
On the Effectiveness of DDoS Attacks on Statistical
Filtering

Qiming Li
Temasek Laboratories

National University of Singapore
liqm@comp.nus.edu.sg

Ee-Chien Chang
Department of Computer Science
National University of Singapore

changec@comp.nus.edu.sg

Mun Choon Chan
Department of Computer Science
National University of Singapore

chanmc@comp.nus.edu.sg

Abstract— Distributed Denial of Service (DDoS) attacks pose
a serious threat to service availability of the victim network
by severely degrading its performance. Recently, there has been
significant interest in the use of statistical-based filtering to defend
against and mitigate the effect of DDoS attacks. Under this
approach, packet statistics are monitored to classify normal and
abnormal behaviour. Under attack, packets that are classified
as abnormal are dropped by the filter that guards the victim
network. We study the effectiveness of DDoS attacks on such
statistical-based filtering in a general context where the attackers
are “smart”. We first give an optimal policy for the filter when
the statistical behaviours of both the attackers and the filter are
static. We next consider cases where both the attacker and the
filter can dynamically change their behaviour, possibly depending
on the perceived behaviour of the other party. We observe that
while an adaptive filter can effectively defend against a static
attacker, the filter can perform much worse if the attacker is
more dynamic than perceived.

I. INTRODUCTION

A Distributed Denial of Service (DDoS) attack is an attack
where many compromised hosts send large amount of traffic
to the victim network elements such that the resources of the
elements are exhausted and the performance seen by legitimate
packets are severely degraded. Such attacks have been wit-
nessed in the Internet, such as the recent attacks caused by the
MyDoom virus (http://www.us-cert.gov/cas/techalerts/TA04-
028A.html).

Statistical approaches to defend against DDoS attacks have
been proposed ([1], [2], [3], [4], [5]). In statistical approaches
to defend against DDoS attacks, the statistics of packet at-
tributes in the headers, such as IP address, time-to-live (TTL),
protocol type etc., are measured and the packets deemed most
likely to be attack packets based on these measurements are
dropped. Such approaches often assume that there are some
traffic characteristics that are inherently stable during normal
network operations ([2],[5]). Therefore, during a DDoS attack,
“abnormal” traffic can be detected based on the assumption
of stable traffic characteristics, and the packets that are most
likely to be illegitimate are dropped by the filter that guards
the victim network.

It is unlikely to have a fully automated mechanism that
can successfully defend against all DDoS attacks. When an
attack is detected, human intervention is eventually necessary
to protect the victim network. Most of the existing automated

defence mechanisms focus on the few hours after the attacks
commence, before a human expert is able to respond.

In this paper, we first study the effectiveness of DDoS
attacks on statistical-based filtering in a general context where
the filter uses an optimal dropping policy with respect to
static attackers. We generalize the problem to the cases where
both the attackers and the filter can dynamically change their
behaviours, possibly depending on the perceived behaviour of
the other side.

Specifically, the following cases are considered, in the order
of increasing sophistication of the attack. We call the traffic
characteristics assumed by the filter under normal network
operations the nominal traffic profile.

• Static Attackers and Static Filter. We consider sce-
narios where the attackers and the filter decide on the
specific attack traffic distributions and the filter policy to
use respectively, and do not change their decisions.

• Static Attackers and Adaptive Filter. Similar to the
previous case, but the filter can learn the attack traffic
distributions and adapt its policy accordingly.

• Dynamic Attackers and Adaptive Filter with No
Feedback. Similar to the previous case except that the
attackers are allowed to change the attack traffic distri-
butions.

• Adaptive Attackers and Adaptive Filter with Feed-
back. Attackers are allowed to change their attack traffic
and also know if the attack packets are dropped or
allowed to pass through.

We show that the success of a static filter is highly depen-
dent on its capability to estimate the static attack distributions.
We further show that while an adaptive filter can effectively
defend against static attackers, it can perform much worse
than a static filter if the attackers dynamically change the
distributions of the attack packets to trick the filter into setting
the wrong policies.

The success of these attacks relies on the assumption that
even with minimum knowledge of the filter’s nominal traffic
profile, the false accept rate is not insignificant unless the false
reject rate is made arbitrarily high. We demonstrate the validity
of this assumption using some packet traces collected from
different locations.

