
How to ConQueR Why-Not Questions

Quoc Trung Tran and Chee-Yong Chan
Department of Computer Science, School of Computing

National University of Singapore
{tqtrung, chancy}@comp.nus.edu.sg

ABSTRACT
One useful feature that is missing from today’s database
systems is an explain capability that enables users to seek
clarifications on unexpected query results. There are two
types of unexpected query results that are of interest: the
presence of unexpected tuples, and the absence of expected
tuples (i.e., missing tuples). Clearly, it would be very help-
ful to users if they could pose follow-up why and why-not
questions to seek clarifications on, respectively, unexpected
and expected (but missing) tuples in query results. While
the why questions can be addressed by applying established
data provenance techniques, the problem of explaining the
why-not questions has received very little attention. There
are currently two explanation models proposed for why-not
questions. The first model explains a missing tuple t in terms
of modifications to the database such that t appears in the
query result wrt the modified database. The second model
explains by identifying the data manipulation operator in
the query evaluation plan that is responsible for excluding t

from the result. In this paper, we propose a new paradigm
for explaining a why-not question that is based on automat-
ically generating a refined query whose result includes both
the original query’s result as well as the user-specified miss-
ing tuple(s). In contrast to the existing explanation models,
our approach goes beyond merely identifying the “culprit”
query operator responsible for the missing tuple(s) and is
useful for applications where it is not appropriate to modify
the database to obtain missing tuples.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing; H.2.8 [Database Man-
agement]: Database Applications

General Terms
Algorithms, Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10,June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

Keywords
query explanation, query refinement, why-not questions

1. INTRODUCTION
While database system research has made tremendous ad-

vances on functionality and performance related issues over
the years, research on improving database usability has not
attracted as much attention as it deserves [8]. One useful
feature that is missing from today’s database systems is an
explain capability for users to seek clarifications on query
results. Although most database systems today provide an
explain functionality to help database administrators under-
stand and tune the performance of unexpected slow-running
queries, there is no similar higher-level explain feature avail-
able to help end users understand the unexpected results
in their query outputs. There are two types of unexpected
query results that are of interest: (1) the presence of unex-
pected tuples, and (2) the absence of expected tuples (i.e.,
missing tuples). Clearly, it would be very helpful if users
could pose follow-up why questions (i.e., why is a certain tu-
ple in the result) or why-not questions (i.e., why is a certain
tuple missing from the result) to seek clarifications on un-
expected query results. While the why questions can be ad-
dressed by applying established data provenance techniques
[13], the problem of explaining the why-not questions has
received very little attention [2].

Consider the following SQL query to find the recent high-
scoring NBA players from the NBA statistics1: SELECT
P.name FROM Player P, Regular R WHERE P.pID = R.pID
AND R.year > 2000 AND R.pts > 2400. Among the play-
ers returned by the query are many expected well-known
NBA superstars such as“LeBron James”and“Kobe Bryant”.
However, the user is surprised to find that the superstar
“Rick Barry” is absent from the query result. At this point,
the user could try to figure out for himself an explanation for
the missing tuple by relaxing at least one selection predicate
(e.g., adjusting the year to 1990 or lowering the points to
2000) to see if Barry satisfies the revised query. Clearly, such
a manual trial-and-error approach of seeking explanation is
rather tedious involving possibly many rounds of query re-
finement. Moreover, the user could end up over-relaxing
his refined query and obtaining many more additional result
tuples than just the tuple for Barry.

Thus, it would be very helpful to the user if she could sim-
ply pose a single why-not question to the database system
to seek an explanation for why “Rick Barry” is not in the

1http://www.basketballreference.com/

result. There are two main models for explaining why-not
questions. One natural explanation model for missing tu-
ple(s) is to identify the query operator(s) that is responsible
for eliminating the missing tuple(s) from the result [2]. Thus,
for the above example, a possible explanation is to identify
the selection operator on the year attribute as the “culprit”
operator. For applications where a query result is computed
by a workflow of black-box processing steps, the ability to
pinpoint the step that is responsible for the missing tuple(s)
could be the most informative available explanation.

However, in general, an even more helpful explanation
can go beyond merely identifying the culprit step/operator
and actually suggests one or more ways to “fix” the original
query such that the missing tuple(s) become present in the
result. Continuing with the example, a more informative
explanation would be a refined query that changes the se-
lection predicate on year to “R.year > 1970”. In this way,
not only does the system reveal the culprit operator to the
user, it also explicitly shows the user how to revise the orig-
inal query to obtain the expected tuple(s). The automatic
generation of refined queries to explain unexpected query
results can be useful even for applications that interact with
users via a form-based web-interface, where the SQL queries
being issued to the database are generated by a middleware
component based on the completed forms. Basically, what
is needed is a component to map a refined query back to
an interface-based explanation. For example, an interface-
based explanation could inform the user that had she clicked
on button X on the form and selected item Y from the
pulled-down menu, the expected missing tuple would have
been included in the result.

A second model that has been proposed explains a missing
tuple t in terms of modifications to the database such that
t appears in the query result wrt the modified database [7].
This model was proposed in the context where some of the
data in the database are extracted from untrusted informa-
tion sources which may not be accurate. Thus, the intuition
of this model is to explain in terms of how to modify some
of the untrusted data in order to produce the missing tuple.
Clearly, this explanation model is very flexible if arbitrary
modifications to the database are allowed to derive the miss-
ing tuple(s). However, this model may not be applicable in
applications where all the data stored are trusted (e.g., en-
terprise databases) and where it may not be meaningful to
make arbitrary changes to the stored data.

In this paper, we propose a new explanation model that
is based on automatically generating one or more refined
query whose result includes both the original query’s result
as well as the missing tuple(s). Our proposed model goes be-
yond identifying culprit query operator(s) (in contrast to the
first explanation model), and actually recommends refined
queries, instead of data changes (unlike the second explana-
tion model), to “fix” missing tuple(s). While it is desirable
for a refined query to be as similar as possible to the original
input query by making only minimal relaxations to appro-
priate selection predicates in the query, doing so might not
always generate the desired missing tuple(s) as the user’s
original query might actually be focused on the “wrong”
part of the database schema and needs to be reformulated.
Thus, our proposed explanation strategy will try to gener-
ate minimally modified refined queries to account for the
missing tuple(s) whenever possible and resort to more dras-
tic query reformulation if minimally refined queries do not

exist. Besides handling why-not questions for select-project-
join (SPJ) queries, our approach can also explain why-not
questions for SPJ queries with aggregation (SPJA queries)
which are not addressed by any of the existing explanation
models.

The following three examples illustrate the capabilities of
our proposed approach. The first example illustrates the
need to sometimes refine query beyond simply relaxing selec-
tion predicates by reformulating the query to retrieve from
different relations in the database schema.

Example 1. Consider a flight database which includes
two relations budget airline and business airline that de-
scribe airfare information for budget and business airlines,
respectively. Suppose a user wants to buy a cheap airticket
for vacation travel in July with the criteria that the depar-
ture city is in New York, the maximum number of hops is
at most 3, and the ticket price is at most 1000. The user
issues a query on the budget airline relation to find all the
destination cities that meet his requirement and is surprised
to learn that Shanghai is not listed in the result even though
one of his colleagues has recently booked a cheap airticket
to Shanghai. It could well be that there are no available
air tickets from New York to Shanghai with the budget air-
lines but there are promotion cheap airtickets available with
the business airlines that meet his requirement. Thus, in
this case, simply relaxing the predicates in the original in-
put query would not help to generate any explanation; in-
stead, the refined query needs to be reformulated on both the
budget airline and business airline relations. 2

The next example illustrates why-not queries with con-
straints on aggregated values.

Example 2. Consider the following query to find the av-
erage points scored by high-scoring recent basketball players:
SELECT P.name, AVG(R.pts) FROM Player P, Regular R
WHERE P.pID = R.pID AND R.pts > 2000 AND R.year
≥ 1994 AND R.year ≤ 2000 GROUP BY P.name. The re-
sult contains two tuples (Michael Jordan, 2200) and (Gary
Payton, 2800). The user might be expecting Jordan’s aver-
age score to be higher and would like to seek an explanation
for why Jordan’s average score is not higher than 3000. Our
approach can process such why-not questions involving se-
lection constraints on an aggregated value. It turns out that
Jordan actually did not perform so well during 1994, and
a refined query that replaces “R.year ≥ 1994” with “R.year
≥ 1995” would explain the user’s why-not question. Our ap-
proach can also support this kind of why-not questions for
missing tuples. For example, the user could ask why is “Wilt
Chamberlain” not in the result? Or even more specifically,
ask why is “Wilt Chamberlain” not in the result with an av-
erage score of at least 3000? 2

The final example illustrates more complex why-not queries
involving relative comparisons of aggregated values.

Example 3. Suppose Professor P issues the following query
to check the academic performance (in terms of average scores)
of his students: SELECT G.name, AVG (G.score) FROM
Grade G GROUP BY G.name. P is surprised to find that
the tuples (Alice,70) and (Bob, 90) in the result as he has ex-
pected Alice to perform better than Bob. Thus, P would like
to ask why Alice’s average score is not higher than Bob’s.

