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ABSTRACTWe are interested in the method of assoiating messages tomulti-media objets. The assoiation should be done in away that the message an be readily extrated from a queryobjet, and the extration is robust even in the presene ofnoise. This problem is typially addressed by watermark-ing where the the messages are embedded into the originalobjets (the multi-media objets are also known as Worksin watermarking). A disadvantage of watermarking is thatthe Works will be distorted during embedding. In somesenarios, we an assume that information (either fully orpartially) of the Works database is available. This addi-tional knowledge an be exploited to redue distortion. Forexample, instead of watermarking, the original Works andtheir assoiated messages an be stored in a database. Theretrieval mehanism is then used to obtain the assoiatedmessage from a query Work. Although this method indueszero distortion, it is omputationally intensive and thus notfeasible in most pratial appliations. In this paper, westudy the tradeo� between these two extremes. We viewthe problem of message-Work assoiation as a variant ofdatabase retrieval problem. In ontrast to the usual retrievalproblem, our database entries an be modi�ed for faster re-trieval. We propose an algorithm whih uses linear storagespae (with respet to the size of database) and provides fastretrieval. Our laims are supported by experimental studies.
General Termsmultimedia retrieval, multimedia seurity
KeywordsWatermarking, nearest-neighbour searh, k-mean, image re-trieval system
1. INTRODUCTIONA watermarking sheme onsists of an enoder and deoder.The enoder embeds a given message m into a Work I, giv-ing the watermarked eI. The embedding is done in suh a

way that the distortion from I to eI is small, and the messagem an be suessfully deoded from eI even if eI is orruptedby noise. Watermarking tehniques an be applied to var-ious domains, for example images, audio, and 3-d meshes,and they an be employed in many appliations. A surveyon urrent watermarking tehniques and their appliationsan be found in [6℄. We are partiularly interested in ap-pliations whih use watermarking as an eÆient mean forassoiating messages to Works. The assoiations are robustagainst orrupting noise, and the assoiated message an bereadily retrieved from a query Work. The assoiation of mto I is typially ahieved by watermarking in the followingway: For eah assoiation (m; I), the enoder embeds mes-sage m into I, giving a watermarked eI. Given a query eI,the retrieval of the assoiated m is performed by the de-oder, who extrats the message from the watermarked eI.Through watermarking, the message an still be suessfullyextrated even if eI is orrupted by noise. In this paper, eahWork is represented as a point in Rd, and the distane mea-sure between Works is the Eulidean 2-norm. The seurityof the assoiation is not a onern of this paper. Thus, weonly onsider additive white Gaussian noise as the orrupt-ing fator.In some senarios, the enoder and deoder have partial orfull aess to the set of assoiations. For example, in thezero knowledge watermark detetion[1℄, and the ommerialprodut Digimar MediaBridge Reader[2, 7℄, the deoderan ommuniate with a server, and thus an reeive moreinformation on the watermarked Works. With the addi-tional knowledge of the assoiations, alternative to the di-ret usage of watermarking tehnique should yield higherperformane. A seemingly possible but ineÆient alterna-tive is a multi-media retrieval system. The retrieval systemstores (I1;m1); (I2; m2); : : : in a database and take the orig-inal Works I1; I2; : : : as indies. Given a query image, theassoiated message is obtained by searhing the query imagein the database.However, the retrieval method has two limitations. Firstly,it is ineÆient beause searhing and maintaining the highdimensional Works are omputationally intensive. In par-tiular, the performane of this method relies heavily onthe nearest-neighbour searh, whih an be stated as fol-low: given a set of points in d-dimensions, with preproess-ing allowed, how quikly an a nearest neighbour of a givenquery point q be found. Nearest-neighbour searh is an im-portant operation in retrieval systems and many algorithms



