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Structured Peer-to-Peer Systems

Large scale dynamic network

Overlay infrastructure :
Scalable
Self configuring
Fault tolerant

Every node responsible for some objects

Find node having desired object

Challenge: Efficient Routing at Low Cost
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Address Space
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Mapping Keys to Nodes

N15

N10

N17

N20

N25

N30N35

N40

N47

N49

N51

N57

N62

N0 N6

K13

K2

K47

K32

K52
K54

successor of key is its owner

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.4



Distributed Hash Tables (DHTs)
A Distributed Hash Table (DHT) is a
distributed data structure that supports a
put/get interface.

Store and retrieve {key, value} pairs efficiently
over a network of (generally unreliable) nodes

Keep state stored per node small because of
network churn ⇒ minimize book-keeping &
maintenance traffic

⇒ EpiChord explores the trade-offs in moving
from sequential lookup to parallel lookup and
from O(log n) to O(log n) + + state
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Chord
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Each node periodically probes O(log n)
fingers

Achieves O(log n)-hop performance
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Our Goal

We want to do better than O(log n)-hop
lookup without adding extra overhead.

Use a combination of techiques:
Piggyback information on lookup
messages
Allow cache to store more than O(log n)
routing state
Issue parallel queries during lookup
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Outline

Parallel Lookup Algorithm

Reactive Cache Management

Simulation Results

Related Work

Conclusion
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EpiChord Lookup Algorithm

YOU ARE HERE
YOU WANT: K2
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EpiChord Lookup Algorithm
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EpiChord Lookup Algorithm
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EpiChord Lookup Algorithm
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EpiChord Lookup Algorithm
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EpiChord Lookup Algorithm
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EpiChord Lookup Algorithm
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EpiChord Lookup Algorithm
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EpiChord Lookup Algorithm

Intrinsically iterative
Learn about more nodes
Avoid redundant queries – typically
2(p + h) messages

Additional policies to learn new routing
entries:

When a node first joins network, obtains a
cache transfer from successor
Nodes gather information by observing
lookup traffic
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Reactive Cache Management
Traditional (active) approach
⇒ Ping fingers periodically

Our (reactive) approach:
Cache entries have a fixed expiration
period
Divide address space into exponentially
smaller slices
Periodically check if each slice has
sufficient (j) un-expired entries
If not, make a lookup to the midpoint of the
offending slice
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Division of Address Space

Estimate number of slices from k successors
and k predecessors

j and k are system parameters ⇒ choose
k ≥ 2j EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.19



Summary

Piggyback extra information on lookups

Allow cache to contain more than O(log n)
state

Flush out old state with TTLs

Use cache entries in parallel to avoid timeouts

Check that cache entries are well-distributed.
Fix if necessary.

Now, let’s evaluate performance : (i) latency
and (ii) cost
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Simulation Setup

Compare EpiChord to the optimal sequential
Chord lookup algorithm (base 2)

What’s optimal? We ignore Chord
maintenance costs and assume that the
finger tables of nodes are perfectly accurate
regardless of node failures

The competing sequential lookup algorithm is
thus a reasonably strong adversary and not
just a straw man
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Simulation Setup

The assumed workloads will affect
comparisons (Li et al., 2004)

Consider 2 types of workloads:
Lookup-Intensive
200 to 1,200 nodes, r ≈ 1

600 ⇒ rn ≈ 0.3 to 2
query rate, Q ≈ 2 per sec
Churn-Intensive
600 to 9,000 nodes, r ≈ 1

600 ⇒ rn ≈ 1.0 to
15
query rate, Q ≈ 0.05 to 0.07 per sec
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Hop Count – Lookup-Intensive
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Latency – Lookup-Intensive
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Messages Sent Per Lookup
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Summary of Results

Increasing p improves hop count and latency
and reduces lookup failure rate

Since our approach is iterative ⇒ about
2(p + h) messages per lookup

Higher lookup rates yield better overall
performance due to caching

Number of entries returned per query l > 3
does not affect performance much, so we set
l = 3
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Related Work

Chord (Stoica et al., 2001)

DHash++ (Dabek et al., 2004)

Kademlia (Maymounkov and Mazieres, 2002)

Kelips (Gupta et al., 2003)

One-Hop (Gupta et al., 2004)
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Conclusion

Parallel lookup and reactive routing state
maintenance algorithm trades off storage with
better lookup performance w/o increasing
bandwidth consumption

Reduce both lookup latencies and
pathlengths over Chord by a factor of 3 by
issuing only 3 queries asynchronously in
parallel per lookup w/o using more messages

A parallel lookup strategy is inherently more
resilient to timeouts than a sequential one
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Proximity

We do not track latency information or
explicitly use proximity information

But parallel asynchronous lookup exploits
proximity indirectly

Key observation — Final sequence of lookups
that returns the correct answer first is
approximately equivalent to a
proximity-optimized lookup sequence

EpiChord: Parallelizing the Chord Lookup Algorithm with Reactive Routing State Management – p.30



Worst-Case Performance

If j (entries/slice) = 1, equivalent to Chord

Assume a uniformly distributed workload,
worst-case lookup pathlength is at most

1

2
logα n, α = 3j +

6

j + 3
(j > 1)

If j = 2, α = 7.2 and expected worst-case
lookup pathlengths are at most only
1
2 log2 n
1
2 logα n

= logα 2 ≈ 1
3 of that for Chord
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Reduction in Background Probes
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System Parameters

Timeout = 0.5 s

Retransmits = 3 times

Node lifespan – exponentially distributed with
mean 600 s (10 mins)

Cache Expiration Interval = 120 s (2 mins)
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Background Maintenance Traffic

Need to ping every 60 s for 90% validity

j = 2 ⇒ min routing set 4× Chord

Need only half probes because of symmetry

Since 120 s = 2 × 60 s ⇒ background
maintenance bandwidth ≤ Chord
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Hop Count – Churn-Intensive
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Latency – Churn-Intensive
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Messages Sent Per Lookup
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Modelling Cache Composition

Consider a network of steady state size n,
where per unit time

a fraction r of the nodes leave
a fraction f of the cache entries are flushed
Each node makes Q lookups uniformly
over the address space
p queries are sent in parallel for each
lookup
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Modelling Cache Composition

Where x is the number of live nodes that is
known to a node at time t, we obtain the
following relation:

d

dt
x(t) =

incoming queries
︷ ︸︸ ︷

pQ(1 −
x

n
) −

entries
flushed

︷︸︸︷

fx −

nodes departed but
not flushed
︷ ︸︸ ︷

(1 − f)rx

This assumes that new knowledge comes
only from incoming queries
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Modelling Cache Composition

Where y is the number of outdated cache
entries at time t, we have the following
relation:

d

dt
y(t) =

dead nodes
not flushed
︷ ︸︸ ︷

(1 − f)rx −

dead nodes
flushed
︷︸︸︷

fy −

outdated nodes discovered by
timeouts of outgoing queries

︷ ︸︸ ︷

pQ(
y

x + y
)

If churn is low relative to lookup rate, cache
maintenance protocol is unimportant
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Modelling Cache Composition

If churn is high, the proportion of outdated
entries in the cache, γ, is

γ = lim
t→∞

y

x + y
≈

√

1 + (1−f)r
f

− 1
√

1 + (1−f)r
f

If cache entries are flushed at node failure
rate,

γ ≈
√

2 − f − 1
√

2 − f
≤ 1 −

1
√

2
= 0.292

⇒ most 30% of cache entries will be
outdated
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Cache – Lookup-Intensive
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Cache – Lookup-Intensive
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Cache – Churn-Intensive
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Cache – Churn-Intensive
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