This paper is organized as follows. In Section II, we
describe related works in detecting and defending against

DDoS attacks. In Section III, we present a generic model for
statistical-based filtering. In Section IV, we present the optimal
filter policy for static attackers and filter. In Section V, we
study whether adaptation improves the filter performance. In
Section VI, we present attack strategies for attackers who can
probe the filter using feedback. In Section VII, evaluations
of different attack strategies and filter policies are presented.
Finally, we conclude in Section VIII.

II. RELATED WORK

DDoS attacks are a well known problem and a good
overview of common DDoS attacks can be found in [6].

Defending against DDoS attacks often involves detection
and response. There are a number of statistical approaches for
detection of DDoS attacks, including the use of MIB traffic
variables [7], IP addresses [4] (which assumes that attack traf-
fic uses randomly spoofed source addresses), IP addresses and
TTL values [3] and TCP SYN/FIN packets for detecting SYN
flood attacks [8]. More general approaches towards statistical
detection and response can be found in [2] and [5] where
statistics in packet (network and transport layers) attributes
can be used for both detection and setting of filtering policy
for packet dropping. In [2], entropy and Chi-Square statistics
are used to differentiate between attack and normal packets
while [5] computes the conditional legitimate probability of
a packet (the likelihood that a packet is legitimate given a
baseline nominal traffic pattern). The D-WARD approach [1]
uses, in addition to network and transport header statistics,
application layer knowledge to implement the filter policy.

Another way to defend against DDoS attacks is the use of
pushback. The idea is that if the source of the attacks can
be identified and traceback incrementally hop-by-hop to the
source (or as close as possible), then rate limiting can be used
to limit the scope and damage of the attacks. [9] proposes the
concept of high bandwidth aggregates for such identification.
[10] proposes an IP traceback scheme where packets are
randomly marked for tracking the routes of the attack packets.
When sufficient packets are marked, this approach allows
a victim to identify the network path(s) traversed by the
attack traffic without requiring operational support from ISPs.
Finally, [11] describes a route-based distributed packet filtering
(DPF) scheme for implementing pushback.

III. FORMULATION OF ATTACKS ON STATISTICAL-BASED

FILTERING

In this section, we give a model for the game between a
filter and the attackers. Our analysis centers around the notion
of (1) Ã, the attack packet distribution perceived by the filter,
(2) A, the actual attack distribution, and (3) D, the policy
employed by the filter, based on which packets are dropped.
The game between the attackers and the filter is essentially a
game of deception and guessing of Ã, A and D, either in a
static or a dynamic setting.

Fig. 1 shows the DDoS model assumed. The filter, residing
between the network and the victim, sees the mixture of the
actual attack distribution A and the legitimate traffic Q. Based

Attacker

Attacker

Attacker

Attacker

Attacker

Attacker

Victim
Network

RN

RA

A,
~

R ,Nw = R/ R +N RARAk = /()

Q,

A,

RFilter

D

Q,

Fig. 1. DDoS attacks on statistical filter

on an estimation Ã of the attack distribution, the filter devises
a policy D to decide if a packet should be dropped or allowed
through. R is the link bandwidth between the filter and the
victim. It is necessary to limit the rate of the packets allowed
through to R, since the victim may not be able to cope with
a higher rate.

A. Filter’s Objective

A filter takes in a packet and decides whether to accept or
reject (drop) it. If a packet is accepted, it can pass through the
filter and reach the victim. There are a few issues regarding
the notion of a good filter. Firstly we define false accept
α to be the probability that an attack packet is accepted,
and false reject β to be the probability that a legitimate
packet is rejected. The objective of the filter is to keep both
α and β as small as possible, while maintaining overall
accepted traffic rate to be within a predefined parameter R.
However, these goals are conflicting, and different scenarios
will place different level of emphasis on these goals. Under
our model, the filter attempts to achieve a particular rate R,
while minimizing the effectiveness e of the attack, which is a
function of α and β, and possibly other parameters.

B. Filter Policy

Given a packet, the filter makes its decision based on the
feature of the packet, which usually contains network and
transport layer header attributes such as TTL, IP address
(or prefix), packet size, port numbers, etc.. We refer to the
algorithm that the filter uses to make its decisions the policy.

