Geographic Routing without Planarization

Ben Leong, Barbara Liskov & Robert Morris MIT CSAIL

Greedy Distributed Spanning Tree Routing (GDSTR)

- New geographic routing algorithm
 - **DOES NOT** require planarization
 - uses spanning tree, not planar graph
 - -low maintenance cost
 - better routing performance than existing algorithms

- Background
- Problem
- Approach
- Simulation Results
- Conclusion

- Wireless nodes have x-y coordinates
 - can use virtual coordinates (Rao et al. 2003)
- Nodes know coordinates of immediate neighbors
- Packet destinations specified with x-y coordinates
- In general, forward packets greedily

Back to Greedy Forwarding

Back to Greedy Forwarding

Back to Greedy Forwarding

Planarization is Costly!

- Planarization is hard for real networks
 - -GG and RNG don't work
- Planarization is complicated & costly!
 - CLDP (Kim et al., 2005)

Greedy Distributed Spanning Tree Routing (GDSTR)

- Route on a spanning tree
- Use convex hulls to "summarize" the area covered by a subtree
 - convex hulls tells us what points are possibly reachable
 - reduces the subtree that must be traversed (smaller search problem)

GDSTR Example

Revert to Greedy Forwarding

Revert to Greedy Forwarding

Revert to Greedy Forwarding

Choosing forwarding direction

multiple hull trees

Undeliverable packets

conflict Hulls

"bad" direction.

Pick tree with root closest to the destination

Summary: Routing

- Try greedy forwarding
- Dead end:
 - choose tree
 - record start node
 - traverse subtree
- If possible, revert to greedy forwarding
- Back to start node: packet undeliverable

Theorem

Given a pair of nodes *s* and *t* in connected graph *G*, GDSTR guarantees packet delivery from *s* to *t*.

Building Hull Trees

- Convex hull info in *keepalive* messages
- Choose roots:
 - minimal and maximal x-coordinates
- Want compact trees
 - minimal hop count from root
- Aggregate convex hulls from leaves to root
- Conflict hull info percolates from root to leaves

Simulation Results

- Measured 2 routing metrics:
 - -Path Stretch
 - Hop Stretch
- Topologies
 - range of network densities (average node degree)
 - larger networks up to 5,000 nodes
 - low/high density
 - low/high obstacle density

Simulation Results

- Compare with
 - GPSR (Karp, 2001),
 - GOAFR+ (Kuhn, 2003) and
 - GPVFR (Leong et al., 2005)

under CLDP planarization (Kim et al., 2005)

- Measured costs and compared with CLDP:
 - storage
 - bandwidth

Hop Stretch

Computation: – convex hull computation: O(log n) operations [Graham's scan]

- Storage: < 1 kb
- Bandwidth

Message Sizes

Messages for Stabilization

- Maintenance cost one order of magnitude less than CLDP (face routing)
- Better routing performance (stretch) – up to 20% better

Average Hop Stretch

Small Voids

Explaining Performance

Explaining Performance

Explaining Performance

Summary

- Sparse networks
 - GDSTR chooses correct forwarding direction more often than face routing
- Moderately dense networks
 - Faces are small, forwarding direction is inconsequential
 - Trees do not "approximate" small voids well
- Ultra-dense networks

– Greedy forwarding works all the time!

- Cheaper to maintain two hull trees than a planar graph
- "Global" information allows GDSTR to choose good forwarding direction more often
- GDSTR achieves improved routing stretch at lower maintenance cost than CLDP

Future Work

- Evaluate GDSTR in a practical and mobile setting
- Geographic routing in higher dimensions
 - convex hulls generalizable to higher dimensions

Geographic Routing without Planarization

Ben Leong, Barbara Liskov & Robert Morris MIT CSAIL

Reducing Convex Hulls

Reducing Convex Hulls

Reducing Convex Hulls

Conflict Hulls

- Undeliverable packets will be forwarded to the root.
- Conflict hulls allow us to avoid forwarding to the root
- Key idea: parent nodes tell child nodes about other nodes with intersecting hulls

Example: Conflict Hull

Example: Conflict Hull

Forward to parent ...

Example: Conflict Hull

Packet undeliverable!

Example GDSTR Hull Trees

Minimal-x Tree

Maximal-x Tree

Comparing Routing Topologies

Planar Graph (CLDP)

Two Trees