2008.

[32] T. Nandagopal, T.-E. Kim, X. Gao, and V. Bharghavan. Achieving
MAC layer fairness in wireless packet networks. In Proceedings of
MobiCom ’00, Aug. 2000.

[33] B. Nardelli, J. Lee, K. Lee, Y. Yi, S. Chong, E. W. Knightly, and
M. Chiang. Experimental evaluation of optimal CSMA. In
Proceedings of INFOCOM ’11, Apr. 2011.

[34] J. Shi, O. Gurewitz, V. Mancuso, J. Camp, and E. W. Knightly.
Measurement and modeling of the origins of starvation in con-
gestion controlled mesh networks. In Proceedings of INFOCOM
’08, Apr. 2008.

[35] I. Tinnirello, D. Giustiniano, L. Scalia, and G. Bianchi. On the
side-effects of proprietary solutions for fading and interference
mitigation in IEEE 802.11b/g outdoor links. Computer Networks,
53(2):141–152, Oct. 2009.

[36] C. Ware, J. Judge, J. Chicharo, and E. Dutkiewicz. Unfairness and
capture behaviour in 802.11 adhoc networks. In Proceedings of ICC
’00, Jun. 2000.

[37] A. Warrier, S. Janakiraman, S. Ha, and I. Rhee. DiffQ: Practical
differential backlog congestion control for wireless networks. In
Proceedings of INFOCOM ’09, Apr. 2009.

[38] K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and D. Culler.
Exploiting the capture effect for collision detection and recovery.
In Proceedings of EmNets ’05, May 2005.

[39] S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan. Robust rate
adaptation for 802.11 wireless networks. In Proceedings of MobiCom
’06, Sep. 2006.

[40] K. Xu, M. Gerla, L. Qi, and Y. Shu. Enhancing TCP fairness in ad
hoc wireless networks using neighborhood RED. In Proceedings
of MobiCom ’03, Sep. 2003.

[41] G. Yu, W. Wang, J. Yong, B. Leong, and W. T. Ooi. Adaptive
antenna adjustment for 3D urban wireless mesh networks. In
Proceedings of SECON ’13, Jun. 2013.

[42] A. Zhou, M. Liu, Z. Li, and E. Dutkiewicz. Modeling and
optimization of medium access in CSMA wireless networks with
topology asymmetry. IEEE Transactions on Mobile Computing,
11:1559–1571, Aug. 2011.

[43] M. Zorzi and F. Borgonovo. Performance of capture-division
packet access with slow shadowing and power control. IEEE
Transactions on Vehicular Technology, 46(3):687–696, Aug. 1997.

Wei Wang is a Ph.D. candidate in Computer
Science at the National University of Singa-
pore. He received his M.Eng. and B.Eng. from
Nanyang Technological University in 2008 and
2004, respectively. His research interests are on
developing practical 802.11 wireless systems,
including large-scale mesh networks and UAV-
based networks.

Ben Leong is an Assistant Professor of Com-
puter Science at the School of Computing, Na-
tional University of Singapore. He received his
Ph.D., M.Eng. and S.B. degrees from the Mas-
sachusetts Institute of Technology in 2006, 1997
and 1997 respectively. His research interests
are in the areas of computer networking and
distributed systems.

Wei Tsang Ooi received his B. Sc. (Hon.) de-
gree from National University of Singapore in
1996, and Ph. D. in Computer Science from Cor-
nell University in 2001. He spent a year as post-
doc at Berkeley Multimedia Research Center in
U.C. Berkeley, before re-joining NUS in 2002,
where he is currently an Associate Professor
in the Department of Computer Science. Wei
Tsang’s research focuses on interactive multi-
media systems, including zoomable videos and
networked graphics.