Due to the constraint in computing power, the filter is unable
to adapt its policy rapidly to the changing traffic. Thus, we
assume that the policy is fixed for at least a short period of
time, for example, 5 minutes. We call such a short period of
time wherein the policy is fixed a slot.

A filter policy can be carried out in the following way.
For a given packet, its feature s is first extracted. Next,
from a lookup table, the filter decides whether to accept
or reject the packet. In other words, the policy is simply a
function from U , the features space, to the decision {accept,
reject}. We call such a policy deterministic. More generally, a

probabilistic policy can be represented as a function D from U
to the interval [0, 1]. Given a packet with feature s, the filter
computes the function D(s) and accepts it with probability
D(s). A deterministic policy is a special case of a probabilistic
policy when the value of D(s) is 0 or 1.

We assume that the decision of whether a packet is dropped
or accepted is independent on the outcomes of the previously
received packets. Hence, the policy is memoryless.

However, in order to force rate limiting, the filter can not be
completely memoryless. The total number of packets received
and accepted so far can be monitored and used in adjusting
the policy so as to achieve the desired rate. For example, the
filter can employ the current memoryless policy for a short
period of time and observe the number of packets received
and accepted. If the rate of accepted packets is too high or
too low, the policy is adjusted accordingly. The process is
repeated until the desired rate is achieved. In this paper, we
assume that the filter can adjust the policy and obtain the
desired rate in 0 time. Nevertheless, due to the constraint in
computing resources, the adjusted policy has to be efficiently
obtained. We consider a combination of these two adjustments.
The first adjustment simply adjusts the policy so that D(s) for
some feature s becomes zero. In the second adjustment, the
filter policy is adjusted by multiplying D(·) by a constant.

C. Nominal Traffic Profile & Perceived Attack Distributions

In order to derive the policy, the filter also requires infor-
mation about the traffic characteristics under normal network
operations, or the nominal traffic profile.

Let Q, the nominal traffic profile, be the probability density
function (p.d.f) of the nominal traffic. Hence, if s is the feature
of a packet, then Q(s) is the probability that such feature
appears in the nominal traffic.

Based on Ã and Q, the filter can derive an optimal policy
D (Section IV). Certainly, the optimality is based on the
assumption that the perceived Ã is the same as the actual
A, and the attack distributions remain unchanged within the
slot.

D. Adaptive Policies and Dynamic Attack Strategies

The attackers generate packets and attempt to get as many
packets to pass through the filter as possible. Since the filter
employs a memoryless policy, it is sufficient for the attackers
to find a distribution A, and generate packets according to A.

As the perceived Ã might not be the actual A, the filter may
attempt to learn A and adapt its policy. On the other hand, the
attackers may also employ a time-varying strategy, especially
if they are equipped with the probing ability. As both sides
can change their behaviours, based on the observation of the
traffic or the assumption on the nominal traffic distribution, the
main question is, does adaptation help the filter? In section V
and VII-C, we argue that, filter adaptation is potentially more
damaging, in the sense that the performance of the filter could
be worse than without adaptation.

Due to limitations of computing resources, we assume that
adaptation of policies is only performed at the beginning

of a slot (Section III-B). Let Di, Ãi, Ai be the dropping
policy, attack distribution perceived by the filter, and the actual
attack distribution within the i-th slot respectively. During the
transition from the (i−1)-th to the i-th slot, the filter may have
access to the network traces in some or all the previous slots
to derive the new policy Di. We define the learning window
size W to be the number of previous slots the filter has access
to. At time 0, it is assumed that Ã1 is the uniform distribution.

E. Notations

Here is a summary of the notations used.

U : Sample space. The set of all possible packet features.
s: The feature of a packet, that is, s ∈ U . A feature could

be a tuple of header attributes, e.g., packet length, TTL,
source IP address, etc..

Q: P.d.f of the nominal traffic distribution. Q(s) is the
probability that a legitimate packet has the feature s.

A: Actual attack distribution, from which the attack packets
are generated.

Ã: Attack distribution perceived by the filter. The filter
derives its policy based on Q and Ã.

D: Policy employed by the filter in one slot. A slot is a short
time period within which the policy remain unchanged.
D(s) is the probability that a packet with feature s is
accepted in that slot.

