On-line Scheduling with level of Services

Ee-Chien Chang
School of Computing
National University of Singapore
changec@comp.nus.edu.sg

Chee Yap
Courant Institute of Mathematical Science New York University

On-line Scheduling with Level of Services

Motivated by an application in visualization across network, we study an abstract on-line scheduling problem.

Our schedulers can gain partial merit from a partially served request. Thus the problem embodies a notion of "level of services".

We give 2 schedulers FirstFit and EndFit which based on 2 simple heuristics. Both are 2 -competitive. We generalize them to a class of Greedy schedulers. Any greedy scheduler is 3-competitive.

On-line Scheduling with Level of Services

An instance I is a sequence of n requests.

Each request is parameterized by
$q=$ (start-time, deadline, volume, weight).

Each request is parameterized by
$q=$ (start-time, deadline, volume, weight).

Each request is parameterized by $q=$ (start-time, deadline, volume, weight).

Each request is parameterized by
$q=$ (start-time, deadline, volume, weight).

Each request is parameterized by $q=$ (start-time, deadline, volume, weight).

$q_{2} \square$

A valid schedule H.

merit $(H)=$
$\sum_{q}($ weight of $q) \quad *($ total size of q served in $H)$

1. Unlike most scheduling problems, a partially served request contributes to the merit.
2. Each request can be broken into finite number of pieces.
3. We consider online scheduling, i.e., at time t, the server only sees requests whose start-time is earlier than t.

4. A scheduler S is c-competitive if for any I, c merit $(S(I)) \geqslant$ merit (offline_optimal (I))

Two schedulers

1. FirstFit: always serves the current heaviest residual request.
2. EndFit: always serves according to the off-line optimal schedule of the residual requests.
3. FirstFit: always serves the current heaviest residual request.

FirstFit(I)

t_{0}

1. FirstFit: always serves the current heaviest residual request.

FirstFit(I)

t_{1}

1. FirstFit: always serves the current heaviest residual request.

FirstFit(I)

q_{2}

t_{2}

1. FirstFit: always serves the current heaviest residual request.

FirstFit(I)

q_{2}

t_{3}

Theorem 1

FirstFit is 2-competitive.

For any instance I and any schedule H for I
2 merit (FirstFit (I)) $\geqslant \operatorname{merit}(H)$.
2. EndFit: always serves according to the off-line optimal schedule of the residual requests.

plan

EndFit(I)

t_{0}
2. EndFit: always serves according to the off-line optimal schedule of the residual requests.

2. EndFit: always serves according to the off-line optimal schedule of the residual requests.

plan

$$
q_{3}
$$

\qquad
2. EndFit: always serves according to the off-line optimal schedule of the residual requests.

$$
q_{3}
$$

t_{1}

2. EndFit: always serves according to the off-line optimal schedule of the residual requests.

t_{2}
3. EndFit: always serves according to the off-line optimal schedule of the residual requests.

plan

EndFit always delays the service of a heavier request to the latest possible time slot.

offline optimal schedule

FirstFit always serve a heavier request in the earliest possible time slot.

offline optimal schedule

q_{3} \qquad

Theorem 2

EndFit is 2-competitive.

Lemma

For any instance I merit(EndFit (I)) \geqslant merit(EndFit($\operatorname{trim}(I)$)).

trim(I)

Greedy Schedulers

Computes a plan for the residual requests. Serves according to the plan until a new request arrive.

Plan

EndFit and FirstFit are greedy schedulers.
Theorem 3
Any greedy scheduler is 3-competitive.

We can find a greedy scheduler that is not better than 3-competitive.

With additional constraints, we can show that any greedy scheduler is not better than 2-competitive.

All online scheduler are not better than 1.17-competitive.

FirstEndFit: Toss a fair coin. If the outcome is head, then simulates FirstFit. If tail, then simulates EndFit.