have been proposed, suh as R-tree[10℄, PMR quadtree [11℄,k-d-trees[3℄ and their variants [12, 13, 9℄. The omputingresoures required by these algorithm are measured by thesize of the index tree and the searh time. In most algo-rithms, the required resoures inreases rapidly as the di-mension of searh spae inreases. This phenomenon is gen-erally referred to as the dimensionality urse and is usu-ally avoided by reduing the dimensionality of the searhspae. Our message-Work assoiation problem is usuallyapplied to multi-media objets whih have very high dimen-sion. For example, the dimension of images an ranges from500 to millions, depending on the underlying image trans-formations and features spae. Reduing the dimensionalityis not a good option here beause higher dimensionality isrequired for oding more messages.Another limitation of the retrieval method surfaes whensome of the original Works are similar. In the worst ase,all Works are idential, say I = I1 = I2 = : : :. Now,given a query I, it is impossible to deide whih is the as-soiated message. The watermarking method solves thisambiguity naturally. Under watermarking, the messagesm1;m2; : : : are embedded into I separately, giving di�erentwatermarked eI1; eI2; : : :. Given eIi as query, the deoder anorretly output the message mi without ambiguity.Although the retrieval method is omputational expensiveand introdues ambiguity, it ahieves zero distortion. Thisis in ontrast to the watermarking solution, whih generatesundesire distortion, but ahieves fast retrieval and resolvesambiguity. Now, it is an interesting question whether wean ombine both tehniques and �nd the right tradeo� forbetter performane. This is the fous of this paper.Motivated by the above observation, we re-formulate themessage-Works assoiation problem addressed by watermark-ing. This new formulation an be viewed as a variant of thelassial nearest-neighbour searh in high dimensions, butwith the additional freedom of modifying (that is, water-marking) the data points. We an also viewed this as avariant of watermarking oding problem, but with additionknowledge of the joint distribution of message-Works (thatis, the distribution of message and Works are not indepen-dent). We give a solution whih is a ombination of wa-termarking tehniques and lustering. This algorithm useslinear storage spae (with respet to the database size) andfailitates fast retrieval. Our laims is supported by experi-mental studies.Outline of this paper. In Setion 2, we formulate theassoiation problem and highlight some similarities and dif-ferenes with existing formulations. The proposed algorithmis desribed in Setion 3. The single-level lustering is givenin Setion 3.1 and the extension to multi-levels in Setion3.2. In Setion 4, we gives experimental results to supportour laims, and ompares the performane with the theoret-ial limit of watermarking. Extensions and variations of ourformulation are disussed in Setion 5.
2. PROBLEM FORMULATIONGiven I = hI1; I2; : : : ; Ini, a distortion onstraint � and ro-bustness �2, we want to preproess I to obtain the water-marked eI = h eI1; eI2; : : : ; eIni and an index tree. The water-

marked eI satis�es the distortion onstraint �, that is,1n nXi=1 kIi � eIik22 < �: (1)The index tree failitates searhing suh that given the queryeIi, we an output i eÆiently. The searhing is robust in thesense that if eIi is orrupted by additive white Gaussian nose(AWGN) with power �2, the output is orret with highprobability. Spei�ally, supposeI 0 = eIi + z;where z = (z1; z2; : : : ; zd) and eah zj is independently drawnfrom the normal distribution N(0; �2=d). Then, taking I 0 asthe query, the algorithm gives the orret output (whih isi) with probability at least (1� 1=d).This formulation an be rephrased to an optimization prob-lem. By �xing the distortion onstraint, we want to �nd anindex tree that maximize the robustness �2, or vie versa,�xing �2 and minimizing the distortion.In the above formulation, the messages assoiated to theWorks are atually its indies. This is di�erent from ouroriginal desription where the messagesmi ould be a string.This di�erene is not ritial beause the atual message mian be easily lookup from a table.Coding. A solution to our problem has to address two is-sues. The �rst is regarding oding. If I1 = I2 = : : : = In areidential, then the problem is same as informed watermark-ing, that is, watermarking with original Works available atthe deoder. Beause there is only one Work, we an use itas the referene point. This redues the problem to �ndingthe watermarked eI1; eI2; : : : ; eIn that are far apart but sub-jet to the distortion onstraint Pi keIi � I1k22 � n�. This isessentially hannel oding, where � is the power onstraintand �2 is the noise variane. Note that high dimensionalityis required to enode large number of messages.Searhing. The other issue is on the omputationalaspet of searhing. As we have mentioned in the intro-dution, the dimensionality urse prevents fast searhing.Fortunately, a few di�erenes of our problem from the las-sial nearest-neighbour searh an be exploited. The mostnotably di�erene is that, in our problem, the data pointsan be slightly modi�ed (watermarked) for better searh-ing performane. In the extreme, with unlimited distortion,the problem is trivially solved by aligning the watermarkedWorks along a straight line. Sine distortion is undesirable,we want to minimize the distortion while supporting fastretrieval.A more subtle di�erene arises from the probability require-ment on searhing. Our formulation does not state the re-quired output when the query is seriously orrupted. Inother words, if the query point is not near any data point,it an be ignored. In addition, the query's outome is prob-abilisti. Thus, if a query loates about the same distanefrom eI1, eI2 and eI3, instead of looking into the �ne neigh-bourhood struture, we an just make an arbitrary hoie,as long as it onforms to the probabilisti requirement. Fur-