α: False accept. The probability that an attack packet is
accepted.

β: False reject. The probability that a legitimate packet is
dropped.

e: Attack effectiveness, which is (α + β) in this paper.
RN : Traffic rate of legitimate packets.
RA: Traffic rate of attack packets.
R: Traffic rate of packets that the filter allows through.
k: Probability that a received packet is an attack packet. That

is, k = RA/(RN + RA).
ω: Desired traffic ratio. It is defined as ω = R/RN .

W : Size of the learning window. Number of slots of network
traces that the filter has access to.

IV. STATIC ATTACKERS AND FILTER

A. Optimal Policy

We first consider the case where the attackers decide on a
static attack distribution and the filter employs a fixed policy.
Both sides do not change throughout the duration of the
attack. In order to derive the optimal policy in this case, we
assume that the filter knows the nominal traffic profile Q and
the perceived attack distribution is same as the actual attack
distribution, i.e. Ã = A. The filter also knows k, the proportion
of attack packets in the received packets. The filter wants to
maintain the overall accepted traffic rate such that the ratio
of number of packets accepted over the number of legitimate
packets is the desired traffic ratio ω. At the same time, the
filter wants to minimize the effectiveness of the attack, which

is a function of the false accept α, false reject β and possibly
other weight parameters like k. A typical effectiveness is

e = (α + β). (1)

In the case where the attack distribution A is the same as the
nominal traffic profile Q, we have e = 1. In the case where
the filter randomly drops every packet with a fixed probability,
we also have e = 1.

The optimization problem can thus be formulated as

Minimize α + β

such that kα + (1 − k)(1 − β) = ω(1 − k)

It is easy to derive the false accept or false reject:

α =
∑
s∈U

D(s)A(s) (2)

β =
∑
s∈U

(1 − D(s))Q(s). (3)

Given Q, A, k and ω, we want to find the optimal policy,
D∗, such that the effectiveness of the attack (1) is minimized.
It turns out that the optimal filter policy has a nice and simple
form. Each D∗(s) is either 1 or 0, except for one particular
D∗(sj). The optimal policy can be computed as the following.
Firstly we sort the features in the descending order of the ratio
(A(s)/Q(s)), and label them as 〈s1, . . . , sn〉, where n = |U |
is the total number possible features. Next we find a j such
that the constraint is met exactly when D∗(si) = 0 for i < j,
D∗(si) = 1 for i > j, and D∗(sj) ∈ [0, 1]. It is not difficult
to see that such j can always be found. If we ignore D∗(sj),
the optimal policy is deterministic.

It is interesting to note that the optimal policy derived is
similar to the use of Conditional Legitimate Probability in [5].

Some applications may want to minimize the total number
of wrongly accepted and rejected packets. In this case an
alternative effectiveness function e = kα + (1 − k)β can be
used. Since the rate control mechanism already ensures that
only limited number of packets are accepted, the main concern
is to get the legitimate packets passing through. Hence another
alternative is to choose e = β. Interestingly, all of the above
3 choices of effectiveness function yield the same optimal
policy. In this paper, we use the attack effectiveness defined
in Equation (1) as a measure of the filter performance.

B. Limitations of Static Policy

The optimal policy D∗ is designed for a known and static
attack distribution A = Ã. Suppose that the actual attack
distribution is not Ã, or the attack is not static, what would
be the performance of the D∗?

1. The performance of the static filter relies on the
assumption that the attackers do not know the nominal traffic
profile Q. This can be argued that, in practice, it is difficult
for an outsider to perform traffic analysis. However, it is
also not fair to assume the attack distribution A is uniform.
There are some commonly perceived network statistics. For

example, certain port numbers (such as 80, 25) are more
likely to appear than other values. In Section VII-B, we
conduct experiments using traces of 2 different networks
to illustrate that, using partial knowledge of Q (which is
obtained by analyzing a trace on another network), the attacks
could be effective.

2. It is desirable to design a policy D that performs well
if the attack distribution A is the same as the distribution Ã
perceived by the filter, and performs no worse than a random
policy if the distributions are sufficiently different. By random
policy, we refer to a policy D0 that drops each packet with a
fixed probability, without considering the content in the packet.
That is, D0(s) = c for all features in U , where c is a constant.
Unfortunately, there is no such policy D unless the nominal
traffic profile Q and the policy D has the following special
form, which is unlikely in practice.