Our approach can handle such sophisticated why-not ques-
tions that involve comparisons among multiple aggregated
values in the results. A possible explanation for this why-not
question is the following refined query: SELECT G.name,
AVG (G.score) FROM Grade G WHERE G.dept = “CS”
GROUP BY G.name, which explains that Alice indeed per-
forms better than Bob if the average scores were computed
for courses offered by the CS department. 2

Contributions. In this paper, we introduce a new frame-
work, named ConQueR, to explain why-not questions based
on automatically generating refined queries. We propose
novel algorithms to not only handle basic SPJ queries but
also more sophisticated SPJA queries that involve constraints
or comparisons among aggregated values. We demonstrate
the usefulness of our paradigm by comparing against the two
existing explanation models on both synthetic and real data
sets, and show the efficiency of our proposed algorithms by
a performance comparison against an existing classification-
based approach for generating instance-equivalent queries.

2. RELATED WORK
There are two existing models to explain why-not ques-

tions on query results. The first approach explains by mod-
ifying some tuples in the database so that the result of the
query on the modified database will include both the orig-
inal result and the specified missing tuples [7]. This work
is orthogonal to our approach, which is based on modify-
ing the input query. Unlike our work, [7] focuses only on
SPJ queries and does not address why-not questions on SPJ
queries with aggregation (SPJA queries).

The recent work, called Artemis [6], extends [7] by sup-
porting a set of why-not tuples over a set of SPJU (SPJ with
union) queries with constraints on minimizing the number
of inserted tuples and constraints among why-not tuples us-
ing variables. Our work can also handle SPJU queries with
constraints on why-not tuples. Similar to [7], Artemis does
not handle SPJA queries.

The second approach, introduced in [2], explains missing
tuples by identifying the manipulation operation(s) in the
query plan that are responsible for excluding the missing
tuples. The work here also focuses only on SPJ queries and
does not consider SPJA queries. The idea of identifying the
“culprit” operator to explain unexpected query results also
appears in [5] in the context of explaining mismatches in
schema matching.

The recent work called TALOS [15] for generating instance-
equivalent queries for an input query is similar in spirit to
our query refinement approach, and can be applied to our
problem by treating the original query result and the missing
tuples collectively as a query’s output. Indeed, we have ex-
tended TALOS as an alternative solution for this work. Our
experimental results reveal that TALOS is a more precision-
oriented approach as the queries generated can be rather
different from the input query. In some applications, it may
not be too meaningful to explain missing tuples using re-
fined queries that are very different from the input query.
Moreover, the performance of TALOS is also slower than
our approach by up to factor of 6 times due to its costly
data classification step.

There is also some related work on query refinement to
modify an input query so that its query result can satisfy
some cardinality constraints. The work in [9, 11] relaxes the

failed queries which return empty result so that the modified
queries will yield some answers. As the goal there is to refine
the query to return any non-empty result, the techniques
there cannot be applied to our problem which has stronger
constraints to satisfy. Another related direction in [10, 3]
deals with the problem when a query returns too many/few
answers by refining the query to satisfy some constraint on
the query result size. Similar to the work in [9], the focus
there is on the size of the output but not on the content of
the output.

Another related direction is the work on provenance [4]
and OLAP [12]. The work in [4] can trace the provenance
of an aggregated value by finding the data that derived a
given aggregated value; however, the techniques cannot be
extended to handle the why-not questions that we address
for SPJA queries. The work in [12] addresses explanations
for OLAP applications to explain why an aggregated value
in a data cube cell is lower/higher than the value in another
cell. The main focus there is to compute a compact sum-
marization of the data tuples at the detailed lower levels
to account for the phenomena. Again, the work there can-
not be generalized to solve our problem related to complex
why-not questions on SPJA queries.

3. OVERVIEW OF OUR APPROACH
In this paper, we consider two fragments of SQL queries

where each projected attribute is either a relation’s attribute
or a value computed by an aggregation operator (COUNT,
SUM, or AVG) that does not involve any arithmetic expres-
sion in the operator’s argument. The first fragment is the
basic select-project-join (SPJ) queries where the selection
condition is a conjunction of predicates C1 ∧ · · · ∧ Cℓ. Each
Ci is either a selection predicate“Aj op c”or a join predicate
“Aj op Ak”, where Ai is an attribute, c is a constant, and
op is a comparison operator. The second fragment is SPJ
queries with aggregation (SPJA queries) which are SPJ SQL
queries with aggregation operators in the select-clause and
an optional group-by clause.

For simplicity and without loss of generality, we assume
all attributes are numerical and consider only the “≤” com-
parison operator for selection predicates. Our approach can
be easily extended to categorical attributes and other com-
parison operators.

Running example. In this paper, we use the NBA statis-
tics database on basketball players as our running example
which consists of three main tables. The Player relation con-
tains the identifier (pID) and name (name) of each player.
The Regular (resp. Playoff) relation provides the number of
points (pts), steal (stl), block (blk) and rebound (reb) statis-
tics of a player when he was playing for a team (team) in a
specific year (year) in regular season (resp. playoff) games.
Figure 1 shows our running example data.

3.1 Why-not Questions & Refined Queries
Given an input query Q on a database D, let Q(D) denote

the output of Q on D. In the most basic form, a why-not
question on Q(D) is represented by a non-empty set of why-
not tuples S = {t1, · · · , tn}, n ≥ 1, where each why-not
tuple ti has the same schema as Q and ti 6∈ Q(D). Essen-
tially, the why-not question is asking why S is not a sub-
set of Q(D); i.e., why each ti ∈ S is not in Q(D). Each
component value in a why-not tuple can be in one of three

pID name

P1 “A”
P2 “B”
P3 “C”
P4 “D”
P5 “E”

pID team year pts blk stl reb

P1 GSW 1973 2009 30 150 40
P2 SEA 1994 1689 35 200 281
P2 SEA 1995 1563 50 240 339
P3 CHI 1992 2541 45 220 361
P4 LAL 1995 1567 30 162 359

pID team year pts blk stl reb

P1 GSW 1973 2029 40 100 30
P2 SEA 1994 3000 65 150 181
P2 CHI 1995 2200 50 120 161
P2 LAL 1996 2500 70 110 200
P4 LAL 1995 2300 70 150 150
P5 DEN 2000 1689 35 200 381

(a) Player (b) Regular (c) Playoff

Figure 1: Running Example: Basketball Data Set D

forms: (1) a constant value compatible with the correspond-
ing attribute’s domain; (2) a don’t-care value (denoted by
); or (3) a variable (denoted by a $ symbol followed by a

sequence of letters; e.g., $x). A don’t-care value is used for
an attribute Ai when the user is not interested in the spe-
cific value of attribute Ai in the why-not tuple. A variable
is used for an attribute Ai when the user wishes to impose
a selection condition on that attribute in the why-not tuple
with respect to some constant value or another attribute ap-
pearing in the same or another why-not tuple as illustrated
by the SPJA queries in Examples 2 and 3. Thus, in the most
general form, a why-not question on Q(D) is represented by
(S, C) where S is a non-empty set of why-not tuples and C

is a (possibly empty) set of selection conditions defined on
the variables appearing in S. In Example 3, the why-not
question is represented by S = {(Alice,$x), (Bob,$y)} and
C = {$x > $y}.

Given a why-not question (S, C) on Q(D), we say that Q′

is a refined query of Q that explains the why-not question
(S, C) if (1) Q′(D) contains Q(D), and (2) for each why-not
tuple tw ∈ S, there exists a matching tuple t ∈ Q′(D) such
that all the constraints in C are satisfied by the matching
tuples. A tuple t ∈ Q′(D) is a matching tuple for a why-not
tw ∈ S if for every component of tw that is a constant value,
the corresponding component in t has the same constant
value. Thus, if t is a matching tuple for tw, then every
component of tw that is a variable becomes instantiated with
the corresponding attribute value in t, and the collection of
instantiated variables must satisfy all the constraints in C

for Q′ to be a refined query of Q wrt D.

3.2 Metrics for Comparing Refined Queries
Since there are generally many refined queries for a given

why-not question, it is useful to have some metric to compare
the quality of refined queries so that only the “good” refined
queries are returned as possible explanations. There are two
obvious desiderata for refined queries that can be used for
this purpose.

Dissimilarity metric. First, a refined query should be as
similar as possible to the original input query. This has intu-
itive appeal since a refined query that is minimally modified
from the original query is likely to retain as much of the in-
tention of the original input query. Moreover, by comparing
the small differences between the two queries, it also serves
to pinpoint to the user the “errors” she has made in her ini-
tial query. Thus, a refined query that simply modifies only
one of the selection predicate is more similar to the input
query than another refined query that involves a different
set of relations from the original query.

