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ABSTRACTWe are interested in the method of asso
iating messages tomulti-media obje
ts. The asso
iation should be done in away that the message 
an be readily extra
ted from a queryobje
t, and the extra
tion is robust even in the presen
e ofnoise. This problem is typi
ally addressed by watermark-ing where the the messages are embedded into the originalobje
ts (the multi-media obje
ts are also known as Worksin watermarking). A disadvantage of watermarking is thatthe Works will be distorted during embedding. In somes
enarios, we 
an assume that information (either fully orpartially) of the Works database is available. This addi-tional knowledge 
an be exploited to redu
e distortion. Forexample, instead of watermarking, the original Works andtheir asso
iated messages 
an be stored in a database. Theretrieval me
hanism is then used to obtain the asso
iatedmessage from a query Work. Although this method indu
eszero distortion, it is 
omputationally intensive and thus notfeasible in most pra
ti
al appli
ations. In this paper, westudy the tradeo� between these two extremes. We viewthe problem of message-Work asso
iation as a variant ofdatabase retrieval problem. In 
ontrast to the usual retrievalproblem, our database entries 
an be modi�ed for faster re-trieval. We propose an algorithm whi
h uses linear storagespa
e (with respe
t to the size of database) and provides fastretrieval. Our 
laims are supported by experimental studies.
General Termsmultimedia retrieval, multimedia se
urity
KeywordsWatermarking, nearest-neighbour sear
h, k-mean, image re-trieval system
1. INTRODUCTIONA watermarking s
heme 
onsists of an en
oder and de
oder.The en
oder embeds a given message m into a Work I, giv-ing the watermarked eI. The embedding is done in su
h a

way that the distortion from I to eI is small, and the messagem 
an be su

essfully de
oded from eI even if eI is 
orruptedby noise. Watermarking te
hniques 
an be applied to var-ious domains, for example images, audio, and 3-d meshes,and they 
an be employed in many appli
ations. A surveyon 
urrent watermarking te
hniques and their appli
ations
an be found in [6℄. We are parti
ularly interested in ap-pli
ations whi
h use watermarking as an eÆ
ient mean forasso
iating messages to Works. The asso
iations are robustagainst 
orrupting noise, and the asso
iated message 
an bereadily retrieved from a query Work. The asso
iation of mto I is typi
ally a
hieved by watermarking in the followingway: For ea
h asso
iation (m; I), the en
oder embeds mes-sage m into I, giving a watermarked eI. Given a query eI,the retrieval of the asso
iated m is performed by the de-
oder, who extra
ts the message from the watermarked eI.Through watermarking, the message 
an still be su

essfullyextra
ted even if eI is 
orrupted by noise. In this paper, ea
hWork is represented as a point in Rd, and the distan
e mea-sure between Works is the Eu
lidean 2-norm. The se
urityof the asso
iation is not a 
on
ern of this paper. Thus, weonly 
onsider additive white Gaussian noise as the 
orrupt-ing fa
tor.In some s
enarios, the en
oder and de
oder have partial orfull a

ess to the set of asso
iations. For example, in thezero knowledge watermark dete
tion[1℄, and the 
ommer
ialprodu
t Digimar
 MediaBridge Reader[2, 7℄, the de
oder
an 
ommuni
ate with a server, and thus 
an re
eive moreinformation on the watermarked Works. With the addi-tional knowledge of the asso
iations, alternative to the di-re
t usage of watermarking te
hnique should yield higherperforman
e. A seemingly possible but ineÆ
ient alterna-tive is a multi-media retrieval system. The retrieval systemstores (I1;m1); (I2; m2); : : : in a database and take the orig-inal Works I1; I2; : : : as indi
es. Given a query image, theasso
iated message is obtained by sear
hing the query imagein the database.However, the retrieval method has two limitations. Firstly,it is ineÆ
ient be
ause sear
hing and maintaining the highdimensional Works are 
omputationally intensive. In par-ti
ular, the performan
e of this method relies heavily onthe nearest-neighbour sear
h, whi
h 
an be stated as fol-low: given a set of points in d-dimensions, with prepro
ess-ing allowed, how qui
kly 
an a nearest neighbour of a givenquery point q be found. Nearest-neighbour sear
h is an im-portant operation in retrieval systems and many algorithms



