
EpiChord: Parallelizing the
Chord Lookup Algorithm with

Reactive Routing State
Management

Ben Leong, Barbara Liskov, and Eric D. Demaine

MIT Computer Science and Artificial Intelligence Laboratory

{benleong, liskov, edemaine}@mit.edu

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.1

Structured Peer-to-Peer Systems

Large scale dynamic network

Overlay infrastructure :
Scalable
Self configuring
Fault tolerant

Every node responsible for some objects

Find node having desired object

Challenge: Efficient Routing at Low Cost

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.2

Address Space

N15

N10

N17

N20

N25

N30N35

N40

N47

N49

N51

N57

N62

N0 N6

Most common — one-dimensional circular
address space

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.3

Mapping Keys to Nodes

N15

N10

N17

N20

N25

N30N35

N40

N47

N49

N51

N57

N62

N0 N6

K13

K2

K47

K32

K52
K54

successor of key is its owner

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.4

Distributed Hash Tables (DHTs)
A Distributed Hash Table (DHT) is a
distributed data structure that supports a
put/get interface.

Store and retrieve {key, value} pairs efficiently
over a network of (generally unreliable) nodes

Keep state stored per node small because of
network churn ⇒ minimize book-keeping &
maintenance traffic

⇒ EpiChord explores the trade-offs in moving
from sequential lookup to parallel lookup and
from O(log n) to O(log n) + + state

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.5

Chord

N15

N10

N17

N20

N25

N30N35

N40

N47

N49

N51

N57

N62

N0 N6

Each node periodically probes O(log n)
fingers

Achieves O(log n)-hop performance
EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.6

Our Goal

We want to do better than O(log n)-hop
lookup without adding extra overhead.

Use a combination of techiques:
Piggyback information on lookup
messages
Allow cache to store more than O(log n)
routing state
Issue parallel queries during lookup

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.7

Outline

Parallel Lookup Algorithm

Reactive Cache Management

Simulation Results

Related Work

Conclusion

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.8

EpiChord Lookup Algorithm

YOU ARE HERE
YOU WANT: K2

N15

N10

N17

N20

N25

N30N35

N40

N47

N49

N51

N57

N62

N0 N6
K2

Known node

Unknown node

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.9

EpiChord Lookup Algorithm

N15

N10

N17

N20

N25

N30N35

N40

N47

N49

N51

N57

N62

N0 N6
K2

Known node

Unknown node

query for K2

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.10

EpiChord Lookup Algorithm

N15

N10

N17

N20

N25

N30N35

N40

N47

N49

N51

N57

N62

N0 N6
K2

Known node

Unknown node

p−1 queries

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.11

EpiChord Lookup Algorithm

N15

N17

N20

N25

N30N35

N40

N47

N49

N51

N6
K2

Known node

Unknown node

N57, N62, N0, N10

N57

N62
N0

N10

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.12

EpiChord Lookup Algorithm

N15

N10

N17

N20

N25

N30N35

N40

N47

N49

N51

N57

N62

N0 N6
K2

Known node

Unknown node

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.13

EpiChord Lookup Algorithm

N15

N10

N17

N20

N25

N30N35

N40

N47

N49

N51

N57

N62

N0 N6
K2

Known node

Unknown node

N0, N6

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.14

EpiChord Lookup Algorithm

N15

N10

N17

N20

N25

N30N35

N40

N47

N49

N51

N57

N62

N0 N6
K2

Known node

Unknown node

N0, N6

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.15

EpiChord Lookup Algorithm

N15

N10

N17

N20

N25

N30N35

N40

N47

N49

N51

N57

N62

N0 N6
K2

Known node

Unknown node

FOUND K2!!