Given an input query Q and a refined query Q′, we com-
pare the similarity of Q and Q′ by measuring the minimum

edit distance of transforming Q to Q′. Thus, two queries
are more similar (or less dissimilar) if their edit distance is
smaller. Since the output of Q and Q′ are union-compatible
(i.e., the lists of attributes in the select-clause of Q and Q′

are equivalent), we only consider edit operators to transform
Q to Q′ in terms of modifying the query’s from-clause and
where-clause; the corresponding modifications to the query’s
select-clause and group-by-clause are trivial and are not con-
sidered in the edit distance computation. The four key edit
operations considered are: (O1) modify the constant value
of a selection predicate in the where-clause, (O2) add a selec-
tion predicate in the where-clause, (O3) add/remove a join
predicate in the where-clause, and (O4) add/remove a rela-
tion in the from-clause. Note that there is no explicit edit
operator for removing a selection predicate as this can be
modeled by O1; i.e., the removal of a selection predicate is
effectively equivalent to modifying its range of selection val-
ues to cover the whole domain of the attribute. Furthermore,
when O4 is used to remove a relation Ri in the from-clause,
all the selection and join predicates that are associated with
Ri are also removed as part of the edit operation.

Let wi denote the cost of the edit operation Oi, i ∈ [1, 4].
It is reasonable to assume that w1 < w2 < w3 < w4

2. Let
ni denote the total number of Oi operations used in a trans-
formation of Q to Q′, i ∈ [1, 4]. The edit distance for this
transformation is given by

P

1≤i≤4(wi × ni). We refer to

minimum edit distance to transform Q to Q′ as the dissim-
ilarity measure between Q and Q′, which can be computed
efficiently for a given Q and Q′.

Imprecision metric. Second, the refined query should be
as precise as possible in terms of its result. Ideally, the re-
sult of the refined query Q′ should contain only the result of
the original query Q and the set of matching tuples for the
why-not tuples. Any additional tuples returned in Q′(D)
are considered to be irrelevant tuples that should be min-
imized. Given a refined query Q′ for a why-not question
(S, C), let R ⊆ Q′(D) denote a minimal set of matching tu-
ples in Q′(D) for the why-not tuples in S. The imprecision
metric for Q′ is defined to be the number of irrelevant tuples
in Q′(D) which is given by |Q′(D) − Q(D) − R|.

Skyline refined queries. Thus, a refined query is con-
sidered to be good if both its dissimilarity and imprecision
metrics are low. Among all the possible refined queries for
a why-not question, we are interested in the set of skyline
refined queries defined as follows [1]. Given two different
refined queries Q1 and Q2, we say that Q1 dominates Q2 if
(1) both the metrics of Q1 are at least as low as those of Q2

and (2) for at least one of the metrics, Q1’s value is strictly

2In our experimental study, we use w1 = 1, w2 = 3, w3 = 5
and w4 = 7.

lower than that of Q2’s. We define a refined query Q′ to be
a skyline refined query (or skyline query) if Q′ is not dom-
inated by any other refined query. Thus, given a why-not
question, our goal is to compute skyline refined queries to
explain the question.

Example 4. Consider a query Q1 on the Basketball data
set that finds players who have “block” statistics no greater
than 30 and “steal” statistics no greater than 150; i.e., Q1:
SELECT name FROM Player P , Regular R WHERE P.pID =
R.pID and blk ≤ 30 AND stl ≤ 150. The output includes
only one player “A”. The why-not question S = {(“B”)} asks
why player “B” is excluded from the result.

Consider the following refined query Q′
1: SELECT name

FROM Player P , Regular R WHERE P.pID = R.pID and

blk ≤ 35 AND stl ≤ 200. Observe that Q′
1 is derived from

Q1 by applying O1 edit operations on both the selection pred-
icates of Q1, and the output of Q′

1 is {“A”, “B”, “D”}. Thus,
the dissimilarity and the imprecision of Q′

1 (wrt Q1) are 2w1

and 1, respectively.
Consider yet another refined query Q′′

1 : SELECT name
FROM Player P , Regular R WHERE P.pID = R.pID and

blk ≤ 50 AND stl ≤ 240. The output of Q′′
1 is {“A”, “B”,

“C”, “D”}; and the dissimilarity and imprecision of Q′′
1 are

2w1 and 2, respectively. Thus, Q′
1 dominates Q′′

1 , and Q′
1 is

considered to be a better refined query than Q′′
1 . 2

3.3 Explaining with ConQueR
In this section, we present an overview of our approach

named ConQueR, for Constraint-based Query Refinement,
to explain why-not questions by automatically generating
one or more refined queries.
ConQueR is designed to be a similarity-driven approach in

that it tries to generate refined queries with low dissimilarity
values before considering more precise refined queries that
have higher dissimilarity values. Given a why-not question
(S, C) for a query Q on database D, ConQueR will first con-
sider refined queries Q′ that have the same query schema
(i.e., queries with the same from-clause and join predicates)
as Q. That is, ConQueR tries to derive Q′ by simply mod-
ifying selection predicate(s) in Q to explain the why-not
tuples while minimizing the imprecision metric. If such re-
fined queries exist, ConQueR will only generate skyline refined
queries that all share the same query schema as Q. How-
ever, if no such refined query exists, ConQueR then looks for
refined queries that have a slightly different query schema
(i.e., with a slightly higher dissimilarity value), and so on.
Thus, ConQueR effectively iterates over a sequence of query
schemas QS1, · · · , QSk to search for refined queries: QS1 is
the query schema of the input query Q, and schema QSi+1 is
considered only if there are no refined queries with schema
QS1, · · · , QSi. The sequence of query schemas considered
are (approximately) of increasing dissimilarity metric val-
ues, and if QSk is the first query schema in the sequence
to contain refined queries, ConQueR will generate all skyline
refined queries with schema QSk as possible explanations to
the why-not question.

The architecture of ConQueR consists of two key compo-
nents, ConQueRs and ConQueR

p. Given a query Q on a database
D and a why-not question (S, C) on Q(D), ConQueRs first
computes refined queries Q′

s for the why-not question that
are as similar as possible to Q (i.e., each Q′

s has a low dis-
similarity value). Next, ConQueRp takes each refined query
Q′

s computed by ConQueR
s to derive skyline refined queries

pID name team year pts blk stl reb

t1 P1 A GSW 1973 2009 30 150 40
t2 P2 B SEA 1994 1689 35 200 281
t3 P2 B SEA 1995 1563 50 240 339
t4 P3 C CHI 1992 2541 45 220 361
t5 P4 D LAL 1995 1567 30 162 359

Q∗
∅(D) = Player ⊲⊳pID Regular

Figure 2: Example 5

that are more precise than Q′
s by adding various additional

predicates to Q′
s to improve its precision.

3.3.1 Notations & Definitions
Given a SQL query Q, we use rel(Q) to denote the set

of relations in the from-clause of Q; proj(Q) to denote the
set of attributes in the select-clause of Q; sel(Q) to denote
the set of selection predicates in the where-clause of Q; and
join(Q) to denote the set of join predicates in the where-
clause of Q. Thus, the query schema of a query Q is given
by rel(Q) and join(Q). We use ℓ to denote the number of
selection predicates in Q; i.e., |sel(Q)| = ℓ.

Consider the generation of a refined query Q′ for a why-
not question (S, C) on Q(D) that shares the schema as Q.
Conceptually, ConQueR first computes an intermediate query,
denoted by Q∗

∅, on D, where rel(Q∗
∅) = rel(Q), join(Q∗

∅) =
join(Q), sel(Q∗

∅) = ∅, and proj(Q∗
∅) consists of all the dis-

tinct attributes in rel(Q∗
∅). The refined query Q′ is de-

rived from Q∗
∅(D) as follows: Q′ = πL(σP (Q∗

∅)), where
L ⊆ proj(Q∗

∅) is a list of appropriate attributes correspond-
ing to proj(Q) so that Q and Q′ are union-compatible, and
P contains an appropriate set of selection predicates such
that Q′ is a refined query for the why-not question. Deter-
mining L from Q and proj(Q∗

∅) is straightforward, and the
main challenge in the derivation of Q′ is determining P (i.e.,
sel(Q′)).

For each why-not tuple ti ∈ S, let Mi ⊆ Q∗
∅(D) denote

the subset of tuples in Q∗
∅(D) that are matching tuples of ti.

Note that for Q′ to be a refined query of Q that explains all
the why-not tuples, it is necessary for each Mi to be non-
empty; otherwise, if some Mj is empty, then Q′ will not be
able to account for the why-not tuple tj .

Example 5. Consider again query Q1 in Example 4, where
Q1(D) = {(“A”)}. Consider the derivation of a refined query
Q′ (with the same schema as Q1) to explain a why-not tu-
ple tw =(“B”). The intermediate query Q∗

∅ to derive Q′ has
rel(Q∗

∅) = {Player ,Regular} and join(Q∗
∅) = {Player .pID =

Regular .pID}. The output of Q∗
∅ on D is shown in Figure

2, and the set of matching tuples in Q∗
∅(D) for tw is given

by Mw = {t2, t3}. Thus, Q′(D) needs to include t2 or t3 in
order to account for the why-not tuple tw. 2

4. EXPLAINING SPJ QUERIES
This section presents how ConQueR generates refined queries

Q′ to explain why-not questions (S, C) on SPJ queries Q.
We first consider the simpler case where Q′ and Q share the
same schema: Section 4.1 explains how ConQueR

s generates
refined queries with low dissimilarity values and Section 4.2
explains how ConQueR

p enhances these queries to improve
their precision. Section 4.3 considers the more general case
where the schema of Q and Q′ are different.