have been proposed, su
h as R-tree[10℄, PMR quadtree [11℄,k-d-trees[3℄ and their variants [12, 13, 9℄. The 
omputingresour
es required by these algorithm are measured by thesize of the index tree and the sear
h time. In most algo-rithms, the required resour
es in
reases rapidly as the di-mension of sear
h spa
e in
reases. This phenomenon is gen-erally referred to as the dimensionality 
urse and is usu-ally avoided by redu
ing the dimensionality of the sear
hspa
e. Our message-Work asso
iation problem is usuallyapplied to multi-media obje
ts whi
h have very high dimen-sion. For example, the dimension of images 
an ranges from500 to millions, depending on the underlying image trans-formations and features spa
e. Redu
ing the dimensionalityis not a good option here be
ause higher dimensionality isrequired for 
oding more messages.Another limitation of the retrieval method surfa
es whensome of the original Works are similar. In the worst 
ase,all Works are identi
al, say I = I1 = I2 = : : :. Now,given a query I, it is impossible to de
ide whi
h is the as-so
iated message. The watermarking method solves thisambiguity naturally. Under watermarking, the messagesm1;m2; : : : are embedded into I separately, giving di�erentwatermarked eI1; eI2; : : :. Given eIi as query, the de
oder 
an
orre
tly output the message mi without ambiguity.Although the retrieval method is 
omputational expensiveand introdu
es ambiguity, it a
hieves zero distortion. Thisis in 
ontrast to the watermarking solution, whi
h generatesundesire distortion, but a
hieves fast retrieval and resolvesambiguity. Now, it is an interesting question whether we
an 
ombine both te
hniques and �nd the right tradeo� forbetter performan
e. This is the fo
us of this paper.Motivated by the above observation, we re-formulate themessage-Works asso
iation problem addressed by watermark-ing. This new formulation 
an be viewed as a variant of the
lassi
al nearest-neighbour sear
h in high dimensions, butwith the additional freedom of modifying (that is, water-marking) the data points. We 
an also viewed this as avariant of watermarking 
oding problem, but with additionknowledge of the joint distribution of message-Works (thatis, the distribution of message and Works are not indepen-dent). We give a solution whi
h is a 
ombination of wa-termarking te
hniques and 
lustering. This algorithm useslinear storage spa
e (with respe
t to the database size) andfa
ilitates fast retrieval. Our 
laims is supported by experi-mental studies.Outline of this paper. In Se
tion 2, we formulate theasso
iation problem and highlight some similarities and dif-feren
es with existing formulations. The proposed algorithmis des
ribed in Se
tion 3. The single-level 
lustering is givenin Se
tion 3.1 and the extension to multi-levels in Se
tion3.2. In Se
tion 4, we gives experimental results to supportour 
laims, and 
ompares the performan
e with the theoret-i
al limit of watermarking. Extensions and variations of ourformulation are dis
ussed in Se
tion 5.
2. PROBLEM FORMULATIONGiven I = hI1; I2; : : : ; Ini, a distortion 
onstraint � and ro-bustness �2, we want to prepro
ess I to obtain the water-marked eI = h eI1; eI2; : : : ; eIni and an index tree. The water-

