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ABSTRACT

We are interested in the method of associating messages to
multi-media objects. The association should be done in a
way that the message can be readily extracted from a query
object, and the extraction is robust even in the presence of
noise. This problem is typically addressed by watermark-
ing where the the messages are embedded into the original
objects (the multi-media objects are also known as Works
in watermarking). A disadvantage of watermarking is that
the Works will be distorted during embedding. In some
scenarios, we can assume that information (either fully or
partially) of the Works database is available. This addi-
tional knowledge can be exploited to reduce distortion. For
example, instead of watermarking, the original Works and
their associated messages can be stored in a database. The
retrieval mechanism is then used to obtain the associated
message from a query Work. Although this method induces
zero distortion, it is computationally intensive and thus not
feasible in most practical applications. In this paper, we
study the tradeoff between these two extremes. We view
the problem of message-Work association as a variant of
database retrieval problem. In contrast to the usual retrieval
problem, our database entries can be modified for faster re-
trieval. We propose an algorithm which uses linear storage
space (with respect to the size of database) and provides fast
retrieval. Our claims are supported by experimental studies.
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multimedia retrieval, multimedia security
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1. INTRODUCTION

A watermarking scheme consists of an encoder and decoder.
The encoder embeds a given message m into a Work I, giv-
ing the watermarked I. The embedding is done in such a

way that the distortion from I to fisgmall, and the message
m can be successfully decoded from I even if I is corrupted
by noise. Watermarking techniques can be applied to var-
ious domains, for example images, audio, and 3-d meshes,
and they can be employed in many applications. A survey
on current watermarking techniques and their applications
can be found in [6]. We are particularly interested in ap-
plications which use watermarking as an efficient mean for
associating messages to Works. The associations are robust
against corrupting noise, and the associated message can be
readily retrieved from a query Work. The association of m
to I is typically achieved by watermarking in the following
way: For each association (m,I), the encoder embeds mes-
sage m into I, giving a watermarked I. Given a query T,
the retrieval of the associated m is performed by the de-
coder, who extracts the message from the watermarked I.
Through watermarking, the message can still be successfully
extracted even if I is corrupted by noise. In this paper, each
Work is represented as a point in R%, and the distance mea-
sure between Works is the Euclidean 2-norm. The security
of the association is not a concern of this paper. Thus, we
only consider additive white Gaussian noise as the corrupt-
ing factor.

In some scenarios, the encoder and decoder have partial or
full access to the set of associations. For example, in the
zero knowledge watermark detection[1], and the commercial
product Digimarc MediaBridge Reader[2, 7], the decoder
can communicate with a server, and thus can receive more
information on the watermarked Works. With the addi-
tional knowledge of the associations, alternative to the di-
rect usage of watermarking technique should yield higher
performance. A seemingly possible but inefficient alterna-
tive is a multi-media retrieval system. The retrieval system
stores (I1,m1), (I2, m2), ... in a database and take the orig-
inal Works I;, I, ... as indices. Given a query image, the
associated message is obtained by searching the query image
in the database.

However, the retrieval method has two limitations. Firstly,
it is inefficient because searching and maintaining the high
dimensional Works are computationally intensive. In par-
ticular, the performance of this method relies heavily on
the nearest-neighbour search, which can be stated as fol-
low: given a set of points in d-dimensions, with preprocess-
ing allowed, how quickly can a nearest neighbour of a given
query point g be found. Nearest-neighbour search is an im-
portant operation in retrieval systems and many algorithms



have been proposed, such as R-tree[10], PMR quadtree [11],
k-d-trees[3] and their variants [12, 13, 9]. The computing
resources required by these algorithm are measured by the
size of the index tree and the search time. In most algo-
rithms, the required resources increases rapidly as the di-
mension of search space increases. This phenomenon is gen-
erally referred to as the dimensionality curse and is usu-
ally avoided by reducing the dimensionality of the search
space. Our message-Work association problem is usually
applied to multi-media objects which have very high dimen-
sion. For example, the dimension of images can ranges from
500 to millions, depending on the underlying image trans-
formations and features space. Reducing the dimensionality
is not a good option here because higher dimensionality is
required for coding more messages.