• For any s, if Q(s) > 0, then D(s) = c, where c is a
constant, otherwise D(s) = 0.

Hence, in order not to perform worse than a random policy,
the filter has to hide D from potential attackers.

3. It may be possible for the attackers to probe the filter in
order to learn sufficient information about D. Such probing is
possible if the attackers get a feedback on whether an attack
packet reaches the destination or not. While such feedback
may not be possible for all packets, it is possible for a large
class of packets, for example TCP packets during connection
setup phase (3-way handshake) and data transfer (data and
acknowledgements).

V. DYNAMIC ATTACKERS AND ADAPTIVE FILTER WITH

NO FEEDBACK

A natural remedy to overcome the limitations of a static
filter is adaptation. The filter may try to learn the attack
distribution through measurements and adapt its policy based
on the revised Ã learnt from the measurements. By using a
more accurate estimate of the attack distribution, the policy
can perform closer to the optimal policy. Such adaptive filter
is desirable, if the attacker’s behaviour is static, which is the
basis for most statistical-based filtering policies against DDoS
attacks. Let e0 be the attack effectiveness when the attack
commences, and e1 be the effectiveness if the perceived attack
is correct, and the attackers remain static. The goal of an
adaptive filter is to learn the attack distribution and reach e1

as soon as possible.
A naive attack method is as follows. Firstly, the attackers

determine a good attack distribution A. When the attack
commences, all packets are generated according to A. In
this case, as the distribution A is revealed, the filter can
quickly learn A and adapt to the corresponding optimal policy.
However, the attackers have no obligation to stay static. They
can purposely behave erratically to trick the filter, and reveal
A slowly. A good attack strategy not only extends the learning
time of the filter, but also achieves average effectiveness higher
than e1 during the learning period. Furthermore, even if the

filter chooses to remain static, the average effectiveness of
such attacks is the same as e0.

A. Adaptive Filter

In our model, we consider the ideal filter that can analyze
the traffic within a slot and correctly learn the attack distribu-
tion A in that slot. After knowing A, the filter can incorporate
such knowledge in the design of the policy for the next slot.
Here are two strategies that the filter could employ.

S1. At the beginning of the i-th slot, the filter uses the traces
in W previous slots to determine Ãi, where W is the
size of learning window. Next, with respect to Ãi and
Q, the filter derives the “optimal” policy. Let this policy
be D. In the special case of W = 1, the filter only uses
the trace in one previous slot. The filter may also choose
to use all the previous traces to derive Ãi. In this case,
we write W = ∞. We will show later that this strategy
can be disastrous in the short term.

S2. Similar to the previous strategy, at the beginning of the
i-th slot, the filter use the traces in W previous slots to
determine Ãi. However, the filter does not directly derive
the optimal policy based on the attack distribution learnt
from the traces. Instead, it takes the perceived attack
distribution Ãi as Ãi = γA′ + (1 − γ)Ã1, where γ is a
parameter and A′ is the learnt attack distribution. Next,
with respect to Ãi and Q, the filter derives the optimal
policy. In the case when γ = 1, this is simply strategy
S1. When γ = 0, there is no adaptation. We will show
that while this weighted strategy can avoid the disastrous
behaviour of S1, it is still vulnerable.

B. Erratic Attackers

Erratic attackers switch their behaviours frequently so as to
trick the filter into learning the wrong profile. The following
is one such attacker.
Preparation. Let A be the attack distribution the attackers
believe is effective against a static filter. The attackers also
decide on the number of slots, say m, they intend to trick
the filter. The attackers then find a sequence of distributions
C0, C1, . . . , Cm−1 such that

• A is a mixture of Ci. That is, A = (1/m)(C0 + C1 +
. . . + Cm−1). In this equation, the notations A and Ci

each refers to the p.d.f of the corresponding distribution.
• There is no overlap in any two different Ci and Cj . That

is, if Ci(s) > 0, then Cj(s) = 0.