marked eI satis�es the distortion 
onstraint �, that is,1n nXi=1 kIi � eIik22 < �: (1)The index tree fa
ilitates sear
hing su
h that given the queryeIi, we 
an output i eÆ
iently. The sear
hing is robust in thesense that if eIi is 
orrupted by additive white Gaussian nose(AWGN) with power �2, the output is 
orre
t with highprobability. Spe
i�
ally, supposeI 0 = eIi + z;where z = (z1; z2; : : : ; zd) and ea
h zj is independently drawnfrom the normal distribution N(0; �2=d). Then, taking I 0 asthe query, the algorithm gives the 
orre
t output (whi
h isi) with probability at least (1� 1=d).This formulation 
an be rephrased to an optimization prob-lem. By �xing the distortion 
onstraint, we want to �nd anindex tree that maximize the robustness �2, or vi
e versa,�xing �2 and minimizing the distortion.In the above formulation, the messages asso
iated to theWorks are a
tually its indi
es. This is di�erent from ouroriginal des
ription where the messagesmi 
ould be a string.This di�eren
e is not 
riti
al be
ause the a
tual message mi
an be easily lookup from a table.Coding. A solution to our problem has to address two is-sues. The �rst is regarding 
oding. If I1 = I2 = : : : = In areidenti
al, then the problem is same as informed watermark-ing, that is, watermarking with original Works available atthe de
oder. Be
ause there is only one Work, we 
an use itas the referen
e point. This redu
es the problem to �ndingthe watermarked eI1; eI2; : : : ; eIn that are far apart but sub-je
t to the distortion 
onstraint Pi keIi � I1k22 � n�. This isessentially 
hannel 
oding, where � is the power 
onstraintand �2 is the noise varian
e. Note that high dimensionalityis required to en
ode large number of messages.Sear
hing. The other issue is on the 
omputationalaspe
t of sear
hing. As we have mentioned in the intro-du
tion, the dimensionality 
urse prevents fast sear
hing.Fortunately, a few di�eren
es of our problem from the 
las-si
al nearest-neighbour sear
h 
an be exploited. The mostnotably di�eren
e is that, in our problem, the data points
an be slightly modi�ed (watermarked) for better sear
h-ing performan
e. In the extreme, with unlimited distortion,the problem is trivially solved by aligning the watermarkedWorks along a straight line. Sin
e distortion is undesirable,we want to minimize the distortion while supporting fastretrieval.A more subtle di�eren
e arises from the probability require-ment on sear
hing. Our formulation does not state the re-quired output when the query is seriously 
orrupted. Inother words, if the query point is not near any data point,it 
an be ignored. In addition, the query's out
ome is prob-abilisti
. Thus, if a query lo
ates about the same distan
efrom eI1, eI2 and eI3, instead of looking into the �ne neigh-bourhood stru
ture, we 
an just make an arbitrary 
hoi
e,as long as it 
onforms to the probabilisti
 requirement. Fur-



thermore, we are interested in average 
ase performan
e. Weassume the Works are normally distributed. Our algorithmexploits these statisti
al properties and avoid diÆ
ult issuesin nearest-neighbour sear
h.
3. CLUSTERING WITH MODIFICATIONIn this se
tion, we propose an algorithm based on hierar-
hi
al 
lustering. This algorithm �rst �nds a hyperplanethat separates I into two balan
e (within a 
onstant fa
tor)
lusters. The Works are then watermarked so that none ofthem is lo
ated near the hyperplane. Finally, ea
h 
luster isre
ursively divided into sub-
lusters. Let us 
all the slab (re-gion between two parallel hyperplanes) that does not 
ontainany watermarked Works the bu�er zone, and the distan
e ofthe hyperplane to the bu�er zone's surfa
e the bu�er zone'swidth (Figure 1).The hierar
hi
al 
lustering gives an index tree for sear
hing.The internal nodes of this tree are the separating hyper-plane, and the leaves are the index of the only Work in the
orresponding 
luster. Given a query, say the watermarkedeIi, it is easy to transverse the tree from the root down tothe 
orre
t leave (whi
h is i) by 
omparing Ii with the in-ternal nodes along the path. Under in
uen
e of AWGN, thequery be
ome I 0 = eIi + z where z is the noise. This addi-tive noise might lead to error. Re
all that the hyperplane issurrounded by a thi
k bu�er zone. The width of this bu�erzone is 
hosen so that the probability of I 0 
rosses the hy-perplane is extremely small. Thus, robustness is a
hieved.In Se
tion 3.2, we will quantify how large the bu�er zone tobe for a required robustness.Sin
e the index tree 
ontains of at most n hyperplanes, andea
h hyperplane 
an be represented by its normal and apoint on its surfa
e, the total size of the index tree is linearwith respe
t to the size of I. Be
ause the tree is balan
e, thedepth of the tree is O(log n). We tested our algorithm onWorks generated from Gaussian sour
e and natural images.In our experiments, the index trees are always su

