
Improving Peer-to-Peer File Distribution:
Winner Doesn’t Have to Take All

Ben Leong, Youming Wang,
Su Wen, Cristina Carbunaru,

Yong Meng Teo
National University of Singapore

Christopher Chang,
Tracey Ho

California Institute of
Technology

P2P File Distribution

File Distribution
!= P2P File Sharing

A set of clients download the file
from server:
– Typically minimize Max. or

Average Download Time with
some minimal QoS.

– Nodes may leave when done

File Distribution Examples
1. Facebook/Twitter needs to

update/synchronize the data on
thousands of servers.

2. Microsoft issues server pack
update to thousands of clients.

Use BitTorrent

Use Servers

BitTorrent

1. Data

Choke/Unchoke Mechanism

BitTorrent

2. Unchoke

Choke/Unchoke Mechanism

BitTorrent

3. Request

Choke/Unchoke Mechanism

BitTorrent

4. Data

Choke/Unchoke Mechanism

LoserLoser

Auction!
[Levin et al., SIGCOMM’08]

Winner

Winner

Winner

Winner

Winner(s) Takes All

Is there a another way?

Is there a another way?

want [5-9]want [0-4]

1. Trade?

has [0-4], not [5-9]has [5-9]

Is there a another way?

gimme [10-14]gimme [5-9]

has [0-4], not [5-9]

2. Accept

Is there a another way?

[0-4] [5-9] [10-14] [5-9]

Block-for-block

3. Data

Is there a another way?

Promise
Tit-For-Tat Transport Protocol (TFTTP)

Forward
Contract

3. Data

Evaluation Result on EC2

Algorithm Download Time (s) Throughput (kB/s)

BitTorrent 2062 53
TFTTP 1571 70

100MB file, Server 300 kB/s.
24 Clients (8 nodes in each group):
50 kB/s, 100 kB/s, and 150 kB/s

Details in paper

Why?
Some intuitions

Two Observations
1. Availability – find blocks

to download
2. Pipelining – fully utilize

the upload bandwidth

1. Nodes can trade
blocks they don’t

already possess, but
will soon

Availability

Availability

Significant Clustering
in BitTorrent

[Legout et all, SIGMETRICS’07]

Not so for TFTTP
Details in paper

2. Not inherently
bad for fast peers

to trade with
slower peers

Intuition
Upload bandwidth is the
key limiting factor
⇒ Nodes should
maximize use of
upload bandwidth

Simple Queuing Model
λ1

λ2

λ3

λk

p1

p2

p3

pk

b1

b2

b3

b4

λ1 λ2 λ3 λk

b1 = b2 = b3 = …= bk

Promises are
Self-Clocking

trade?

Promises are
Self-Clocking

accept

Promises are
Self-Clocking

data

data

Promises are
Self-Clocking

done!

data

Promises are
Self-Clocking

trade?

New trades proposed only when
an existing trade is completed.

Promises are
Self-Clocking

trade?

Promises allow “multiplexing” of
data transfers over time

Promises removes
uncertainly associated
with choke/unchoke –
allows better pipelining

Future Work
• Open system
• Altruism
• Smarter server
• Multiple geographically

distributed servers

For file distribution
…..

Maybe … BitTorrent
isn’t quite the right

answer

QUESTIONS

How often do nodes lose?
From Bid to slow

nodes
Bid to

medium
nodes

Bid to fast
nodes

Bid to all
nodes

Slow 20.75%
(281/1355)

61.64%
(586/950)

77.22%
(456/590)

45.68%
(1323/2896)

Medium 29.08%
(197/677)

26.59%
(319/1200)

33.46%
(373/1113)

29.71%
(888/2990)

Fast 27.09%
(128/472)

19.72%
(232/1177)

14.28%
(178/1246)

18.58%
(538/2895)

100 MB file for 3 groups of peers (64KB/s,
128KB/s, 196KB/s) before the first node is done

But it’s not too bad…
From To Slow To Medium To Fast To All
Slow 138.42 79.21 56.01 273.64

Medium 88.23 217.83 240.71 546.76
Fast 73.25 273.7 412.42 759.37

Server 17.24 36.82 70.36 124.42
All 317.14 607.56 779.49 1704.19

Data transferred in MB until first node is done.

	Improving Peer-to-Peer File Distribution: �Winner Doesn’t Have to Take All
	P2P File Distribution
	File Distribution�!= P2P File Sharing
	File Distribution Examples
	BitTorrent
	BitTorrent
	BitTorrent
	BitTorrent
	Is there a another way?
	Is there a another way?
	Is there a another way?
	Is there a another way?
	Is there a another way?
	Evaluation Result on EC2
	Why?
	Two Observations
	1. Nodes can trade blocks they don’t already possess, but will soon
	Availability
	Availability
	Slide Number 20
	2. Not inherently bad for fast peers to trade with slower peers
	Intuition
	Simple Queuing Model
	Promises are �Self-Clocking
	Promises are �Self-Clocking
	Promises are �Self-Clocking
	Promises are �Self-Clocking
	Promises are �Self-Clocking
	Promises are �Self-Clocking
	Promises removes uncertainly associated with choke/unchoke – allows better pipelining
	Future Work
	For file distribution …..
	Maybe … BitTorrent isn’t quite the right answer
	QUESTIONS
	How often do nodes lose?
	But it’s not too bad…