Another limitation of the retrieval method surfaces when
some of the original Works are similar. In the worst case,
all Works are identical, say I = I = I, = .... Now,
given a query I, it is impossible to decide which is the as-
sociated message. The watermarking method solves this
ambiguity naturally. Under watermarking, the messages
mi, ma, ... are embedded into I separately, giving different
watermarked fl, I~2, .... Given I, as query, the decoder can
correctly output the message m; without ambiguity.

Although the retrieval method is computational expensive
and introduces ambiguity, it achieves zero distortion. This
is in contrast to the watermarking solution, which generates
undesire distortion, but achieves fast retrieval and resolves
ambiguity. Now, it is an interesting question whether we
can combine both techniques and find the right tradeoff for
better performance. This is the focus of this paper.

Motivated by the above observation, we re-formulate the
message- Works association problem addressed by watermark-
ing. This new formulation can be viewed as a variant of the
classical nearest-neighbour search in high dimensions, but
with the additional freedom of modifying (that is, water-
marking) the data points. We can also viewed this as a
variant of watermarking coding problem, but with addition
knowledge of the joint distribution of message-Works (that
is, the distribution of message and Works are not indepen-
dent). We give a solution which is a combination of wa-
termarking techniques and clustering. This algorithm uses
linear storage space (with respect to the database size) and
facilitates fast retrieval. Our claims is supported by experi-
mental studies.

Outline of this paper. In Section 2, we formulate the
association problem and highlight some similarities and dif-
ferences with existing formulations. The proposed algorithm
is described in Section 3. The single-level clustering is given
in Section 3.1 and the extension to multi-levels in Section
3.2. In Section 4, we gives experimental results to support
our claims, and compares the performance with the theoret-
ical limit of watermarking. Extensions and variations of our
formulation are discussed in Section 5.

2. PROBLEM FORMULATION

Given Z = (I, I»,...,I,), a distortion constraint e and ro-
bustness~02, we want to preprocess Z to obtain the water-
marked Z = (I1,I>,...,I,) and an index tree. The water-

marked 7 satisfies the distortion constraint €, that is,
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The index tree facilitates searching such that given the query
fi, we can output i efficiently. The searching is robust in the
sense that if ﬂ is corrupted by additive white Gaussian nose
(AWGN) with power o2, the output is correct with high
probability. Specifically, suppose

I’:E+z,

where z = (21, 22, ..., 24) and each z; is independently drawn
from the normal distribution N(0,0?/d). Then, taking I' as
the query, the algorithm gives the correct output (which is
i) with probability at least (1 — 1/d).

This formulation can be rephrased to an optimization prob-
lem. By fixing the distortion constraint, we want to find an
index tree that maximize the robustness o2, or vice versa,
fixing ¢ and minimizing the distortion.

In the above formulation, the messages associated to the
Works are actually its indices. This is different from our
original description where the messages m; could be a string.
This difference is not critical because the actual message m;
can be easily lookup from a table.

Coding. A solution to our problem has to address two is-
sues. The first is regarding coding. If I} = I, = ... = I,, are
identical, then the problem is same as informed watermark-
ing, that is, watermarking with original Works available at
the decoder. Because there is only one Work, we can use it
as the reference point. This reduces the problem to finding
the watermarked I~1, fg, . ,IZ that are far apart but sub-
ject to the distortion constraint ), IT; — I.||3 < ne. This is
essentially channel coding, where € is the power constraint
and o2 is the noise variance. Note that high dimensionality
is required to encode large number of messages.

Searching. The other issue is on the computational
aspect of searching. As we have mentioned in the intro-
duction, the dimensionality curse prevents fast searching.
Fortunately, a few differences of our problem from the clas-
sical nearest-neighbour search can be exploited. The most
notably difference is that, in our problem, the data points
can be slightly modified (watermarked) for better search-
ing performance. In the extreme, with unlimited distortion,
the problem is trivially solved by aligning the watermarked
Works along a straight line. Since distortion is undesirable,
we want to minimize the distortion while supporting fast
retrieval.