essfullybuilt by the proposed heuristi
 algorithm.We will �rst des
ribe the single-level 
lustering (Se
tion 3.1).In Se
tion 3.2, we des
ribe how to perform re
ursive 
luster-ing while ensuring requirements on robustness and distortionare a
hieved.
3.1 Single level clusteringThe single level 
lustering attempts to solve this sub-problem:Given I = hI1; I2; : : : ; Ini, a distortion requirement �0 andthe bu�er zone's width �0. We want to �nd a hyperplane(represented by its normal H0 and a point C0 on the plane),and a watermarked eI = h eI1; eI2; : : : ; eIni, su
h that:1. The distortion is at most �0, that isPi keIi�Iik22 � n�0.2. For any watermarked eI, the distan
e of eI from thehyperplane is at least �0 (that is, j(eI �C0) �H0j > �0).3. Furthermore, the hyperplane divides the watermarkedhosts into two equal (within 
onstant fa
tor) halves.That is, suppose I0 is the set of watermarked eI where

�0
I eII 0

Figure 1: Ea
h 
ir
le represents a Works. Ea
h �lled
ir
le represents the 
orresponding watermarkedWork, if it is di�erent from the original. The regionbetween the two dotted lines is the bu�er zone, andits width is �0. The point I is an original Work, eI isthe watermarked Work and I 0 is a 
orrupted query.(eI � C0) �H0 > 0, then14 < jI0j=jIj < 34 :Figure 1 illustrates the result of a single level 
lustering in2-dimensional spa
e. This problem 
an be rephrased as anoptimization problem by �xing the bu�er zone's width �0and minimizing the distortion, or vi
e versa.Here is a simple heuristi
 based on the 2-mean algorithm.1. Compute the 2 means, m0 and m1 using the well-known iterative method [8℄. Let bH = m0 � m1 andbC = (m0 +m1)=2.2. Partition I into two 
lusters I0 and I1, where I0 
on-tains all the Works in I that is nearer to m0, and II
ontains the remaining. Spe
i�
ally, if (I� bC) � bH > 0,then I is in I0.Next, �nd a \good" hyperplane that separates I0 andI1. Ideally, we want to �nd the hyperplane with themaximum distan
e from its nearest Work. That is, wewant to �nd the support ve
tors for the two 
lusters.Support ve
tor ma
hine is an established te
hnique,and the support ve
tors 
an be eÆ
iently found usingquadrati
 programming [4℄. In our 
urrent implemen-tation, instead of �nding the optimal hyperplane, weuse a simple approximation. The details of this simpleiterative method is omitted here. Let H0 and C0 bethe normal and a point on this hyperplane respe
tively.3. For all I in the bu�er zone, watermark them by shift-ing them along the dire
tion H0 and away from C0.They are shifted until they rea
h the surfa
e of thebu�er zone. Spe
i�
ally, if (I �C0) �H0 � 0, then thewatermarked eI iseI = I +max(0; �0 � (I � C0) �H0)H0; (2)
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Figure 2: Performan
e of the single level 
lusteringas the number of Works in
reases. The dimensiond = 642 and the width of bu�er zone is �0 = 5=pd.The upper graph gives the largest distortion amongthe n Works. The lower graph gives the averagedistortion.
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Figure 3: Histogram of the distan
es of originalWorks from the hyperplane. The dimension d = 642,n = 2048. In-between the two verti
al lines is thebu�er zone with width �0 = 2=pd.otherwiseeI = I �max(0; �0 + (I � C0) �H0)H0;Now, we want to �nd the relationship between �0 and therequired robustness �2. Consider I 0 in Figure 1. The pointI 0 = eI + z is 
orrupted by noise z. Error o