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.16

EpiChord Lookup Algorithm

Intrinsically iterative
Learn about more nodes
Avoid redundant queries – typically
2(p + h) messages

Additional policies to learn new routing
entries:

When a node first joins network, obtains a
cache transfer from successor
Nodes gather information by observing
lookup traffic

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.17

Reactive Cache Management
Traditional (active) approach
⇒ Ping fingers periodically

Our (reactive) approach:
Cache entries have a fixed expiration
period
Divide address space into exponentially
smaller slices
Periodically check if each slice has
sufficient (j) un-expired entries
If not, make a lookup to the midpoint of the
offending slice

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.18

Division of Address Space

Estimate number of slices from k successors
and k predecessors

j and k are system parameters ⇒ choose
k ≥ 2j EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.19

Summary

Piggyback extra information on lookups

Allow cache to contain more than O(log n)
state

Flush out old state with TTLs

Use cache entries in parallel to avoid timeouts

Check that cache entries are well-distributed.
Fix if necessary.

Now, let’s evaluate performance : (i) latency
and (ii) cost

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.20

Simulation Setup

Compare EpiChord to the optimal sequential
Chord lookup algorithm (base 2)

What’s optimal? We ignore Chord
maintenance costs and assume that the
finger tables of nodes are perfectly accurate
regardless of node failures

The competing sequential lookup algorithm is
thus a reasonably strong adversary and not
just a straw man

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.21

Simulation Setup

The assumed workloads will affect
comparisons (Li et al., 2004)

Consider 2 types of workloads:
Lookup-Intensive
200 to 1,200 nodes, r ≈ 1

600 ⇒ rn ≈ 0.3 to 2
query rate, Q ≈ 2 per sec
Churn-Intensive
600 to 9,000 nodes, r ≈ 1

600 ⇒ rn ≈ 1.0 to
15
query rate, Q ≈ 0.05 to 0.07 per sec

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.22

Hop Count – Lookup-Intensive

 0

 1

 2

 3

 4

 5

 200 300 400 600 800 1000 1200 1400

Chord
1-way EpiChord
2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

A
ve

ra
ge

nu
m

be
r

of
ho

ps
pe

r
lo

ok
up

Network Size (Logscale)

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.23

Latency – Lookup-Intensive

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 200 300 400 600 800 1000 1200 1400

Chord
1-way EpiChord
2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

A
ve

ra
ge

lo
ok

up
la

te
nc

y
(s

)

Network Size (Logscale)

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.24

Messages Sent Per Lookup

 0

 5

 10

 15

 20

 200 300 400 600 800 1000 1200 1400

5-way EpiChord
4-way EpiChord
3-way EpiChord
2-way EpiChord
1-way EpiChord

Chord

A
ve

ra
ge

nu
m

be
r

of
m

es
sa

ge
s

pe
r

lo
ok

up

Network Size (Logscale)

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.25

Summary of Results

Increasing p improves hop count and latency
and reduces lookup failure rate

Since our approach is iterative ⇒ about
2(p + h) messages per lookup

Higher lookup rates yield better overall
performance due to caching

Number of entries returned per query l > 3
does not affect performance much, so we set
l = 3

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.26

Related Work

Chord (Stoica et al., 2001)

DHash++ (Dabek et al., 2004)

Kademlia (Maymounkov and Mazieres, 2002)

Kelips (Gupta et al., 2003)

One-Hop (Gupta et al., 2004)

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.27

Conclusion

Parallel lookup and reactive routing state
maintenance algorithm trades off storage with
better lookup performance w/o increasing
bandwidth consumption

Reduce both lookup latencies and
pathlengths over Chord by a factor of 3 by
issuing only 3 queries asynchronously in
parallel per lookup w/o using more messages

A parallel lookup strategy is inherently more
resilient to timeouts than a sequential one

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.28

EpiChord: Parallelizing the
Chord Lookup Algorithm with

Reactive Routing State
Management

Ben Leong, Barbara Liskov, and Eric D. Demaine

MIT Computer Science and Artificial Intelligence Laboratory

{benleong, liskov, edemaine}@mit.edu

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.29

Proximity

We do not track latency information or
explicitly use proximity information

But parallel asynchronous lookup exploits
proximity indirectly

Key observation — Final sequence of lookups
that returns the correct answer first is
approximately equivalent to a
proximity-optimized lookup sequence

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.30

Worst-Case Performance

If j (entries/slice) = 1, equivalent to Chord

Assume a uniformly distributed workload,
worst-case lookup pathlength is at most

1

2
logα n, α = 3j +

6

j + 3
(j > 1)