A more subtle difference arises from the probability require-
ment on searching. Our formulation does not state the re-
quired output when the query is seriously corrupted. In
other words, if the query point is not near any data point,
it can be ignored. In addition, the query’s outcome is prob-
abilistic. Thus, if a query locates about the same distance
from I, I> and I3, instead of looking into the fine neigh-
bourhood structure, we can just make an arbitrary choice,
as long as it conforms to the probabilistic requirement. Fur-



thermore, we are interested in average case performance. We
assume the Works are normally distributed. Our algorithm
exploits these statistical properties and avoid difficult issues
in nearest-neighbour search.

3. CLUSTERING WITH MODIFICATION

In this section, we propose an algorithm based on hierar-
chical clustering. This algorithm first finds a hyperplane
that separates Z into two balance (within a constant factor)
clusters. The Works are then watermarked so that none of
them is located near the hyperplane. Finally, each cluster is
recursively divided into sub-clusters. Let us call the slab (re-
gion between two parallel hyperplanes) that does not contain
any watermarked Works the buffer zone, and the distance of
the hyperplane to the buffer zone’s surface the buffer zone’s
width (Figure 1).

The hierarchical clustering gives an index tree for searching.
The internal nodes of this tree are the separating hyper-
plane, and the leaves are the index of the only Work in the
corresponding cluster. Given a query, say the watermarked
I;, it is easy to transverse the tree from the root down to
the correct leave (which is 7) by comparing I; with the in-
ternal nodes along the path. Under influence of AWGN, the
query become I' = I; + z where z is the noise. This addi-
tive noise might lead to error. Recall that the hyperplane is
surrounded by a thick buffer zone. The width of this buffer
zone is chosen so that the probability of I’ crosses the hy-
perplane is extremely small. Thus, robustness is achieved.
In Section 3.2, we will quantify how large the buffer zone to
be for a required robustness.

Since the index tree contains of at most n hyperplanes, and
each hyperplane can be represented by its normal and a
point on its surface, the total size of the index tree is linear
with respect to the size of Z. Because the tree is balance, the
depth of the tree is O(logn). We tested our algorithm on
Works generated from Gaussian source and natural images.
In our experiments, the index trees are always successfully
built by the proposed heuristic algorithm.

We will first describe the single-level clustering (Section 3.1).
In Section 3.2, we describe how to perform recursive cluster-
ing while ensuring requirements on robustness and distortion
are achieved.

3.1 Single level clustering

The single level clustering attempts to solve this sub-problem:

Given Z = (I, I>,...,1I,), a distortion requirement €y and
the buffer zone’s width 7. We want to find a hyperplane
(represented by its normal Hy and a point Cop on the plane),

and a watermarked 7 = (I~1, fg, o ,f:l), such that:

1. The distortion is at most €o, that is ), 1= I3 < neo.

2. For any watermarked f, the distance of I from the
hyperplane is at least 7o (that is, |(I — Co) - Ho| > 70).

3. Furthermore, the hyperplane divides the watermarked
hosts into two equal (within constant factor) halves.

That is, suppose Zp is the set of watermarked I where

Figure 1: Each circle represents a Works. Each filled
circle represents the corresponding watermarked
Work, if it is different from the original. The region
between the two dotted lines is the buffer zone, and
its width is 79. The point I is an original Work, Iis
the watermarked Work and I’ is a corrupted query.

(T— Co) - Ho > 0, then

1 3
1 < Dl/IZf < 4.

Figure 1 illustrates the result of a single level clustering in
2-dimensional space. This problem can be rephrased as an
optimization problem by fixing the buffer zone’s width 7
and minimizing the distortion, or vice versa.

Here is a simple heuristic based on the 2-mean algorithm.

1. Compute the 2 means, mo and m; using the well-
known iterative method [8]. Let H = mo — mi and

~

C = (mo +m1)/2.

2. Partition Z into two clusters Zo and Z;, where Zy con-
tains all the Works in Z that is nearer to mo, and Z;
contains the remaining. Specifically, if (I — a)ﬁ >0,
then I is in Zy.