urred duringsear
hing if the noise ve
tor z, after proje
ted onto the one-dimensional normal H0, is more than �0 (or ��0 dependingon whi
h side eI is in). Be
ause the noise is AWGN with vari-an
e �2, the distribution of the one-dimensional proje
tednoise is also normally distributed but with varian
e �2=d.Sin
e the probability of deviation from the standard devia-tion p�2=d is small, we 
hoose �0 to be�0 = Adp�2=d; (3)where Ad is a slow-growing fun
tion, for example log d. Inour experimental studies (Se
tion 4), instead of a slow-growing
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Figure 4: Distortion versus number the bu�er zone'swidth �0. The number of Works is �xed at n = 2048and the dimension is d = 642.fun
tion, we 
hoose Ad to be the 
onstant 3. This gives theprobability of error about 0:0015.
3.2 Extension to Multi-levelExtending the single level 
lustering to multi-level withoutspe
ial 
are might violate the robustness requirement. Re-
all that step 3 in Se
tion 3.1 moves Works out of the bu�erzone. There are 
han
es that the newly watermarked Worksre-enter the bu�er zone 
reated in previous levels. Geomet-ri
ally, the bu�er zone is an union of slabs (ea
h 
lustering
ontributes one slab), and the non-bu�er zone is divided intodisjoint polyhedras. The task of watermarking is to moveoriginal I out of the bu�er zone and to the nearest point innon-bu�er zone, whi
h is on the surfa
e of a polyhedra. Forsimpli
ity in implementation, instead of �nding the nearestpoint on the polyhedras, we iterate step 3 to ensure bu�erzones in all levels are empty. This iteration might not givethe nearest point. However, its 
onverges fast and givesgood approximation, probably be
ause the hyperplanes arenearly orthogonal.In the optimization version (�xing distortion and maximiz-ing robustness), the allowable amount of distortion is valu-able resour
es and has to be allo
ated to di�erent levels.The allo
ation should be fair so that every level of 
lusteringa
hieves same robustness. Let �0; �1; : : : �k be the distortionallo
ated to the k levels. Assuming that the hyperplanes atdi�erent levels are orthogonal, then the overall distortion isPki �i = �. We shall see in next se
tion and Figure 2 how dis-tortion in
reases as n in
reases. The allo
ation of � should be�i = �B=Dist(2�in), where Dist(�) is the average distortionas a fun
tion of n estimated from the empiri
al data, and Bis a normalizing fa
tor su
h that PiB=Dist(2�in) = 1.
4. EXPERIMENTAL RESULTSWe 
ondu
t two sets of experiments. In the �rst set, theWorks are generated from Gaussian sour
e. In the se
ondset, the database are natural images, resized to 64 by 64gray-s
aled pixels (Figure 7).Random Works. In these experiments, Works are gener-ated from a Gaussian sour
e, more spe
i�
ally, it is a multi-
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Figure 5: Distortion versus size of database.variate Gaussian random variable I = (x1; x2; : : : ; xd) whereea
h xi is normally distributed with varian
e 1=d.Figure 2, 3 and 4 illustrate the performan
e of the singlelevel 
lustering. Figure 2 gives the average distortion as thenumber of Works in
reases. When the number of Worksin
reases, the 
omputed 2-means in Se
tion 3.1 step 1 are
loser to the overall average. Thus, the distortion shouldin
rease.Figure 3 shows the distribution of the distan
e of the orig-inal Works from the hyperplane. Note that these are thedistan
es before watermarking. Observe that the 
enter re-gion is empty. This is be
ause the hyperplane is derivedfrom the support ve
tors. Thus, the slab en
losed by thesupport ve
tors is empty, even before watermarking. Re
allthat we do not �nd the optimal support ve
tors. The twopeaks in the histogram are side-e�e
ts of our approximationalgorithm. The two verti
al lines in the �gure indi
ate thebu�er zone with �0 = 2=pd. Works fall between these twolines have to be watermarked. Figure 4 shows how the width�0 a�e
ts the distortion. Observe from the histogram thatthe Works are 
on
entrated around 0.025 and -0.025. Thus,for large �0, the distortion is approximately the square ofthe distan
e of �0 from 0.025. This observation is 
on�rmedin Figure 4, where the distortion is roughly proportional to(�0 � 0:025)2 .Figure 5 shows the overall distortion (generated by multi-level 
lustering) as the number of Works in
reases. Thewidth of bu�er zones in all levels is kept at �0 = 3p2=d.This value is 
hosen so that retrieval is robust under noisevarian
e �2 = 2. That is, when the signal-to-noise ratio isat most 0.5. The distortion is generally very small. For ex-ample, at n = 2048, the distortion is 0:0027. This i;s mu
hsmaller than the energy of the Works (whi
h is 1). It is alsosigni�
antly smaller than the noise varian
e �2 = 2. Figure6 illustrates how distortion de
reases as the dimensionalityin
reases. The size n = 512 and width � = 3p2=d. Inter-estingly, performan
e improves as dimensionality in
reases.This is in 
ontrast to general sear
hing problems in highdimensional spa
e.
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s
ale is used for the y-axis. The number of Worksn = 512 and width � = 3p2=d.Natural Images. In this set of experiments, the database
onsists 2048 natural images. The purpose of these exper-iments is to test our idea on non-Gaussian sour
e. Theseimages are gray-s
ale image resized to 64� 64 pixels. Thus,the dimension d = 642. The images are normalized so thatea
h has unit energy. Although images are typi
ally mu
hlarger than 64 � 64 pixels, for watermarking purpose, theirdimension is usually redu
ed to remove redundan
ies and
oheren
e among the pixels. Be
ause image representationsare not a key issue here, we simply take the down-sampledimages as the domain to work in. Figure 7 shows samplesfrom the database. Unlike the database of random Works,some of the images are similar. Similar images are more dif-�
ult to handle, be
ause they should be separated to resolveambiguities.