If j = 2, α = 7.2 and expected worst-case
lookup pathlengths are at most only
1
2 log2 n
1
2 logα n

= logα 2 ≈ 1
3 of that for Chord

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.31

Reduction in Background Probes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

n=2,000
n=20,000

n=200,000
n=1,000,000

P
ro

po
rt

io
n

of
ca

ch
e

in
va

ria
nt

sa
tis

fie
d

Lookup traffic relative to minimal background network maintenance traffic

Probably at least 20 to 25% savings
EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.32

System Parameters

Timeout = 0.5 s

Retransmits = 3 times

Node lifespan – exponentially distributed with
mean 600 s (10 mins)

Cache Expiration Interval = 120 s (2 mins)

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.33

Background Maintenance Traffic

Need to ping every 60 s for 90% validity

j = 2 ⇒ min routing set 4× Chord

Need only half probes because of symmetry

Since 120 s = 2 × 60 s ⇒ background
maintenance bandwidth ≤ Chord

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.34

Hop Count – Churn-Intensive

 0

 1

 2

 3

 4

 5

 6

 7

 500 1000 1500 2000 3000 4000 5000 6000 8000 10000

Chord
1-way EpiChord
2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

A
ve

ra
ge

nu
m

be
r

of
ho

ps
pe

r
lo

ok
up

Network Size (Logscale)

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.35

Latency – Churn-Intensive

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 500 1000 1500 2000 3000 4000 5000 6000 8000 10000

1-way EpiChord
Chord

2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

A
ve

ra
ge

lo
ok

up
la

te
nc

y
(s

)

Network Size (Logscale)

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.36

Messages Sent Per Lookup

 0

 5

 10

 15

 20

 25

 30

 500 1000 1500 2000 3000 4000 5000 6000 8000 10000

5-way EpiChord
4-way EpiChord
3-way EpiChord
2-way EpiChord
1-way EpiChord

Chord

A
ve

ra
ge

nu
m

be
r

of
m

es
sa

ge
s

pe
r

lo
ok

up

Network Size (Logscale)

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.37

Modelling Cache Composition

Consider a network of steady state size n,
where per unit time

a fraction r of the nodes leave
a fraction f of the cache entries are flushed
Each node makes Q lookups uniformly
over the address space
p queries are sent in parallel for each
lookup

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.38

Modelling Cache Composition

Where x is the number of live nodes that is
known to a node at time t, we obtain the
following relation:

d

dt
x(t) =

incoming queries
︷ ︸︸ ︷

pQ(1 −
x

n
) −

entries
flushed

︷︸︸︷

fx −

nodes departed but
not flushed
︷ ︸︸ ︷

(1 − f)rx

This assumes that new knowledge comes
only from incoming queries

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.39

Modelling Cache Composition

Where y is the number of outdated cache
entries at time t, we have the following
relation:

d

dt
y(t) =

dead nodes
not flushed
︷ ︸︸ ︷

(1 − f)rx −

dead nodes
flushed
︷︸︸︷

fy −

outdated nodes discovered by
timeouts of outgoing queries

︷ ︸︸ ︷

pQ(
y

x + y
)

If churn is low relative to lookup rate, cache
maintenance protocol is unimportant

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.40

Modelling Cache Composition

If churn is high, the proportion of outdated
entries in the cache, γ, is

γ = lim
t→∞

y

x + y
≈

√

1 + (1−f)r
f

− 1
√

1 + (1−f)r
f

If cache entries are flushed at node failure
rate,

γ ≈
√

2 − f − 1
√

2 − f
≤ 1 −

1
√

2
= 0.292

⇒ most 30% of cache entries will be
outdated

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.41

Cache – Lookup-Intensive

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 200 400 600 800 1000 1200 1400

5-way EpiChord - live entries
3-way EpiChord - live entries
1-way EpiChord - live entries

5-way EpiChord - outdated entries
3-way EpiChord - outdated entries
1-way EpiChord - outdated entries

A
ve

ra
ge

nu
m

be
r

of
en

tr
ie

s
in

ca
ch

e

Network Size (Logscale)

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.42

Cache – Lookup-Intensive

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 200 300 400 600 800 1000 1200 1400