thermore, we are interested in average ase performane. Weassume the Works are normally distributed. Our algorithmexploits these statistial properties and avoid diÆult issuesin nearest-neighbour searh.
3. CLUSTERING WITH MODIFICATIONIn this setion, we propose an algorithm based on hierar-hial lustering. This algorithm �rst �nds a hyperplanethat separates I into two balane (within a onstant fator)lusters. The Works are then watermarked so that none ofthem is loated near the hyperplane. Finally, eah luster isreursively divided into sub-lusters. Let us all the slab (re-gion between two parallel hyperplanes) that does not ontainany watermarked Works the bu�er zone, and the distane ofthe hyperplane to the bu�er zone's surfae the bu�er zone'swidth (Figure 1).The hierarhial lustering gives an index tree for searhing.The internal nodes of this tree are the separating hyper-plane, and the leaves are the index of the only Work in theorresponding luster. Given a query, say the watermarkedeIi, it is easy to transverse the tree from the root down tothe orret leave (whih is i) by omparing Ii with the in-ternal nodes along the path. Under inuene of AWGN, thequery beome I 0 = eIi + z where z is the noise. This addi-tive noise might lead to error. Reall that the hyperplane issurrounded by a thik bu�er zone. The width of this bu�erzone is hosen so that the probability of I 0 rosses the hy-perplane is extremely small. Thus, robustness is ahieved.In Setion 3.2, we will quantify how large the bu�er zone tobe for a required robustness.Sine the index tree ontains of at most n hyperplanes, andeah hyperplane an be represented by its normal and apoint on its surfae, the total size of the index tree is linearwith respet to the size of I. Beause the tree is balane, thedepth of the tree is O(log n). We tested our algorithm onWorks generated from Gaussian soure and natural images.In our experiments, the index trees are always suessfullybuilt by the proposed heuristi algorithm.We will �rst desribe the single-level lustering (Setion 3.1).In Setion 3.2, we desribe how to perform reursive luster-ing while ensuring requirements on robustness and distortionare ahieved.
3.1 Single level clusteringThe single level lustering attempts to solve this sub-problem:Given I = hI1; I2; : : : ; Ini, a distortion requirement �0 andthe bu�er zone's width �0. We want to �nd a hyperplane(represented by its normal H0 and a point C0 on the plane),and a watermarked eI = h eI1; eI2; : : : ; eIni, suh that:1. The distortion is at most �0, that isPi keIi�Iik22 � n�0.2. For any watermarked eI, the distane of eI from thehyperplane is at least �0 (that is, j(eI �C0) �H0j > �0).3. Furthermore, the hyperplane divides the watermarkedhosts into two equal (within onstant fator) halves.That is, suppose I0 is the set of watermarked eI where