Attack Phase. The attack consists of cycles of m slots each.
During the i-th slot of each cycle, the attackers generate a
set of feature S according to Ci. Next, the attackers generate
attack packets with features in S, such that each feature in
S has equal number of corresponding packets. For a DDoS
attack, the attackers will need loose synchronization of the
slots. This should not be a problem since the slots are much
larger than the average network round trip times (RTT). In the
analysis, we will assume that the attackers are synchronized.

C. Analysis of Erratic Attacks

This attack is very effective against strategy S1 in the first
cycle.

Assume that the filter correctly learns each Ci by analyzing
the trace in the i-th slot, and that the perceived attack distri-
bution Ãi+1 in the (i + 1)-th slot is based on C0, C1, . . . , Ci.

Note that the actual attack distribution in the (i + 1)-th
slot is Ci+1, which has no overlap with Cj for all j ≤ i.
Now, if the filter uses the wrongly perceived attack to derive
the optimal policy, the consequences is damaging. Under this
“optimal” policy, all packets generated by Ci+1 is likely to
be accepted. On the other hand, packets that are deemed from
C0, C1, . . . , Ci become more likely to be rejected. In the worst
case, all packet s, where Cj(s) > 0 for all j ≤ i could be
rejected, and the attack packets generated from Ci+1 are used
to fill up the rate. Hence, the filter will perform even worse
than the static filter.

Instead of using the correctly determined attack distribution
(which could be a deception employed by the attackers), strat-
egy S2 slows down the filter’s reaction through incorporating
older knowledge and intentional error. As a result, S2 avoids
some of the problems of S1 and is less susceptible to the
simple attack described above. However, as we will see in
Section VII-C, filter that uses strategy S2 still performs worse
than static filter during the learning period.

D. Robustness of Erratic Attacks

Erratic attacks are quite robust. In case where the filter
does not employ adaptation and yet the attackers use the
above strategy, the effectiveness is still same as that of static
attackers. This is due to the fact that A is a mixture of the
Ci’s.

The attackers that we have described knows exactly when
the filter decides to adapt and switch the policy. It is unrea-
sonable to assume that the attackers know this information
perfectly. Nevertheless, these attackers are still effective even
if the slots are not perfectly synchronized with the filter. In
addition, if the attackers have probing abilities, they can detect
when the filter switches its policy.

VI. ATTACK WITH FEEDBACK

In the previous section, we present how an attack can be
effectively launched without any feedback on whether the
attack packet succeeded in reaching the victim or not. In
this section, we explore how allowing feedback can aid the
attackers. Feedback is possible for certain types of packets. For
example, the attackers just need to listen for acknowledgement
during TCP 3-way handshake.

The feedback mechanism can be deployed to probe the filter.
With probing, the following information of the filter can be
obtained.

I1. Whether the filter carries out adaptation. If so, the time
when the filter switches its policy.

I2. A good choice of features that are accepted by the filter
with high probability.

This information can be used, for example, by erratic
attackers (Section V-B) to synchronize the attacks with the
filter switching, so as to maximize the effectiveness of the
attacks. With I2, the attackers could, at the beginning of each
slot, probe for a set of good features and flood the filter with
the corresponding packets.

I1 can be obtained by straight forward monitoring. In this
section, we will focus on I2.

The search of such features is complicated by the rate
control mechanism of the filter. Without rate control, each
attacker just need to generate sufficient packets to find one
good feature s and next repeatedly send many packets with
s. With rate control, a sudden increase in packets of feature s
would trigger the filter to readjust its policy, and hence there
is a possibility that s is dropped under the adjusted policy.

In this section, we give a simple attack algorithm that targets
probabilistic policy without rate control, and an approach to
handle rate control. An evaluation of the attacks using network
trace will be presented in Section VII-D.

A. General Probing Algorithm

This probing algorithm targets at probabilistic policy. It
attempts to efficiently find a set of features S∗ that is accepted
by the filter with high probability. The probing algorithm is
divided into two rounds as follows.

• First Round. The attackers determine a good attack
distribution A, and generate as many packets according
to A as possible. Next, the attackers listen for acknowl-
edgements. Let S be the set of features accepted by the
filter.

• Second Round. For each feature s ∈ S, the attackers
generate and send 25 packets that has the feature s. Let
a(s) be the number of packets accepted with feature s.
Then the attackers sort S in the decreasing order of a(s).
The output S∗ is the first T0 features in the sorted order,
where T0 is some parameter.