1-way EpiChord
2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

Network Size (Logscale)

Fr
ac

tio
n

of
ou

td
at

ed
ca

ch
e

en
tr

ie
s

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.43

Cache – Churn-Intensive

 0

 20

 40

 60

 80

 100

 120

 140

 500 1000 1500 2000 3000 4000 5000 6000 8000 10000

5-way EpiChord - live entries
3-way EpiChord - live entries
1-way EpiChord - live entries

5-way EpiChord - outdated entries
3-way EpiChord - outdated entries
1-way EpiChord - outdated entries

A
ve

ra
ge

nu
m

be
r

of
en

tr
ie

s
in

ca
ch

e

Network Size (Logscale)

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.44

Cache – Churn-Intensive

 0.11

 0.12

 0.13

 0.14

 500 1000 1500 2000 3000 4000 5000 6000 8000 10000

1-way EpiChord
2-way EpiChord
3-way EpiChord
4-way EpiChord
5-way EpiChord

Fr
ac

tio
n

of
ou

td
at

ed
ca

ch
e

en
tr

ie
s

Network Size (Logscale)

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.45

References

Dabek, F., Li, J., Sit, E., Robertson, J., Kaashoek, M. F., and

Morris, R. (2004). Designing a DHT for low latency and high

throughput. In Proceedings of the 1st Symposium on Net-

worked Systems Design and Implementation (NSDI 2004),

pages 85–98.

Gupta, A., Liskov, B., and Rodrigues, R. (2004). Efficient rout-

ing for peer-to-peer overlays. In Proceedings of the 1st Sym-

posium on Networked Systems Design and Implementation

(NSDI 2004), pages 113–126.

Gupta, I., Birman, K., Linga, P., Demers, A., and van Renesse,

R. (2003). Kelips: Building an efficient and stable P2P DHT

through increased memory and background overhead. In

Proceedings of the 2nd International Workshop on Peer-to-

Peer Systems (IPTPS ’03).

Li, J., Stribling, J., Morris, R., Kaashoek, M. F., and Gil, T. M.

(2004). DHT routing tradeoffs in network with churn. In

Proceedings of the 3rd International Workshop on Peer-to-

Peer Systems (IPTPS ’04).

Maymounkov, P. and Mazieres, D. (2002). Kademlia: A peer-

to-peer information system based on the xor metric. In Pro-

ceedings of the 1st International Workshop on Peer-to-Peer

Systems (IPTPS ’02).

Stoica, I., Morris, R., Karger, D., Kaashoek, F., and Balakrish-

nan, H. (2001). Chord: A scalable Peer-To-Peer lookup ser-

45-1

vice for internet applications. In Proceedings of the 2001

ACM SIGCOMM Conference, pages 149–160.

45-2

	Structured Peer-to-Peer Systems
	Address Space
	Mapping Keys to Nodes
	Distributed Hash Tables (DHTs)
	Chord
	Our Goal
	Outline
	EpiChord Lookup Algorithm
	EpiChord Lookup Algorithm
	EpiChord Lookup Algorithm
	EpiChord Lookup Algorithm
	EpiChord Lookup Algorithm
	EpiChord Lookup Algorithm
	EpiChord Lookup Algorithm
	EpiChord Lookup Algorithm
	EpiChord Lookup Algorithm
	Reactive Cache Management
	Division of Address Space
	Summary
	Simulation Setup
	Simulation Setup
	Hop Count -- Lookup-Intensive
	Latency -- Lookup-Intensive
	Messages Sent Per Lookup
	Summary of Results
	Related Work
	Conclusion
	Proximity
	Worst-Case Performance
	Reduction in Background Probes
	System Parameters
	Background Maintenance Traffic
	Hop Count -- Churn-Intensive
	Latency -- Churn-Intensive
	Messages Sent Per Lookup
	Modelling Cache Composition
	Modelling Cache Composition
	Modelling Cache Composition
	Modelling Cache Composition
	Cache -- Lookup-Intensive
	Cache -- Lookup-Intensive
	Cache -- Churn-Intensive
	Cache -- Churn-Intensive