�0
I eII 0

Figure 1: Eah irle represents a Works. Eah �lledirle represents the orresponding watermarkedWork, if it is di�erent from the original. The regionbetween the two dotted lines is the bu�er zone, andits width is �0. The point I is an original Work, eI isthe watermarked Work and I 0 is a orrupted query.(eI � C0) �H0 > 0, then14 < jI0j=jIj < 34 :Figure 1 illustrates the result of a single level lustering in2-dimensional spae. This problem an be rephrased as anoptimization problem by �xing the bu�er zone's width �0and minimizing the distortion, or vie versa.Here is a simple heuristi based on the 2-mean algorithm.1. Compute the 2 means, m0 and m1 using the well-known iterative method [8℄. Let bH = m0 � m1 andbC = (m0 +m1)=2.2. Partition I into two lusters I0 and I1, where I0 on-tains all the Works in I that is nearer to m0, and IIontains the remaining. Spei�ally, if (I� bC) � bH > 0,then I is in I0.Next, �nd a \good" hyperplane that separates I0 andI1. Ideally, we want to �nd the hyperplane with themaximum distane from its nearest Work. That is, wewant to �nd the support vetors for the two lusters.Support vetor mahine is an established tehnique,and the support vetors an be eÆiently found usingquadrati programming [4℄. In our urrent implemen-tation, instead of �nding the optimal hyperplane, weuse a simple approximation. The details of this simpleiterative method is omitted here. Let H0 and C0 bethe normal and a point on this hyperplane respetively.3. For all I in the bu�er zone, watermark them by shift-ing them along the diretion H0 and away from C0.They are shifted until they reah the surfae of thebu�er zone. Spei�ally, if (I �C0) �H0 � 0, then thewatermarked eI iseI = I +max(0; �0 � (I � C0) �H0)H0; (2)
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Figure 2: Performane of the single level lusteringas the number of Works inreases. The dimensiond = 642 and the width of bu�er zone is �0 = 5=pd.The upper graph gives the largest distortion amongthe n Works. The lower graph gives the averagedistortion.
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Figure 3: Histogram of the distanes of originalWorks from the hyperplane. The dimension d = 642,n = 2048. In-between the two vertial lines is thebu�er zone with width �0 = 2=pd.otherwiseeI = I �max(0; �0 + (I � C0) �H0)H0;Now, we want to �nd the relationship between �0 and therequired robustness �2. Consider I 0 in Figure 1. The pointI 0 = eI + z is orrupted by noise z. Error ourred duringsearhing if the noise vetor z, after projeted onto the one-dimensional normal H0, is more than �0 (or ��0 dependingon whih side eI is in). Beause the noise is AWGN with vari-ane �2, the distribution of the one-dimensional projetednoise is also normally distributed but with variane �2=d.Sine the probability of deviation from the standard devia-tion p�2=d is small, we hoose �0 to be�0 = Adp�2=d; (3)where Ad is a slow-growing funtion, for example log d. Inour experimental studies (Setion 4), instead of a slow-growing
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Figure 4: Distortion versus number the bu�er zone'swidth �0. The number of Works is �xed at n = 2048and the dimension is d = 642.funtion, we hoose Ad to be the onstant 3. This gives theprobability of error about 0:0015.
3.2 Extension to Multi-levelExtending the single level lustering to multi-level withoutspeial are might violate the robustness requirement. Re-all that step 3 in Setion 3.1 moves Works out of the bu�erzone. There are hanes that the newly watermarked Worksre-enter the bu�er zone reated in previous levels. Geomet-rially, the bu�er zone is an union of slabs (eah lusteringontributes one slab), and the non-bu�er zone is divided intodisjoint polyhedras. The task of watermarking is to moveoriginal I out of the bu�er zone and to the nearest point innon-bu�er zone, whih is on the surfae of a polyhedra. Forsimpliity in implementation, instead of �nding the nearestpoint on the polyhedras, we iterate step 3 to ensure bu�erzones in all levels are empty. This iteration might not givethe nearest point. However, its onverges fast and givesgood approximation, probably beause the hyperplanes arenearly orthogonal.In the optimization version (�xing distortion and maximiz-ing robustness), the allowable amount of distortion is valu-able resoures and has to be alloated to di�erent levels.The alloation should be fair so that every level of lusteringahieves same robustness. Let �0; �1; : : : �k be the distortionalloated to the k levels. Assuming that the hyperplanes atdi�erent levels are orthogonal, then the overall distortion isPki �i = �. We shall see in next setion and Figure 2 how dis-tortion inreases as n inreases. The alloation of � should be�i = �B=Dist(2�in), where Dist(�) is the average distortionas a funtion of n estimated from the empirial data, and Bis a normalizing fator suh that PiB=Dist(2�in) = 1.
4. EXPERIMENTAL RESULTSWe ondut two sets of experiments. In the �rst set, theWorks are generated from Gaussian soure. In the seondset, the database are natural images, resized to 64 by 64gray-saled pixels (Figure 7).Random Works. In these experiments, Works are gener-ated from a Gaussian soure, more spei�ally, it is a multi-
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Figure 5: Distortion versus size of database.variate Gaussian random variable I = (x1; x2; : : : ; xd) whereeah xi is normally distributed with variane 1=d.Figure 2, 3 and 4 illustrate the performane of the singlelevel lustering. Figure 2 gives the average distortion as thenumber of Works inreases. When the number of Worksinreases, the omputed 2-means in Setion 3.1 step 1 areloser to the overall average. Thus, the distortion shouldinrease.Figure 3 shows the distribution of the distane of the orig-inal Works from the hyperplane. Note that these are thedistanes before watermarking. Observe that the enter re-gion is empty. This is beause the hyperplane is derivedfrom the support vetors. Thus, the slab enlosed by thesupport vetors is empty, even before watermarking. Reallthat we do not �nd the optimal support vetors. The twopeaks in the histogram are side-e�ets of our approximationalgorithm. The two vertial lines in the �gure indiate thebu�er zone with �0 = 2=pd. Works fall between these twolines have to be watermarked. Figure 4 shows how the width�0 a�ets the distortion. Observe from the histogram thatthe Works are onentrated around 0.025 and -0.025. Thus,for large �0, the distortion is approximately the square ofthe distane of �0 from 0.025. This observation is on�rmedin Figure 4, where the distortion is roughly proportional to(�0 � 0:025)2 .Figure 5 shows the overall distortion (generated by multi-level lustering) as the number of Works inreases. Thewidth of bu�er zones in all levels is kept at �0 = 3p2=d.This value is hosen so that retrieval is robust under noisevariane �2 = 2. That is, when the signal-to-noise ratio isat most 0.5. The distortion is generally very small. For ex-ample, at n = 2048, the distortion is 0:0027. This i;s muhsmaller than the energy of the Works (whih is 1). It is alsosigni�antly smaller than the noise variane �2 = 2. Figure6 illustrates how distortion dereases as the dimensionalityinreases. The size n = 512 and width � = 3p2=d. Inter-estingly, performane improves as dimensionality inreases.This is in ontrast to general searhing problems in highdimensional spae.
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Average Distortion Figure 6: Distortion versus dimension. Logarithmisale is used for the y-axis. The number of Worksn = 512 and width � = 3p2=d.Natural Images. In this set of experiments, the databaseonsists 2048 natural images. The purpose of these exper-iments is to test our idea on non-Gaussian soure. Theseimages are gray-sale image resized to 64� 64 pixels. Thus,the dimension d = 642. The images are normalized so thateah has unit energy. Although images are typially muhlarger than 64 � 64 pixels, for watermarking purpose, theirdimension is usually redued to remove redundanies andoherene among the pixels. Beause image representationsare not a key issue here, we simply take the down-sampledimages as the domain to work in. Figure 7 shows samplesfrom the database. Unlike the database of random Works,some of the images are similar. Similar images are more dif-�ult to handle, beause they should be separated to resolveambiguities.