Figure 7: Twelve sample images from the database.The robustness �2 is 
hosen to be 2. This translates to thebu�er zone's width of �0 = 3p2=d. Figure 8 shows threeinstan
es of 
orrupted queries. Our algorithm su

essfullyretrieves the 
orre
t index for (a) and (b), but not (
). Theexperiment is repeated for 1000 times, with same noise vari-an
e, but di�erent noise instan
es. With noise varian
e of1 and 2, our algorithm outputs the 
orre
t index for all in-stan
es. With noise varian
e of 4, it gives 
orre
t index in



655 instan
es. In our implementation, the queries are nor-malized to unit energy before sear
hing.The average distortion generated is 8:5�10�4 and the max-imum distortion among the images is 0:010. Figure 9 showsthree watermarked images. The top row is the image withmaximum distortion. Comparing to the random Works (seeFigure 5), the average distortion for the images database ismu
h lower (0:0027 for random Works) but the maximumdistortion is higher (0:0052 for random Works). We do notknow why the performan
e are di�erent. Probably this isbe
ause natural images tend to form 
lusters and thus redu
-ing the average distortion. On the other hand, a minority ofthe images might get too 
lose, and require larger distortionfor separation. This small 
luster of images in
reases themaximum distortion.Figure 10 shows sele
ted nodes of the tree at the �rst, third,6th and 8th level. These nodes are visited while sear
hingfor the top-right image in Figure 7. That is, the query imageis �rst 
ompared with ((a); (d)), and �nally 
ompared with((
); (f)).
(a) (b) (
)Figure 8: Three 
orrupted queries. The noise vari-an
e is (a) 1, (b) 2 and (
) 4 respe
tively. The un-
orrupted image is shown in the top-right 
ornerof Figure 7. The proposed algorithm 
orre
tly re-trieves the index for (a) and (b), but not (
).

4.1 Comparison with watermarkingIt is interesting to 
ompare the performan
e of our algo-rithm with methods based solely on watermarking. For thepurpose of 
omparison, we 
onsider watermarking s
hemeswhi
h fall into the framework of Gaussian 
hannel with sideinformation. Costa [5℄ shows that, the maximum a
hievablerate with distortion � and robustness �2 isC = d2 log �1 + ��2 � : (4)That is, the maximum number of messages that 
an be em-bedded is 2C . If we employ solely watermarking to solvethe message-Work asso
iation problem, with the 
onstrainton distortion and robustness, the size of the database isbounded above by (1 + �=�2)d=2. From the experimentaldata in Se
tion 4, with robustness �2 = 2, dimension d = 642and distortion 0:0027, our method 
an have 2048 Works. In
ontrast, the theoreti
al maximum number a
hievable bywatermarking is (1 + 0:0027=2)d=2 < 16.Note that the 
apa
ity in (4) does not depend on the energyof the Works. Intuitively, (4) is a
hieved by �rst quantizingthe Works spa
e into 
ells and uses di�erent 
ode books forea
h 
ell. To embed messagem to a Work I, the 
ell I is �rst

