Blind Separation of Fetal ECG from Single Mixture using SVD and ICA

Ping Gao Department of Computational Science National University of Singapore

Ee-Chien Chang School of Computing National University of Singapore

Lonce Wyse Institute for Infocomm Research

Mixed ECG's for a period of roughly 4.6 seconds

Maternal heartbeat (R)

Fetal heartbeat

Goal: separation from a <u>single</u> mixture

One Approach

- 1. Find the occurrences of maternal heartbeat by identifying the peak
- 2. Find the maternal ECG complex by "averaging"
- 3. Subtract the maternal ECG complex from the mixture.
- 4. Repeat the above for fetal ECG.

Disadvantage: require significant fine-tuning in step 1 and 3.

- Identify the heart beat in the spectrogram.
- Observation: with the right window size used in the spectrogram, a ECG complex in the spectrogram can be viewed as a separable function.

 $f(s,t) = f_c(s) f_b(t)$

- Identify the heart beat in the spectrogram.
- Observation: with the right window size used in the spectrogram, a ECG complex in the spectrogram can be viewed as a separable function.

 $f(s,t) = f_c(s) f_b(t)$

- Identify the heart beat in the spectrogram.
- Observation: with the right window size used in the spectrogram, a ECG complex in the spectrogram can be viewed as a separable function.

$$f(s,t) = f_c(s) f_b(t) \qquad f_c(s)$$

- Identify the heart beat in the spectrogram.
- Observation: with the right window size used in the spectrogram, a ECG complex in the spectrogram can be viewed as a separable function.

 $f(s,t) = f_c(s) f_b(t)$

- Identify the heart beat in the spectrogram.
- Observation: with the right window size used in the spectrogram, a ECG complex in the spectrogram can be viewed as a separable function.

 $f(s,t) = f_c(s) f_b(t)$

we want to find the "best" U_m , V_m , U_f and V_f s.t.

Suppose we want to find the solutions that minimized the noise in the sense that $|| N ||^2$ is minimized,

$$S = U_m V_m + U_f V_f + N$$

then, we can employ the well-known SVD. However, experimental studies show that it gives unsatisfactory results.

We borrow idea of ICA (Independent Component Analysis). In the proposed algorithm, we attempt to find the solutions that are "statistically independent" and non-Gaussian like.

Maternal heartbeat trend U_m using ica+svd

Fetal heartbeat trend $U_{\rm v}~$ using SVD

108.raw

Independent Components Analysis

 $\begin{array}{rll} x_1 \ (t) &=& a_{11} \ s_1 \ (t) \ + \ a_{12} \ s_2(t) \\ x_2 \ (t) &=& a_{21} \ s_1 \ (t) \ + \ a_{22} \ s_2(t) \end{array}$

unknowns > equations, under constrained.

We want to find the s_1 and s_2 which has maximum independence and minimum nongaussianity. $\sum s_1(t) s_2(t)$ Negentropy

In our experiment, we use FastICA

we want to find the "independent" U_m , V_m , U_f and V_f s.t.

 $S = U_m V_m + U_f V_f$

- 1. Compute Spectrogram S
- 2. Perform SVD on S, $S=UT V^{t}$

- 3. Apply ICA on the k most significant spectral components, i.e. on V₁, V₂, V₃, ..., V_k.
- 4. Update the U using the mixture obtained in step 3.
- 5. Apply ICA on the k most significant spectral of the updated U.
- 6. Choose two ``best" components in U and call them u_m and u_f .

- 1. Compute Spectrogram S
- 2. Perform SVD on S, S=U T V^t

- 3. Apply ICA on the k most significant spectral components, i.e. on V₁, V₂, V₃, ..., V_k.
- 4. Update the U using the mixture obtained in step 3.
- 5. Apply ICA on the k most significant spectral of the updated U.
- 6. Choose two ``best" components in U and call them u_m and u_f .

- 1. Compute Spectrogram S
- 2. Perform SVD on S, $S=UT V^{t}$

- 3. Apply ICA on the k most significant spectral components, i.e. on V₁, V₂, V₃, ..., V_k.
- 4. Update the U using the mixture obtained in step 3.
- 5. Apply ICA on the k most significant spectral of the updated U.
- 6. Choose two ``best" components in U and call them u_m and u_f .

- 1. Compute Spectrogram S
- 2. Perform SVD on S, $S=UT V^{t}$

- 3. Apply ICA on the k most significant spectral components, i.e. on V_1 , V_2 , V_3 , ..., V_k .
- 4. Update the U using the mixture obtained in step 3.
- 5. Apply ICA on the k most significant spectral of the updated U.
- 6. Choose two ``best'' components in U and call them u_m and u_f .

Components obtained after SVD

Components obtained after SVD + ICA

Remarks & Future works

1. The proposed method does not find the intended u_f and u_m as stated in the formulation. It is an approximation.

2. Extend the method to other applications.

3. More analysis.

Acknowledgement

We would like to thank Prof Ho Ting Fei, Department of Physiology, National University of Singapore, for providing the data-sets.