Figure 7: Twelve sample images from the database.The robustness �2 is hosen to be 2. This translates to thebu�er zone's width of �0 = 3p2=d. Figure 8 shows threeinstanes of orrupted queries. Our algorithm suessfullyretrieves the orret index for (a) and (b), but not (). Theexperiment is repeated for 1000 times, with same noise vari-ane, but di�erent noise instanes. With noise variane of1 and 2, our algorithm outputs the orret index for all in-stanes. With noise variane of 4, it gives orret index in



655 instanes. In our implementation, the queries are nor-malized to unit energy before searhing.The average distortion generated is 8:5�10�4 and the max-imum distortion among the images is 0:010. Figure 9 showsthree watermarked images. The top row is the image withmaximum distortion. Comparing to the random Works (seeFigure 5), the average distortion for the images database ismuh lower (0:0027 for random Works) but the maximumdistortion is higher (0:0052 for random Works). We do notknow why the performane are di�erent. Probably this isbeause natural images tend to form lusters and thus redu-ing the average distortion. On the other hand, a minority ofthe images might get too lose, and require larger distortionfor separation. This small luster of images inreases themaximum distortion.Figure 10 shows seleted nodes of the tree at the �rst, third,6th and 8th level. These nodes are visited while searhingfor the top-right image in Figure 7. That is, the query imageis �rst ompared with ((a); (d)), and �nally ompared with((); (f)).
(a) (b) ()Figure 8: Three orrupted queries. The noise vari-ane is (a) 1, (b) 2 and () 4 respetively. The un-orrupted image is shown in the top-right ornerof Figure 7. The proposed algorithm orretly re-trieves the index for (a) and (b), but not ().