Next, find a “good” hyperplane that separates Z, and
Z:. Ideally, we want to find the hyperplane with the
maximum distance from its nearest Work. That is, we
want to find the support vectors for the two clusters.
Support vector machine is an established technique,
and the support vectors can be efficiently found using
quadratic programming [4]. In our current implemen-
tation, instead of finding the optimal hyperplane, we
use a simple approximation. The details of this simple
iterative method is omitted here. Let Hy and Cy be
the normal and a point on this hyperplane respectively.

3. For all I in the buffer zone, watermark them by shift-
ing them along the direction Hy and away from Co.
They are shifted until they reach the surface of the
buffer zone. Specifically, if (I — Cp) - Ho > 0, then the

watermarked I is

I =1+max(0,70 — (I — Co) - Ho)Ho, (2)
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Figure 2: Performance of the single level clustering
as the number of Works increases. The dimension
d = 642 and the width of buffer zone is 77 = 5/\/3
The upper graph gives the largest distortion among
the n Works. The lower graph gives the average
distortion.
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Figure 3: Histogram of the distances of original
Works from the hyperplane. The dimension d = 642,
n = 2048. In-between the two vertical lines is the

buffer zone with width =y = 2/\/3

otherwise

TZ I— maX(O,To =+ (I — Co) - Ho)Ho,

Now, we want to find the relationship between 79 and the
required robustness 0. Consider I' in Figure 1. The point
I' = T + z is corrupted by noise z. Error occurred during
searching if the noise vector z, after projected onto the one-
dimensional normal Hy, is more than 79 (or —79 depending
on which side T is in). Because the noise is AWGN with vari-
ance o2, the distribution of the one-dimensional projected
noise is also normally distributed but with variance 2 /d.
Since the probability of deviation from the standard devia-
tion 4/02/d is small, we choose 19 to be

0 = Agr/o?/d, (3)

where Ag is a slow-growing function, for example logd. In

our experimental studies (Section 4), instead of a slow-growing
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Figure 4: Distortion versus number the buffer zone’s
width 7. The number of Works is fixed at n = 2048
and the dimension is d = 642,

function, we choose A4 to be the constant 3. This gives the
probability of error about 0.0015.

3.2 Extension to Multi-level

Extending the single level clustering to multi-level without
special care might violate the robustness requirement. Re-
call that step 3 in Section 3.1 moves Works out of the buffer
zone. There are chances that the newly watermarked Works
re-enter the buffer zone created in previous levels. Geomet-
rically, the buffer zone is an union of slabs (each clustering
contributes one slab), and the non-buffer zone is divided into
disjoint polyhedras. The task of watermarking is to move
original I out of the buffer zone and to the nearest point in
non-buffer zone, which is on the surface of a polyhedra. For
simplicity in implementation, instead of finding the nearest
point on the polyhedras, we iterate step 3 to ensure buffer
zones in all levels are empty. This iteration might not give
the nearest point. However, its converges fast and gives
good approximation, probably because the hyperplanes are
nearly orthogonal.

In the optimization version (fixing distortion and maximiz-
ing robustness), the allowable amount of distortion is valu-
able resources and has to be allocated to different levels.
The allocation should be fair so that every level of clustering
achieves same robustness. Let €, €1,... €, be the distortion
allocated to the k levels. Assuming that the hyperplanes at
different levels are orthogonal, then the overall distortion is
Zf €; = €. We shall see in next section and Figure 2 how dis-
tortion increases as n increases. The allocation of e should be
i = eB/Dist(27'n), where Dist(-) is the average distortion
as a function of n estimated from the empirical data, and B
is a normalizing factor such that 3, B/Dist(2 'n) = 1.

4. EXPERIMENTAL RESULTS

We conduct two sets of experiments. In the first set, the
Works are generated from Gaussian source. In the second
set, the database are natural images, resized to 64 by 64
gray-scaled pixels (Figure 7).

Random Works. In these experiments, Works are gener-
ated from a Gaussian source, more specifically, it is a multi-
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Figure 5: Distortion versus size of database.

variate Gaussian random variable I = (z1,z2,...,24) where
each z; is normally distributed with variance 1/d.