For simplicity, we assume that there are no variables in
the why-not tuples and therefore also no constraints on the
why-not tuples (i.e., C = ∅). Details on how to process
general SPJ queries are given elsewhere [14].

4.1 Modifying Selection Predicates
In this section, we explain how ConQueR

s generates refined
queries Q′ that have the same schema as Q. To maximize the
similarity of Q′ and Q, ConQueRs derives Q′ from Q by sim-
ply modifying some selection predicate(s) in Q. To simplify
the presentation, we first consider the scenario where there
is exactly one why-not tuple (i.e., S = {t1}), and discuss
the handling of the general scenario with multiple why-not
tuples in Section 4.1.1.

For simplicity and without loss of generality, let the se-
lection predicates in Q be of the form: sel(Q) = {A1 ≤
v1, · · · , Aℓ ≤ vℓ}, ℓ ≥ 1. Since Q′ is derived from Q by mod-
ifying some selection predicates, let v′

i denote the modified
value of vi in Q′, for i ∈ [1, ℓ].

Let Q∗ denote the query that is exactly the same as Q

except that proj(Q∗) includes all the distinct attributes in
rel(Q); i.e., Q∗ = σP (Q∗

∅) where P = sel(Q). Thus, Q∗(D)
is the subset of tuples in Q∗

∅(D) that form Q(D) when Q∗(D)
is projected on proj(Q). For each selection predicate at-
tribute Ai, i ∈ [1, ℓ], define vmax

i = maxt∈Q∗(D)(t.Ai). For
Q′(D) ⊇ Q(D), we must have v′

i ≥ vmax
i , for i ∈ [1, ℓ].

For Q′ to account for the why-not tuple t1, Q′(D) must
contain at least one tuple from M1

3. However, to minimize
the imprecision of Q′, Q′(D) should not contain more than
one tuple from M1. Thus, each tuple in M1 contributes to
a refined query Q′. For Q′(D) to contain a tuple tm ∈ M1,
we must have v′

i ≥ tm.Ai, for i ∈ [1, ℓ]. Therefore, com-
bining the above two requirements, for Q′(D) to contain
tm and Q′(D) ⊇ Q(D), sel(Q′) is specified by setting v′

i =
max{vmax

i , tm.Ai}, for i ∈ [1, ℓ]. Note that while it is possi-
ble to generate other refined queries Q′′ that also satisfy the
two requirements by setting some v′

j > max{vmax
j , tm.Aj},

the imprecision of Q′′ will be at least as high as that of
Q′ which means that Q′′ will be dominated by Q′. There-
fore, to generate only skyline refined queries, we must have
v′

i = max{vmax
i , tm.Ai}, for i ∈ [1, ℓ].

In addition, since we are interested only in skyline re-
fined queries, the number of refined queries considered can
be reduced by considering only the “skyline” tuples in M1.
Consider two tuples tx, ty ∈ M1, and let Q′

x and Q′
y denote

the refined queries corresponding to tx and ty, respectively.
We say that tx dominates ty if (1) tx.Ai ≤ ty.Ai for i ∈ [1, ℓ],
and (2) at least one of the inequalities in (1) is strict. The
skyline tuples in M1 are the tuples that are not dominated
by any tuple in M1. If tx dominates ty, it follows that Q′

x

dominates Q′
y. Thus, to generate skyline refined queries, we

only need to consider the skyline tuples in M1.

Example 6. Reconsider Example 4 where the input query
is Q1 and the why-not tuple is t =(“B”). Let A1 and A2 de-
note the two selection attributes blk and stl , respectively.
We have Q∗ = σblk≤30∧stl≤150(Q

∗
∅). Thus, Q∗(D) = {t1},

vmax
1 = 30, and vmax

2 = 150. Since M1 = {t2, t3}, there are

3Note that since proj(Q′) ⊆ proj(Q∗
∅) and Mi ⊆ Q∗

∅(D),
when we say that Q′(D) must“contain”one tuple t from Mi,
what we mean is that Q′(D) must contain one tuple t that
is a projection of some tuple tint from Mi; i.e., t = πL(tint),
where L = proj(Q′).

two possible refined queries corresponding to these match-
ing tuples for t. To generate the refined query Q′

1 such that
Q′

1(D) contains t2 ∈ M1, ConQueR
s modifies the two predi-

cates in sel(Q) into blk ≤ 35 and stl ≤ 200, and obtains the
refined query Q′

1 as shown in Example 4.
Similarly, to generate the refined query Q′′

1 such that Q′′
1 (D)

contains t3 ∈ M1, ConQueR
s modifies the two predicates in

sel(Q) into blk ≤ 50 and stl ≤ 240, and obtains the refined
query Q′′

1 as given in Example 4.
However, by considering only the skyline tuples in M1,

ConQueR
s actually would not have considered Q′′

1 since t3 is
dominated by t2 which means that Q′′

1 is not a skyline refined
query. 2

Finally, to generate the skyline refined queries from the
set of queries corresponding to the skyline tuples in M1,
ConQueR

s needs to compute and compare the imprecision
values of these queries by computing their results.

4.1.1 Handling multiple why-not tuples
The above technique can be easily extended to handle

the general case where there are multiple why-not tuples;
i.e., S = {t1, · · · , tn}, n > 1. Specifically, for each Mi,
i ∈ [1, n], ConQueRs first computes the set of skyline tuples,
denoted by SLi, in Mi. Next, ConQueRs enumerates different
refined queries Q′ that correspond to different subsets M ′ ⊆
∪n

i=1SLi of matching tuples, where each M ′ consists of one
tuple from each of SLi, i ∈ [1, n]. For example, if t′j is the
tuple selected from each SLj , j ∈ [1, n], then the selection
condition in the refined query Q′ is specified by setting v′

i =
max{vmax

i , t′1.Ai, · · · , t′m.Ai}, i ∈ [1, ℓ].

4.2 Improving Precision with More Predicates
Since the refined queries Q′ produced by ConQueR

s are
generated by simply modifying the selection predicates in
Q, there are likely to be many irrelevant tuples in Q′(D). In
this section, we explain how ConQueR

p improves the precision
of the refined queries Q′ produced by ConQueR

s by adding
additional selection predicates to Q′ to reduce the irrele-
vant tuples in Q′(D) while ensuring that the enhanced query
Q′ remains a refined query for the input why-not question.
Thus, the refined queries produced by ConQueR

p tradeoffs
low dissimilarity values for low imprecision values.

Consider a refined query Q′ produced by ConQueR
s that

corresponds to the subset of matching tuples T ⊆
S

i∈[1,n] Mi

to explain the set of why-not tuples S = {t1, · · · , tn}. Let
A denote the set of attributes in rel(Q′) that do not have
a selection predicate in sel(Q′). For each attribute Ai ∈ A,
ConQueR

p can add the following predicate to try to reduce
the irreverent tuples in Q′(D): “Ai ≤ maxt∈Q∗(D)∪T (t.Ai)”

Thus, there are a total of |A| possible additional predi-
cates that ConQueRp can introduce into Q′ to reduce its im-
precision. As the problem to maximize the elimination of
irrelevant tuples using the minimum number of additional
predicates is NP-hard (shown by reduction from set-covering
problem), ConQueRp uses a standard greedy heuristic to se-
lect the additional selection predicates by choosing the pred-
icates in non-increasing order of the number of irrelevant
tuples that they can eliminate.

4.3 Refined Queries with Different Schema
When ConQueR is unable to find refined queries having the

same query schema as Q, ConQueR will consider other similar

schemas, roughly in increasing order of their dissimilarity
metrics. In this section, we explain how ConQueR enumerates
alternative query schemas and generates refined queries for
such schemas.

Enumerating schemas. ConQueR uses a simple heuristic to
enumerate query schemas approximately in increasing order
of dissimilarity metrics. Let SR denote the set of the rela-
tions in rel(Q) that contain the attributes in proj(Q). These
relations need to be retained in Q′ so that the proj(Q′) and
proj(Q) are equivalent. Thus, ConQueR generates a differ-
ent schema by adding some relation(s), removing some re-
lation(s) from rel(Q) − SR, or adding/removing some join
predicates. Since the most costly edit operation is add/remove
relations, ConQueR will consider schemas in increasing order
of the total number of relations added/removed. For each
new relation R added, ConQueR enumerates different ways
to connect R to the existing relations via adding new join
predicates. A candidate query schema that contains more
than one connected component of relations will be ignored
by ConQueR.