4.1 Comparison with watermarkingIt is interesting to ompare the performane of our algo-rithm with methods based solely on watermarking. For thepurpose of omparison, we onsider watermarking shemeswhih fall into the framework of Gaussian hannel with sideinformation. Costa [5℄ shows that, the maximum ahievablerate with distortion � and robustness �2 isC = d2 log �1 + ��2 � : (4)That is, the maximum number of messages that an be em-bedded is 2C . If we employ solely watermarking to solvethe message-Work assoiation problem, with the onstrainton distortion and robustness, the size of the database isbounded above by (1 + �=�2)d=2. From the experimentaldata in Setion 4, with robustness �2 = 2, dimension d = 642and distortion 0:0027, our method an have 2048 Works. Inontrast, the theoretial maximum number ahievable bywatermarking is (1 + 0:0027=2)d=2 < 16.Note that the apaity in (4) does not depend on the energyof the Works. Intuitively, (4) is ahieved by �rst quantizingthe Works spae into ells and uses di�erent ode books foreah ell. To embed messagem to a Work I, the ell I is �rst

0:010.
0:0094.
0:0090.(a) (b) ()Figure 9: Images in olumn (a) are the original, (b)are the respetive watermarked image and () arethe di�erene (watermarked minus original). Theimages in () are enhaned (by saling the intensity)for better printing quality. The values below theimages are the distortion (that is, energy of ()).determined andm is then embedded using the orrespondingode-book.In ontrast, our algorithms depends on the energy of theWorks. The experiments onduted use Works and imagesof unit energy. The performane will inrease as the energyinreases (to inrease the energy by a fator of A is equiva-lent to redue the noise variane and distortion by the samefator). We an viewed our method as a quantization of theWork spae (as in the oding), where eah ell reveals par-tial information of the assoiated message m. If there is onlyone Work in the ell, then there is no ambiguity. If there ismore than one, distortion is required. Thus, potentially, theahievable rate ould beC0 = d2 log�1 + S + ��2 � : (5)where S is the energy of the Works.

5. VARIATIONS AND FUTURE WORKSToward this end, the database remains unhanged through-out the enoding and query proess. It will be interesting tostudy the dynami setting. In this setting, the database Istarts from one Work I1. New Works an be added into I,but one added, annot be removed. Furthermore, the or-responding watermarked Works must be omputed beforethe arrival of new Works. The watermarked Work, oneomputed, an not be modi�ed. The dynami setting is



(a) (b) ()
(d) (e) (f)Figure 10: The normal H of the hyperplanes om-puted at the �rst, fourth, 8th level are depited asimage (a), (b) and (). Image (d), (e) and (f) arethe orresponding point C. These hyperplanes arevisited while searhing the query shown in Figure9(a).motivated by appliation where a stream of images are tobe watermarked by a watermarking servie provider beforereleasing to the publi domain. The watermarking servieprovider does not know in advane the images to be water-marked, and the watermarked images, one released to thepubli domain, an not be realled for modi�ation.Another possible researh diretion is to study how the sizeof the index tree a�ets watermarking performane. Mostwatermarking formulations (for example, watermarking withside information) assume that the enoder and deoder knowthe distribution of the Works, but not the atual Works.In our formulation, the enoder and deoder has aess tothe index tree and thus has full information of the atualdatabase. In appliations where the deoding is to be per-formed in the lient-side, the index tree has to be sent overthe network. This is pratial only if the desription ofdatabase is small. Thus, it is useful to know how to obtaina ompat desription of the database, and how to trade-o�its size with other watermarking performane measures.

6. CONCLUSIONIn this paper, we introdue a variant of retrieval problemwhere the data points an be slightly distorted. This prob-lem is motivated by the observation that, the message-Workassoiation typially addressed by watermarking, an alsobe treated as a searhing problem. We give an algorithmwhih is a ombination of watermarking tehniques and lus-tering algorithm. This simple algorithm demonstrates thatwith small distortion, we an searh fast, even in very highdimension. From the watermarking perspetive, this algo-rithm demonstrates that with some searhing ability, we ansigni�antly redue distortion and thus improve watermark-ing performane.
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