Figure 2, 3 and 4 illustrate the performance of the single
level clustering. Figure 2 gives the average distortion as the
number of Works increases. When the number of Works
increases, the computed 2-means in Section 3.1 step 1 are
closer to the overall average. Thus, the distortion should
increase.

Figure 3 shows the distribution of the distance of the orig-
inal Works from the hyperplane. Note that these are the
distances before watermarking. Observe that the center re-
gion is empty. This is because the hyperplane is derived
from the support vectors. Thus, the slab enclosed by the
support vectors is empty, even before watermarking. Recall
that we do not find the optimal support vectors. The two
peaks in the histogram are side-effects of our approximation
algorithm. The two vertical lines in the figure indicate the
buffer zone with 70 = 2/v/d. Works fall between these two
lines have to be watermarked. Figure 4 shows how the width
7o affects the distortion. Observe from the histogram that
the Works are concentrated around 0.025 and -0.025. Thus,
for large 70, the distortion is approximately the square of
the distance of 79 from 0.025. This observation is confirmed
in Figure 4, where the distortion is roughly proportional to
(10 — 0.025)>.

Figure 5 shows the overall distortion (generated by multi-
level clustering) as the number of Works increases. The
width of buffer zones in all levels is kept at 7o = 34/2/d.
This value is chosen so that retrieval is robust under noise
variance o2 = 2. That is, when the signal-to-noise ratio is
at most 0.5. The distortion is generally very small. For ex-
ample, at n = 2048, the distortion is 0.0027. This i;s much
smaller than the energy of the Works (which is 1). It is also
significantly smaller than the noise variance o> = 2. Figure
6 illustrates how distortion decreases as the dimensionality
increases. The size n = 512 and width 7 = 31/2/d. Inter-
estingly, performance improves as dimensionality increases.
This is in contrast to general searching problems in high
dimensional space.
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Figure 6: Distortion versus dimension. Logarithmic
scale is used for the y-axis. The number of Works

n = 512 and width = 3,/2/d.

Natural Images. In this set of experiments, the database
consists 2048 natural images. The purpose of these exper-
iments is to test our idea on non-Gaussian source. These
images are gray-scale image resized to 64 x 64 pixels. Thus,
the dimension d = 64>. The images are normalized so that
each has unit energy. Although images are typically much
larger than 64 x 64 pixels, for watermarking purpose, their
dimension is usually reduced to remove redundancies and
coherence among the pixels. Because image representations
are not a key issue here, we simply take the down-sampled
images as the domain to work in. Figure 7 shows samples
from the database. Unlike the database of random Works,
some of the images are similar. Similar images are more dif-
ficult to handle, because they should be separated to resolve
ambiguities.

Figure 7: Twelve sample images from the database.

The robustness o is chosen to be 2. This translates to the
buffer zone’s width of 70 = 34/2/d. Figure 8 shows three
instances of corrupted queries. Our algorithm successfully
retrieves the correct index for (a) and (b), but not (c). The
experiment is repeated for 1000 times, with same noise vari-
ance, but different noise instances. With noise variance of
1 and 2, our algorithm outputs the correct index for all in-
stances. With noise variance of 4, it gives correct index in



655 instances. In our implementation, the queries are nor-
malized to unit energy before searching.

The average distortion generated is 8.5 x 10™* and the max-
imum distortion among the images is 0.010. Figure 9 shows
three watermarked images. The top row is the image with
maximum distortion. Comparing to the random Works (see
Figure 5), the average distortion for the images database is
much lower (0.0027 for random Works) but the maximum
distortion is higher (0.0052 for random Works). We do not
know why the performance are different. Probably this is
because natural images tend to form clusters and thus reduc-
ing the average distortion. On the other hand, a minority of
the images might get too close, and require larger distortion
for separation. This small cluster of images increases the
maximum distortion.

Figure 10 shows selected nodes of the tree at the first, third,
6th and 8th level. These nodes are visited while searching
for the top-right image in Figure 7. That is, the query image
is first compared with ((a), (d)), and finally compared with

((e), (£)).