Generating refined queries. Consider the general case
where refined queries Q′ are to be generated for a schema
that is different from that of Q involving a set of relations
R and a set of join predicates J . ConQueR first rewrites
the input why-not question (S, C) into an equivalent ques-
tion as follows: by assuming that Q(D) is empty, Con-

QueR transforms the why-not question into (S′, C), where
S′ = Q(D) ∪ S. The transformed why-not question can be
processed using the previously discussed techniques as fol-
lows. First, ConQueRs generates a refined query Q′ with low
dissimilarity value such that rel(Q′) = R, join(Q′) = J ,
sel(Q′) = ∅, and proj(Q′) contains the corresponding at-
tributes in proj(Q). Note that if Q′(D) can not account
for all the why-not tuples in S′, then there are no refined
queries for this schema and ConQueR will consider another
query schema for possible refined queries. If Q′ is a re-
fined query, ConQueR

p will try to enhance the precision of
Q′ by adding additional selection predicates. Specifically,
ConQueR

p first computes the set of skyline tuples SLi in Mi

(wrt all attributes in rel(Q′)) for each why-not tuple ti ∈ S′

based on the techniques in Section 4.1.1, and then uses the
techniques described in Section 4.2 to enhance sel(Q′).

Example 7. Consider again query Q1 in Example 4 and
another why-not question S = {tw}, where tw = (“E”).
Here, ConQueR is unable to derive any refined query with the
same schema as Q1 because tw does not have any matching
tuples in Q∗

∅(D). To generate refined queries with a different
schema from Q1, ConQueR transforms the why-not question
to become S′ = {(“A”), (“E”)} and is now able to derive a
refined query Q′

3 that involves the join between Player and
Playoff: SELECT name FROM Player, Playoff WHERE
Player.pID = Playoff.pID AND pts ≤ 2029. 2

In the event that ConQueR cannot find any SPJ refined
queries, ConQueR will resort to derive SPJU refined queries
Q′ of the form: Q′ = Q union Qs, such that Qs accounts for
the why-not tuples in S. To derive Qs, ConQueR first needs to
determine rel(Qs). Since the why-not tuples in S are essen-
tially contained in a |proj(Q)|-column table T , rel(Qs) must
be selected such that for each column Ci in T , there must be
a “matching attribute” A′

i in some relation in rel(Qs) such
that the set of constant values in Ci are contained by the

values in A′
i. For each potential candidate for rel(Qs), Qs is

constructed by ConQueR
s as follows: sel(Qs) is defined to be

an empty set, join(Qs) is defined to be the set of foreign-key
join predicates among the relations in rel(Qs), and proj(Qs)
is defined to be set of matching attributes. If the resultant
query schema (defined by rel(Qs) and join(Qs)) is not a sin-
gle connected component, then the candidate schema for Qs

is ignored. Otherwise, if Qs(D) can account for all the why-
not tuples, then the query Qs produced by ConQueR

s can be
further enhanced by ConQueR

p to improve its precision.

5. EXPLAINING SPJA QUERIES
In this section, we explain how ConQueR generates refined

queries for SPJA queries. For simplicity and without loss
of generality, we assume there is only a single aggregated
attribute in proj(Q) based on SUM operator, and we use
Aa to denote the attribute in proj(Q) being aggregated and
use Aagg to denote SUM(Aa). We also assume that the
domain of Aa contains positive values. Details on how the
ideas can be generalized for other cases are given elsewhere
[14].

As the examples in the introduction illustrated, ConQueR
can handle two types of why-not questions on SPJA queries.
In the first basic type of why-not questions, each why-not
tuple corresponds to either some existing tuple ti ∈ Q(D) or
some missing tuple ti, and the question asks why ti.Aagg is
not greater than some value Ki. In the second more complex
type of why-not questions, it involves at least two why-not
tuples, t1 and t2 (which may be existing or missing tuples),
and the explanation sought is to clarify on the relationship
between their Aagg attribute values. For example, if t1 and
t2 are two existing tuples in Q(D) with t1.Aagg ≤ t2.Aagg,
then the why-not question asks why t1.Aagg is not greater
than t2.Aagg.

To simplify the presentation, we shall assume that for each
why-not tuple t in S, the components corresponding to the
non-aggregated values (i.e., group-by attributes) in t all have
constant values. The details for handling the more general
scenario where some non-aggregated components are don’t-
care values or variables are given elsewhere [14].

Whereas the processing of why-not questions on SPJ queries
requires Q′(D) to contain a single matching tuple from Mi

for each why-not tuple ti ∈ S, the processing for SPJA
queries is more complex as Q′(D) needs to contain a sub-
set of matching tuples from Mi to satisfy the aggregation
constraint of each why-not tuple ti ∈ S.

5.1 Basic Why-not Questions
Let us consider the case where Q and Q′ have the same

query schema, and there is exactly one why-not tuple S =
{t1} which is a missing tuple (i.e., t1 6∈ Q(D)) and the con-
straint in C requires t1.Aagg > K.

As in Section 4.1, we assume that sel(Q) = {A1 ≤ v1, · · · ,

Aℓ ≤ vℓ }, ℓ ≥ 1. Let v′
i denote the modified value of vi in

Q′, for i ∈ [1, ℓ]. The definitions of Q∗(D) and vmax
i in

Section 4.1 are used here as well. Let Jq denote the subset
of tuples in Q∗

∅(D) that are the matching tuples of Q(D);
i.e., for every tuple tq ∈ Jq, there exists one tuple t ∈ Q(D)
such that for every non-aggregated attribute component of
tq, the corresponding component of t has the same value.

Naive ConQueR (ConQueR−). To motivate the opti-
mizations adopted by ConQueR to process why-not questions

pID name team year pts blk stl reb

t1 P1 A GSW 1973 2029 40 100 30
t2 P2 B SEA 1994 3000 65 150 181
t3 P2 B CHI 1995 2200 50 120 161
t4 P2 B LAL 1996 2500 70 110 200
t5 P4 D LAL 1995 2300 70 150 150
t6 P5 E DEN 2000 1689 35 200 381

Q∗
∅(D) = Player ⊲⊳pID Playoff

Figure 3: Example 8

on SPJA queries, we first present a simpler variant of Con-
QueR, denoted by ConQueR

−.
For each selection predicate attribute Ai, i ∈ [1, ℓ], let

lbi denote the smallest Ai value among {t.Ai| t ∈ M1}
that satisfies the constraint

P

t∈M1,t.Ai<lbi
(t.Aa) ≤ K <

P

t∈M1,t.Ai≤lbi
(t.Aa). It follows that for Q′ to be a refined

query for the why-not question, we must have v′
i ≥ lbi, for

i ∈ [1, ℓ]. Moreover, for Q′(D) ⊇ Q(D), we must have
v′

i ≥ vmax
i , for i ∈ [1, ℓ] as explained in Section 4.1.

Thus, based on the above two constraints, ConQueR− enu-
merates all potential values for each v′

i ∈ Vi, where Vi =
{t.Ai | t ∈ M1 ∧ t.Ai ≥ max{lbi, v

max
i }}. Each com-

bination (v′
1, · · · , v′

ℓ) considered corresponds to a potential
refined query Q′. Therefore, if (1) Q′(D) can account for
all the why-not tuples in S and (2) Q′(D) ⊇ Q(D), then Q′

is a refined query for the why-not question. Note that for
Q′(D) ⊇ Q(D), it is necessary that Q′(D) does not contain
any tuples in Jq − Q∗(D)4.

Even with the use of constraints, the total number of po-
tential refined queries to be considered, given by

Qℓ

i=1 |Vi|, is
rather large. For efficiency reason, ConQueR− adopts a two-
step approach to generate refined queries. In the first step, a
heuristic is used to choose a subset A′ of selection attributes
in sel(Q). In the second step, A′ is used to generate the po-
tential refined queries. Thus, the number of refined queries
considered is reduced to

Q

Aj∈A′ |Vj |. While this approach

improves efficiency, the tradeoff is that the refined queries
generated have higher dissimilarity values since not all the
selection attributes in sel(Q) appear in Q′. In ConQueR

−,
the heuristic for selecting A′ uses an input control parame-
ter θ5 so that

Q

Aj∈A′ |Vj | is no larger than θ. To minimize

the dissimilarity values of the refined queries, ConQueR− uses
a simple greedy heuristic to maximize the number of se-
lected attributes in A′ by selecting the attributes Aj in non-
descending order of |Vj |.

Example 8. Consider a query Q2 on the Basketball data
set that finds players and their total points scored in play-off
games that satisfy some conditions on their block and steal
statistics: SELECT name, SUM(pts) FROM Player, Playoff
WHERE Player.pID = Playoff.pID and blk ≤ 40 AND
stl ≤ 100 GROUP BY name. The output contains only one
tuple (“A”, 2029). Consider the why-not question S = {tw}
with tw = (“B”, $x) and C = {$x > 3500} which asks why
“B”, with a total score of greater than 3500, is missing from
the output.

4Suppose Q′ selected a tuple tq ∈ Jq − Q∗(D), and let td ∈
Q(D) be the tuple in Q(D) that corresponds to tq. Then
td.Aagg in Q′(D) will be greater than td.Aagg in Q(D); i.e.,
Q′(D) 6⊇ Q(D).
5In our experiments, we set θ = 100000.

ConQueR
− is able to derive refined queries Q′ that have the

same schema as Q2 for this why-not question. The output of
the intermediate query Q∗

∅ to derive Q′ is shown in Figure
3. Let A1 and A2 denote the two selection predicates blk

and stl, respectively. We have Q∗ = σblk≤40∧stl≤100(Q
∗
∅).