0:010.
0:0094.
0:0090.(a) (b) (
)Figure 9: Images in 
olumn (a) are the original, (b)are the respe
tive watermarked image and (
) arethe di�eren
e (watermarked minus original). Theimages in (
) are enhan
ed (by s
aling the intensity)for better printing quality. The values below theimages are the distortion (that is, energy of (
)).determined andm is then embedded using the 
orresponding
ode-book.In 
ontrast, our algorithms depends on the energy of theWorks. The experiments 
ondu
ted use Works and imagesof unit energy. The performan
e will in
rease as the energyin
reases (to in
rease the energy by a fa
tor of A is equiva-lent to redu
e the noise varian
e and distortion by the samefa
tor). We 
an viewed our method as a quantization of theWork spa
e (as in the 
oding), where ea
h 
ell reveals par-tial information of the asso
iated message m. If there is onlyone Work in the 
ell, then there is no ambiguity. If there ismore than one, distortion is required. Thus, potentially, thea
hievable rate 
ould beC0 = d2 log�1 + S + ��2 � : (5)where S is the energy of the Works.

5. VARIATIONS AND FUTURE WORKSToward this end, the database remains un
hanged through-out the en
oding and query pro
ess. It will be interesting tostudy the dynami
 setting. In this setting, the database Istarts from one Work I1. New Works 
an be added into I,but on
e added, 
annot be removed. Furthermore, the 
or-responding watermarked Works must be 
omputed beforethe arrival of new Works. The watermarked Work, on
e
omputed, 
an not be modi�ed. The dynami
 setting is



(a) (b) (
)
(d) (e) (f)Figure 10: The normal H of the hyperplanes 
om-puted at the �rst, fourth, 8th level are depi
ted asimage (a), (b) and (
). Image (d), (e) and (f) arethe 
orresponding point C. These hyperplanes arevisited while sear
hing the query shown in Figure9(a).motivated by appli
ation where a stream of images are tobe watermarked by a watermarking servi
e provider beforereleasing to the publi
 domain. The watermarking servi
eprovider does not know in advan
e the images to be water-marked, and the watermarked images, on
e released to thepubli
 domain, 
an not be re
alled for modi�
ation.Another possible resear
h dire
tion is to study how the sizeof the index tree a�e
ts watermarking performan
e. Mostwatermarking formulations (for example, watermarking withside information) assume that the en
oder and de
oder knowthe distribution of the Works, but not the a
tual Works.In our formulation, the en
oder and de
oder has a

ess tothe index tree and thus has full information of the a
tualdatabase. In appli
ations where the de
oding is to be per-formed in the 
lient-side, the index tree has to be sent overthe network. This is pra
ti
al only if the des
ription ofdatabase is small. Thus, it is useful to know how to obtaina 
ompa
t des
ription of the database, and how to trade-o�its size with other watermarking performan
e measures.

6. CONCLUSIONIn this paper, we introdu
e a variant of retrieval problemwhere the data points 
an be slightly distorted. This prob-lem is motivated by the observation that, the message-Workasso
iation typi
ally addressed by watermarking, 
an alsobe treated as a sear
hing problem. We give an algorithmwhi
h is a 
ombination of watermarking te
hniques and 
lus-tering algorithm. This simple algorithm demonstrates thatwith small distortion, we 
an sear
h fast, even in very highdimension. From the watermarking perspe
tive, this algo-rithm demonstrates that with some sear
hing ability, we 
ansigni�
antly redu
e distortion and thus improve watermark-ing performan
e.
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