Figure 8: Three corrupted queries. The noise vari-
ance is (a) 1, (b) 2 and (c) 4 respectively. The un-
corrupted image is shown in the top-right corner
of Figure 7. The proposed algorithm correctly re-
trieves the index for (a) and (b), but not (c).

4.1 Comparison with watermarking

It is interesting to compare the performance of our algo-
rithm with methods based solely on watermarking. For the
purpose of comparison, we consider watermarking schemes
which fall into the framework of Gaussian channel with side
information. Costa [5] shows that, the maximum achievable

rate with distortion e and robustness o2 is

C:glog(1+%). (4)

That is, the maximum number of messages that can be em-
bedded is 2°. If we employ solely watermarking to solve
the message-Work association problem, with the constraint
on distortion and robustness, the size of the database is
bounded above by (1 4 €/52)%2. From the experimental
data in Section 4, with robustness o = 2, dimension d = 642
and distortion 0.0027, our method can have 2048 Works. In
contrast, the theoretical maximum number achievable by
watermarking is (1 + 0.0027/2)%? < 16.

Note that the capacity in (4) does not depend on the energy
of the Works. Intuitively, (4) is achieved by first quantizing
the Works space into cells and uses different code books for
each cell. To embed message m to a Work I, the cell I is first

0.0094.

Figure 9: Images in column (a) are the original, (b)
are the respective watermarked image and (c) are
the difference (watermarked minus original). The
images in (c) are enhanced (by scaling the intensity)
for better printing quality. The values below the
images are the distortion (that is, energy of (c)).

determined and m is then embedded using the corresponding
code-book.

In contrast, our algorithms depends on the energy of the
Works. The experiments conducted use Works and images
of unit energy. The performance will increase as the energy
increases (to increase the energy by a factor of A is equiva-
lent to reduce the noise variance and distortion by the same
factor). We can viewed our method as a quantization of the
Work space (as in the coding), where each cell reveals par-
tial information of the associated message m. If there is only
one Work in the cell, then there is no ambiguity. If there is
more than one, distortion is required. Thus, potentially, the
achievable rate could be

C':glog <1+SU+26). (5)

where S is the energy of the Works.

5. VARIATIONS AND FUTURE WORKS

Toward this end, the database remains unchanged through-
out the encoding and query process. It will be interesting to
study the dynamic setting. In this setting, the database 7
starts from one Work I;. New Works can be added into Z,
but once added, cannot be removed. Furthermore, the cor-
responding watermarked Works must be computed before
the arrival of new Works. The watermarked Work, once
computed, can not be modified. The dynamic setting is
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Figure 10: The normal H of the hyperplanes com-
puted at the first, fourth, 8th level are depicted as
image (a), (b) and (c). Image (d), (e) and (f) are
the corresponding point C. These hyperplanes are
visited while searching the query shown in Figure
9(a).

motivated by application where a stream of images are to
be watermarked by a watermarking service provider before
releasing to the public domain. The watermarking service
provider does not know in advance the images to be water-
marked, and the watermarked images, once released to the
public domain, can not be recalled for modification.

Another possible research direction is to study how the size
of the index tree affects watermarking performance. Most
watermarking formulations (for example, watermarking with
side information) assume that the encoder and decoder know
the distribution of the Works, but not the actual Works.
In our formulation, the encoder and decoder has access to
the index tree and thus has full information of the actual
database. In applications where the decoding is to be per-
formed in the client-side, the index tree has to be sent over
the network. This is practical only if the description of
database is small. Thus, it is useful to know how to obtain
a compact description of the database, and how to trade-off
its size with other watermarking performance measures.

6. CONCLUSION

In this paper, we introduce a variant of retrieval problem
where the data points can be slightly distorted. This prob-
lem is motivated by the observation that, the message-Work
association typically addressed by watermarking, can also
be treated as a searching problem. We give an algorithm
which is a combination of watermarking techniques and clus-
tering algorithm. This simple algorithm demonstrates that
with small distortion, we can search fast, even in very high
dimension. From the watermarking perspective, this algo-
rithm demonstrates that with some searching ability, we can
significantly reduce distortion and thus improve watermark-
ing performance.
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