Thus, Q∗(D) = {t1}, vmax
1 = 40, and vmax

2 = 100. The
set of matching tuples in Q∗

∅(D) for tw is given by Mw =
{t2, t3, t4}. ConQueR

− derives lb1 = 65 and lb2 = 120; there-
fore, V1 = {65, 70} and V2 = {120, 150}.
ConQueR

− generates four candidate refined queries as fol-
lows. First, ConQueR

− selects the set of attributes A′ =
{A1, A2} to be used for the refined queries. Next, based on V1

and V2, a candidate refined query is generated corresponding
to each of the four combinations of (v′

1, v
′
2), where v′

1 ∈ V1

and v′
2 ∈ V2. Among these four candidates, the query Q′

2

corresponding to the combination (65, 120), given by: SE-
LECT name, SUM(pts) FROM Player, Playoff WHERE
Player.pID = Playoff.pID and blk ≤ 65 AND stl ≤ 120
GROUP BY name, is not a valid refined query. This is
because the output of Q′

2, which contains the tuples (“A”,
2029) and (“B”, 2200), does not account for the why-not tu-
ple tw. The candidates corresponding to the remaining three
combinations are valid refined queries. 2

Optimization. In this section, we present the optimiza-
tions adopted by ConQueR to optimize the generation of re-
fined queries. ConQueR is also based on the two-step ap-
proach as ConQueR

−, where it first selects a subset of at-
tributes A′ followed by using A′ to generate potential re-
fined queries. However, ConQueR exploits additional prop-
erties to prune away the useless candidate refined queries.
Thus, ConQueR is able to more efficiently generate the same
set of refined queries as ConQueR

−.
Let A′ = {A1, · · · , Am} denote the set of attributes se-

lected by the greedy heuristic in the first step, where |V1| ≤
· · · ≤ |Vm|. Let M1 = {x1, x2, · · · , xn}, where x1.A1 ≤
x2.A1 ≤ · · · ≤ xn.A1. Let xs be the “first” tuple in M1 such
that

P

t∈M1,t.A1≤xs.A1
t.Aa > K and

P

t∈M1,t.A1≤xs−1.A1
t.Aa

≤ K. Observe that for Q′ to be a refined query, Q′(D) must
contain at least one matching tuple from {xs, · · · , xn}; if
not, the selected matching tuples will not be able to account
for the missing why-not tuple t1. Based on this observation,
we can view the collection of candidate refined queries as
being partitioned into (n − s + 1) groups Gs, Gs+1, · · · , Gn

such that for each refined query Q′ in group Gi, the match-
ing tuples in M1 that are selected by Q′ include xi and a
(possibly empty) subset of {x1, · · · , xi−1}.

Thus, ConQueR enumerates the candidate refined queries
in (n − s + 1) iterations, where at the jth iteration for j ∈
[1, n − s + 1], Q′ selects the matching tuples from M1 that
contains xs+j−1 and a subset of {x1, · · · , xs+j−2}. More
specifically, in the jth iteration, j ∈ [1, n−s+1], the following
values of v′

i, i ∈ [1, m] are being considered:

1. v′
1 is set to max{vmax

1 , xs+j−1.A1} to ensure that xs+j−1

is selected from M1 and that Q′(D) ⊇ Q(D).

2. For each v′
i, i ∈ [2, m], the values considered for v′

i are
selected from the set Si = {x1.Ai, · · · , xs+j−1.Ai} and
must satisfy the following constraints:

(a) v′
i ≥ lbi to ensure that Q′ is a refined query;

(b) v′
i ≥ vmax

i to ensure that Q′(D) ⊇ Q(D); and

(c) v′
i ≥ xs+j−1.Ai to ensure that xs+j−1 is selected

by Q′.

Thus, each combination (v′
1, · · · , v′

m) considered corresponds
to a candidate refined query Q′. The total number of com-
binations considered by ConQueR is

Pn

i=1(i
m−1) in the worst

case. Our experimental results in Section 7 showed that the
pruning optimization enables ConQueR to be 2 to 10 times
faster than ConQueR

−.

Example 9. This example reconsiders query Q2 in Ex-
ample 8 to illustrate how the above optimizations enable Con-
QueR to prune away the invalid candidate refined query gen-
erated by ConQueR

−. ConQueR first derives M1 = {x1, x2, x3},
where x1 = t3, x2 = t2 and x3 = t4 such that x1.A1 ≤
x2.A1 ≤ x3.A1. The “smallest” tuple xs that satisfies the
aggregation constraint is x2. ConQueR enumerates the can-
didate refined queries in two iterations as follows. In the
first iteration, v′

1 is set to 65 and v′
2 is selected from the set

S2 = {120, 150} which results in v′
2 being set to v′

2 ≥ 150
(i.e., v′

2 = 150). In the second iteration, v′
1 is set to 70 and

v′
2 is selected from the set S2 = {110, 120, 150} which results

in v′
2 being set to v′

2 ≥ 120 (i.e., v′
2 ∈ {120, 150}). Thus,

ConQueR generates only the candidate queries corresponding
to the combinations (65, 150), (70, 120), and (70, 150), which
is a proper subset of those generated by ConQueR

−. 2

5.2 Complex Why-not Questions
The techniques presented in the previous section to pro-

cess basic why-not questions on SPJA queries can be ex-
tended to handle the more complex why-not questions as
well. Consider a complex why-not question on SPJA queries
with S = {t1, · · · , tk} and the constraint in C requires that
t1.Aagg < · · · < tk.Aagg.

The approach for enumerating candidate refined queries in
this case follows the same approach discussed in the previous
section except that each Vi is now defined as follows: Vi =
{t.Ai | t ∈ P ∧ t.Ai ≥ vmax

i }, where P = M1 ∪ · · · ∪ Mk.

6. ALTERNATIVE APPROACH: TALOS +

In this section, we present an overview of an alternative
approach to generate refined queries for SPJ/SPJA queries
that is based on extending a recent technique called TALOS

[15] which is designed to derive instance-equivalent queries
for an input SPJ query on a database.

Given a query Q on a database D, the goal of TALOS is
to generate query-based characterizations of the query re-
sult Q(D) by deriving instance-equivalent queries (IEQs) Q′.
Two queries Q and Q′ are defined to be instance-equivalent
wrt a database D if their results on D are equivalent; i.e.,
Q(D) = Q′(D). TALOS generates instance-equivalent queries
Q′ for Q on D by considering various query schema for
Q′ based on the proj(Q) and join(Q). For each candidate
schema, TALOS can easily determine rel(Q′), join(Q′), and
proj(Q′). In contrast to ConQueR which uses a constraint-
based approach to derive sel(Q′), TALOS uses a classification-
based approach to determine sel(Q′) by constructing deci-
sion trees. By enumerating different decision trees to gener-
ate different sets of selection predicates for sel(Q′), different
IEQs Q′ are derived for Q.

We briefly overview the data classification approach in
TALOS. First, TALOS computes a relation J by joining all re-
lations in rel(Q′) using join(Q′). TALOS then builds some

Query Size
Q1 πnameσyear≥2000∧pts>2300 (Player ⊲⊳ Regular) 7
Q2 πname,teamσyear>2000∧stl>50∧o pts≥5000

(Player ⊲⊳ Playoff ⊲⊳ TeamSeason)
1

Q3 πname,AV G(pts)Gnameσyear≤1970∧pts>2600

(Player ⊲⊳ Regular)
3

Q4 πname,SUM(pts)Gnameσyear>2000∧pts>2300

σblk>70 (Player ⊲⊳ Regular)
2

Q5 πteam,SUM(won)Gteamσlost<30∧dpts>8000

σyear≥2008 (Team ⊲⊳ TeamSeason)
2

Q6 πsupplier.nameσacctbal>4000∧regionkey<3

(supplier ⊲⊳ nation)
3284

Q7 πcustomer.nameσacctbal>9900 (customer ⊲⊳ nation) 1380
Q8 πpart.nameσretailprice>800∧supplycost>990 (part ⊲⊳

part supp)
7866

Table 1: Test queries for experiments

decision trees DT to classify tuples corresponding to Q(D)
from all tuples of J by using the attributes of J as the split-
ting attributes. After a decision tree DT has been built,
TALOS derives Q′ by classifying a leaf node as positive if the
ratio of the number of its negative tuples to the number
of its positive tuples is smaller than some threshold value.
Each internal node in DT corresponds to a selection pred-
icate on some attribute of J , and each root-to-positive-leaf
path in DT corresponds a conjunctive predicate Cj on J .
Thus, each decision tree DT yields the selection predicate
of Q′ of the form C1 or C2 · · · or Cℓ. After producing one
decision tree, TALOS builds other decision trees by consider-
ing the attributes of J that do not appear in the selection
clauses of the derived IEQ Q′ as the splitting attributes used
in the subsequent decision tree construction process.

We have extended TALOS to generate refined queries to ex-
plain why-not questions. We refer to this extended approach
as TALOS

+. The basic idea is to treat Q(D) together with
the why-not tuples as the output result of some query Q′

and apply TALOS to derive IEQs for Q′. A key challenge in
extending TALOS, which is a precision-oriented approach, to
TALOS

+ is the modification of the data classification step to
construct “linear” decision trees so that the refined queries
generated are more similar to the input queries. Further
details of TALOS+ are given elsewhere [14].

