Improving Peer-to-Peer File Distribution: Winner Doesn't Have to Take All

Ben Leong, Youming Wang, Su Wen, Cristina Carbunaru, Yong Meng Teo National University of Singapore

Christopher Chang, Tracey Ho California Institute of Technology

File Distribution != P2P File Sharing A set of clients download the file from server:

Typically minimize Max. or
Average Download Time with some minimal QoS.

- Nodes may leave when done

File Distribution Examples

 Facebook/Twitter needs to update/synchronize the data on thousands of servers. Use BitTorrent

2. Microsoft issues server pack update to thousands of clients. Use Servers

Choke/Unchoke Mechanism

Choke/Unchoke Mechanism

Choke/Unchoke Mechanism

Choke/hher(s)keakeschanism

Auction! [Levin et al., SIGCOMM'08]

has [0-4], not [5-9]

Block-for-block

Tit-For-Tat Transport Protocol (TFTTP)

Evaluation Result on EC2

Algorithm	Download Time (s)	Throughput (kB/s)
BitTorrent	2062	53
TFTTP	1571	70

100MB file, Server 300 kB/s.24 Clients (8 nodes in each group):50 kB/s, 100 kB/s, and 150 kB/s

Details in paper

Some intuitions

Two Observations

 Availability – find blocks to download
Dipoliping fully utilize

2. Pipelining – fully utilize the upload bandwidth

1. Nodes can trade blocks they don't already possess, but will soon

Availability

Significant Clustering in BitTorrent

[Legout et all, SIGMETRICS'07]

Not so for TFTTP Details in paper

2. Not inherently bad for fast peers to trade with slower peers

Intuition Upload bandwidth is the key limiting factor \Rightarrow Nodes should maximize use of upload bandwidth

New trades proposed only when an existing trade is completed.

Promises allow "multiplexing" of data transfers over time

Promises removes uncertainly associated with choke/unchoke – allows better pipelining

Future Work

- Open system
- Altruism
- Smarter server
- Multiple geographically distributed servers

For file distribution

Maybe ... BitTorrent isn't quite the right answer ©

QUESTIONS

How often do nodes lose?

From	Bid to slow nodes	Bid to medium nodes	Bid to fast nodes	Bid to all nodes
Slow	20.75%	61.64%	77.22%	45.68%
	(281/1355)	(586/950)	(456/590)	(1323/2896)
Medium	29.08%	26.59%	33.46%	29.71%
	(197/677)	(319/1200)	(373/1113)	(888/2990)
Fast	27.09%	19.72%	14.28%	18.58%
	(128/472)	(232/1177)	(178/1246)	(538/2895)

100 MB file for 3 groups of peers (64KB/s, 128KB/s, 196KB/s) before the first node is done

But it's not too bad...

Data transferred in MB until first node is done.