7. EXPERIMENTAL STUDY
In this section, we evaluate the effectiveness and efficiency

of our proposed approach to find explanations for why-not
questions. In the first set of experiments (Section 7.1), we
compare the performance of our constraint-based approach,
ConQueR, against the classification-based approach, TALOS+,
in terms of the processing efficiency as well as the quality of
the derived refined queries. We also validate the efficiency of
the pruning optimization in ConQueR by comparing against
ConQueR

−. In the second set of experiments (Section 7.2),
we compare the effectiveness of our query-refinement based
approach to explain why-not questions against the two ex-
isting approaches [2, 7].

We used two data sets for the experiments: the NBA Bas-
ketball statistics and TPC-H data set (with a database size
of 1GB). In the Basketball data set, the number of tuples
in the relations Player, Regular, Playoff, Team, and Team-
Season are, respectively, 3863, 21376, 8347, 100 and 1307.
In the TPC-H data set, the number of tuples in relations
part supp, part, customer, supplier, and nation are 800000,
200000, 150000, 10000, and 25, respectively. The five test

Why-not questions
W1 S = {(Rick Barry), (Wilt Chamberlain)}
W2 S = {(Michael Jordan, WAS)}
W3 S = {(Kareem Abdul-Jabbar, $x)}, C = {$x > 2000}
W4 S = {(Dwyane Wade,$x), (LeBron James, $y)}, C = {$x <

$y}
W5 S = {(CHI,$x), (DEN, $y), (LAL, $z)}, C = {$x < $y <

$z}

W6 S = {(Supplier1336), (Supplier9819)}
W7 S = {(Customer100), (Customer197), (Customer219),

(Customer468), (Customer518), (Customer780),
(Customer987), (Customer1042), (Customer1370),
(Customer1573)}

W8 S = {(beige steel)}

Table 2: Why-not questions

ConQueRs ConQueR TALOS+

Query d i d i d i

Q1 2 24 14 6 17 1
Q2 47 9562 74 0 59 0
Q3 1 0 1 0 2 0
Q4 3 0 3 0 12 0
Q5 3 8 9 0 12 0

Q6 2 2197 2 2197 2 2197
Q7 1 1296 1 1296 1 1296
Q8 2 762 2 762 2 762

Table 3: The dissimilarity (d) and the imprecision
(i) values of refined queries

queries (Q1-Q5) for the Basketball data set and three test
queries (Q6-Q8) for the TPC-H data set are shown in Table
1, where the third column indicates the number of tuples
in the output of each test query. Table 2 shows the why-
not questions used for these queries, where Wi denote the
why-not question on query Qi, i ∈ [1, 8].

We used MySQL Server 5.0.51 for our database system,
and all algorithms were coded using C++ and compiled
with gcc. Our experiments were conducted on a dual-core,
2.33GHz PC running Linux with 3.25GB of RAM and a
200GB hard disk.

7.1 Comparing ConQueR & TALOS+

In this section, we compare the performance of ConQueR
and TALOS

+. We also included the performance of ConQueRs

to understand the tradeoffs between the two key components
of ConQueR.

For both ConQueR and TALOS
+, we limit the maximum

number of selection predicates in refined queries to be 3
times the number of selection predicates in the input query.
The time taken to process each why-not question is mea-
sured as follows. For ConQueR

s, the time reported refers to
the processing time to derive all the refined skyline queries;
For ConQueR, the time reported is a sum of two components:
(1) the time incurred by ConQueR

s to generate a set of re-
fined skyline queries, and (2) the time taken by ConQueR

p to
maximize the precision of each refined query produced by
ConQueR

s and output the final skyline refined queries. For
TALOS

+, the time reported refers to the processing time to
generate only the first skyline refined query (i.e., the query
corresponding to the first constructed decision tree). Note
that if we had measured the total time for TALOS+ to gener-
ate all skyline refined queries, the time reported for TALOS+

would have been higher by a factor of 4 to 7 times. The

 0

 1

 2

 3

 4

 5

 6

 7

Q1 Q2 Q3 Q4 Q5

R
un

un
g

tim
e

(in
 s

ec
s)

ConQueRs

ConQueR
TALOS+

Figure 4: Running time comparisons on Basketball

 0.1

 1

 10

 100

Q6 Q7 Q8

R
un

ni
ng

 ti
m

e
(lo

g-
sc

al
e)

 in
 s

ec
s

ConQueRs

0.3

2.7

36ConQueR

0.4

2.9

38
TALOS+

0.5

5.3

45

Figure 5: Running time comparisons on TPCH

quality of the refined queries are compared in terms of the
dissimilarity and the imprecision metrics, where smaller val-
ues indicate better quality.

Quality of Refined Queries. Table 3 compares the qual-
ity of the refined queries. Observe that the refined queries
computed by ConQueR

s have the lowest dissimilarity values
but the highest imprecision values. At the other extreme,
the refined queries generated by TALOS

+ have the lowest im-
precision values but highest dissimilarity values. In contrast,
the refined queries produced by ConQueR are quite similar
to the original queries but also (nearly) as precise as these
generated by TALOS

+. For TALOS
+, the reason for the high

dissimilarity values for its refined queries is because the re-
fined queries can include many selection attributes that are
not in the original queries. ConQueR, on the other hand, first
uses ConQueRs to derive refined queries with low dissimilarity
values and then enhances their precision with additional se-
lection predicates. The overall quality of the refined queries
generated by ConQueR are therefore good enough in terms
of both the dissimilarity and imprecision metrics. For some
queries (e.g., Q1, Q4), although the number of the selection
attributes in the refined queries generated by ConQueR and
TALOS

+ are nearly the same, the refined queries computed
by ConQueR are relatively more similar to the input queries
because ConQueR uses more attributes that appear in the
original queries than TALOS

+.

Processing Efficiency. The running time performance
comparisons are shown in Figures 4 and 5, respectively for
the Basketball and TPC-H data sets. Since ConQueRs is only
one component of ConQueR, the performance of ConQueR

s

is, not surprisingly, better than that of ConQueR. The ex-
perimental results show that ConQueR outperforms TALOS

+

#candidate queries Running time (s)

Query ConQueR ConQueR− ConQueR ConQueR−

Q3 18 380 0.9 1.1
Q4 31 600 1.0 2.0
Q5 1263 63455 0.5 53.5

Table 4: Comparison of ConQueR and ConQueR−

by a factor of 1.5 to 6 times, indicating the efficiency of
the constraint-based approach over the classification-based
approach. The classification-based approach incurs a high
computation overhead to determine optimal node splits.

Effectiveness of Pruning Optimization. To validate
the effectiveness of the pruning optimization in ConQueR for
processing SPJA queries, we also compare the performance
of ConQueR against ConQueR−.

Table 4 compares the number of considered candidate re-
fined queries and the running times of ConQueR and ConQueR

−

for the SPJA queries Q3, Q4, and Q5. The results clearly
demonstrate the effectiveness of the pruning optimization.
For queries Q3 and Q4, ConQueR is 1.5 to 2 times faster
than ConQueR

−, while for query Q5, ConQueR is two orders
of magnitude faster than ConQueR

−. This huge performance
difference is due to the significant pruning of useless candi-
date refined queries: the number of candidate refined queries
considered by ConQueR and ConQueR

− are, 1263 and 63455,
respectively.

7.2 Comparison of Explanation Models
In this section, we evaluate the usefulness of our proposed

query refinement approach to explain why-not questions.
We also compare the explanations obtained from the two
existing approaches: the approach that is based on identify-
ing the culprit operators that filtered out the missing tuples
[2], which we denote by CO, and the approach that is based
on database modifications to produce the missing tuples [7],
which we denote by DM.

We used the test queries on the Basketball data set (i.e,
Q1 to Q5 in Table 1) and their corresponding why-not ques-
tions (i.e., W1 to W5 in Table 2). Table 5 shows the re-
fined queries, denoted by RM

i , computed for the why-not
question Wi on query Qi using approach M , where M ∈
{conquers, conquer, talos+} and the number of refined queries
returned by each method. When ConQueR or ConQueR

s re-
turns more than one refined query, we only report the one
that is the most similar to the input query.

Query Q1 finds the recent high-scoring NBA players. Al-
though some expected well-known superstar players such as
“LeBron James” and “Kobe Bryant” are included in the re-
sult, other superstar players such as “Rick Barry” and “Wilt
Chamberlain” are missing from the result. The why-not
question W1 seeks an explanation for these two missing play-
ers. The CO approach would have simply identified the
selection predicate “year ≥ 2000” as the reason for Q1 to
have excluded the missing tuples. The DM approach would
have suggested several possible ways to modify the data set
for the two why-not tuples to be selected by Q1. For in-
stance, if all the attributes of sel(Q1) were allowed to be
modified, then there will be a total of 224 ways to modify
the existing tuples: there are 12 ways to modify the tuples
in Regular relation to include Barry and there are 12 ways
to modify the tuples in Regular relation to include Cham-

berlain. The refined query computed by ConQueR
s, how-

ever, not only implicitly points out that missing tuples are
excluded due to the predicate on the year attribute, but
it also reveals the additional information that the missing
players are actually superstars in the 1960’s. The refined
query computed by ConQueR has higher precision as it fur-
ther introduces additional selection predicates on attributes
such as weight, asts, etc. The refined query computed by
TALOS

+ has higher precision but lower similarity compared
to the refined query computed by ConQueR. In fact, for the
other test queries, although the refined queries computed
by TALOS

+ have slightly higher precision (relative to those
computed by ConQueR), the refined queries are very differ-
ent from the original queries; for instance, the refined query
computed by TALOS

+ for Q4 uses a very different set of at-
tributes from the attributes in sel(Q4).

Query Q2 finds the players and the teams that they were
playing for when the teams gained a large number of of-
fense points and steal statistics. The why-not question W2

asks why “Michael Jordan” and his team “WAS” is missing
in the result. The CO approach would not be able to gen-
erate any explanation for this query because when Jordan
was playing for WAS, he did not participate in any playoff
games; thus, the why-not tuple does not have any matching
tuples in the join result of Player, Playoff and TeamSeason.
For the DM approach, if the projected attributes were not
allowed to be modified, then no explanation can be given
for the same reason; otherwise, there are a total of 13 ways
to modify the team attribute of the tuples corresponding
to Jordan to return the why-not tuple. Our query refine-
ment approach, which can derive refined queries that have
different schema from the input query, is able to compute a
refined query that involves the relations Player, Regular and
TeamSeason. From this refined query, the user can figure
out why (“Jordan”, “WAS”) was missing from the original
query’s result: it is due to the fact Jordan participated in
only regular-season games when he was playing for WAS.

For queries Q3, Q4 and Q5, which are SPJA queries with
complex why-not questions, the approach CO is not applica-
ble. The approach DM, which is the most flexible approach,
in general has many possible options to modify values in
the data set to satisfy the aggregation constraints for these
complex why-not questions. In the rest of this section, we
will just focus on the explanations computed by ConQueR.

Query Q3 computes the average of the “high points” (de-
fined to be more than 2600 points) scored by players in
regular-season games for the period until 1970. The output
includes (“Rick Barry”, 2775), (“Wilt Chamberlain”, 3159)
and (“Elgin Baylor”, 2719). The why-not question W3 asks
why “Kareem Abdul-Jabbar” with an average high-point
score of more than 2000 is missing from the result. The
refined query computed by ConQueR indicates that the miss-
ing tuple will be included if the predicate on pts is modified
to become “pts ≥ 2596”. This refined query turns out to be
a precise refined query that returns exactly one additional
tuple that matches the missing tuple.

Query Q4 computes the total points scored by players for
regular-season games that satisfy the following three condi-
tions: year > 2000, pts > 2300, and blk > 70. The result
contains only two tuples: (“Dwyane Wade”, 2386) and (“Le-
Bron James”, 2304). The why-not question W4 asks why
the total points of James is not higher than that of Wade.
The refined query computed by ConQueR modifies the three

Refined query Num

R
conquers

1 πnameσyear≥1965∧pts≥2302 (Player ⊲⊳ Regular) 1
R

conquer
1 πnameσyear≥1965∧pts≥2302∧dreb≤121∧asts≥282∧oreb≤507∧weight≥165 (Player ⊲⊳ Regular) 1

Rtalos+

1 πnameσpts>2345∧asts>403∧ftm≤675∧gp≤80∧pf≤286∧reb>223 (Player ⊲⊳ Regular) 1

R
conquers

2 πname,team(Player ⊲⊳ Regular ⊲⊳ TeamSeason) 1
R

conquer
2 πname,teamσturnover≥162∧d 3pa≥1191∧pace≤93∧blk≥26∧weight≤210∧d dreb≥2359∧tpm≤88∧o asts≤1790∧asts≥275

(Player ⊲⊳ Regular ⊲⊳ TeamSeason)
1

Rtalos+

2 πname,teamσfga>1526∧o reb≤3312∧pf≤178∧weight>165 (Player ⊲⊳ Regular ⊲⊳ TeamSeason) 1

R
conquers

3 πname,AV G(pts)Gnameσyear≤1970∧pts≥2596 (Player ⊲⊳ Regular) 1
R

conquer
3 πname,AV G(pts)Gnameσyear≤1970∧pts≥2596 (Player ⊲⊳ Regular) 1

Rtalos+

3 πname,AV G(pts)Gnameσyear≤1971∧pts>2637 (Player ⊲⊳ Regular) 1

R
conquers

4 πname,SUM(pts)Gnameσyear≥2007∧pts≥2250∧blk≥81 (Player ⊲⊳ Regular) 2
R

conquer
4 πname,SUM(pts)Gnameσyear≥2007∧pts≥2250∧blk≥81 (Player ⊲⊳ Regular) 2

Rtalos+

4 πName,SUM(pts)Gnameσyear≤2003∧first season>2002∧ftm>202∧tpm≤63 (Player ⊲⊳ Regular) 1

R
conquers

5 πteam,SUM(won)Gteamσlost≤28∧d pts≥8109∧year≥1992 (Player ⊲⊳ Regular) 1
R

conquer
5 πteam,SUM(won)Gteamσlost≤28∧d pts≥8109∧year≥1992∧d fgm≤3139∧o blk≥410 (Player ⊲⊳ Regular) 1

Rtalos+

5 πteam,SUM(won)Gteamσo fga≤3989∧d fgm≥1708∧d oreb≤628 (Player ⊲⊳ Regular) 1

Table 5: Refined queries for test queries on Basketball data set

selection predicates as follows: year ≥ 2007, pts ≥ 2250,
and blk ≥ 81; and its output now contains (Wade, 2386)
and (James, 4554).

Query Q5 computes the total games won by teams that
satisfy the following conditions: lost < 30, dpts > 8000, and
year ≥ 2008. The result contains two tuples, (“DEN”, 108)
and (“LAL”, 65). The complex why-not question W5 asks
why the team“CHI” is not in the result such that among the
three teams, (1) the total games won by “CHI” is the min-
imum, and (2) the total games won by “LAL” becomes the
maximum. The refined query computed by ConQueR mod-
ifies the predicates as follows: lost ≤ 28, dpts ≥ 8109 and
year ≥ 1992; and its output now contains the tuples (“CHI”,
57), (“DEN”, 108), and (“LAL”, 122).

8. CONCLUSION
In this paper, we have proposed a new paradigm for ex-

plaining why-not questions on query results. Our approach,
named ConQueR, is based on automatically generating re-
fined queries as a means to explain why-not questions. We
have proposed novel algorithms to generate good quality re-
fined queries that are not only similar to the original query
but also produce precise query results with minimal irrel-
evant tuples. Besides the basic SPJ queries, ConQueR can
also answer complex why-not questions on SPJ queries with
aggregation that involve comparison constraints. Our exper-
imental results demonstrated that ConQueR not only offers a
more flexible approach to explain why-not questions, but its
constraint-based method of deriving refined queries is also
more efficient than an existing classification-based method.

9. REFERENCES
[1] S. Börzsönyi, D. Kossmann, and K. Stocker. The

skyline operator. In ICDE, pages 421–430, 2001.

[2] A. Chapman and H. V. Jagadish. Why not? In
SIGMOD, pages 523–534, 2009.

[3] W. W. Chu and Q. Chen. A structured approach for
cooperative query answering. IEEE Trans. on Knowl.
and Data Eng., 6(5):738–749, 1994.

[4] Y. Cui and J. Widom. Lineage tracing for general
data warehouse transformations. In VLDB, pages
471–480, 2001.

[5] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and
P. Domingos. iMAP: discovering complex semantic
matches between database schemas. In SIGMOD,
pages 383–394, 2004.

[6] M. Herschel, M. A. Hernández, and W.-C. Tan.
Artemis: a system for analyzing missing answers.
PVLDB, 2(2):1550–1553, 2009.

[7] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On
the provenance of non-answers to queries over
extracted data. PVLDB, 1(1):736–747, 2008.

[8] H. V. Jagadish, A. Chapman, A. Elkiss,
M. Jayapandian, Y. Li, A. Nandi, and C. Yu. Making
database systems usable. In SIGMOD, pages 13–24,
2007.

[9] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica.
Relaxing join and selection queries. In VLDB, pages
199–210, 2006.

[10] C. Mishra and N. Koudas. Interactive query
refinement. In EDBT, pages 862–873, 2009.

[11] I. Muslea and T. J. Lee. Online query relaxation via
bayesian causal structures discovery. In AAAI, pages
831–836, 2005.

[12] S. Sarawagi. Explaining differences in
multidimensional aggregates. In VLDB, pages 42–53,
1999.

[13] W.-C. Tan. Provenance in databases: Past, current,
and future. IEEE Data Eng. Bull., 30(4):3–12, 2007.

[14] Q. T. Tran and C.-Y. Chan. How to ConQueR
why-not questions. Technical Report
http://www.comp.nus.edu.sg/∼tqtrung/conquer-
tech.pdf, National University of Singapore, March
2010.

[15] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query
by output. In SIGMOD, pages 535–548, 2009.