The goal of the first round is to find potential candidates.
The second round further tests each of these candidates using
25 more probes. Essentially, the second round attempts to
estimate the probability D(s) for each s ∈ S. By using 25
probes, the estimation has high level of confidence.

The issue of efficient probing can be formulated into an
interesting algorithmic problem. One possible formulation is:
Using minimum number of probes, determine a set S∗ of
T0 features, such that with 99% confidence, the average
(1/T0)

∑
s∈S∗ D(s) > 0.5.

The proposed probing algorithm is certainly not optimal
under this formulation, and probably not optimal in other
reasonable formulations. For example, we have a more sophis-
ticated probing that uses slightly less probes (details omitted).
Nevertheless, the proposed simple algorithm is at most a
constant factor away from the optimal, and is sufficient for
a successful attack.

B. Handling the Effect of Rate Control

The problem with the previous probing algorithm is that,
once the attackers flood the filter with packets carrying features
from S obtained from the second round, the rate control
mechanism would likely be triggered, causing adjustment in
the filter policy. Some features in S that used to be accepted
would be dropped by the adjusted policy. As a result, the
probing algorithm needs to be modified slightly. Note that
whenever the filter policy is adjusted, if a packet with features
s is dropped, under the optimal policy, all packets with feature
s0 such that A(s0)/Q(s0) ≥ A(s)/Q(s) will be dropped too.
This observation allows the attackers to continuously search
for a ”better” feature in multiple rounds using the following
algorithm.

Given a good attack distribution A, the attackers do the
following steps.

1) Generate and send large number of attack packets ac-
cording to A.

2) Update A to be the distribution of accepted packets.
3) Update S to be the set of accepted features.
4) Repeat from the first step until there are less than T0

features in S, where T0 is some parameter.

The effectiveness of this attack algorithm is illustrated by
the evaluation results in Section VII-D.

VII. EVALUATION

In this section, we evaluate the effectiveness of attacks,
given various attacker and filter strategies. All evaluations are
done in a stand-alone setting via simulations, while important
data (such as the nominal traffic profile) are obtained by
analyzing real Internet traffic traces.

We will give the overall settings for our simulations in
Section VII-A, and show our results when the attackers are
static (Section VII-B). When the attackers are dynamic and
the filter is adaptive, we show the results when there is no
feedback (Section VII-C), and when there is feedback (Section
VII-D).

A. General Settings

1) Network Traces: In our simulations, two traces from the
real Internet are used. The filter has access to only the first
trace, from which the nominal traffic profile Q is derived. The
attackers have access to only the second trace, from which an
approximation Q′ of the nominal traffic profile is derived and
is used to launch attacks.

• Trace I: A 15 minute trace starting from 1400 hours,
April 25, 2004. This trace was collected on a trans-
Pacific line (18Mbps CAR on 100Mbps link), and is
maintained by the MAWI Working Group of the WIDE
Project (http://tracer.csl.sony.co.jp/mawi/samplepoint-
B/2004/200404251400.html). There are about 8.6 million
packets in the trace, almost all of which contain IPv4
datagrams.

• Trace II: A 10 minute trace starting from
0900 hours, August 14, 2002. This trace was

from the Abilene-I data set maintained by the
Passive Measurement and Analysis (PMA) project
(http://pma.nlanr.net/Traces/long/ipls1.html). The entire
data set consists of a pair of two hour contiguous
bidirectional packet header traces collected at the
Indianapolis router node (ILLS). There are about 2.5
million IPv4 datagrams in the trace.

2) Packet Attributes: The attributes used in our simulation
consist of (1) the IP header length, (2) total IP datagram length,
(3) fragmentation, (4) time-to-live (TTL), (5) transport layer
protocol type, (6) source IP prefix1. For datagrams that carry
TCP headers, we also include (7) TCP header length, (8) TCP
flags, and (9) the smaller of the source and destination port
number as an approximation of the server port number.

3) Nominal Profile: The filter treats Trace I as the nominal
traffic and estimates the nominal traffic profile Q. The filter
assumes that all attributes are independent, and stores the
histogram obtained from Trace I in iceberg-style, where only
the most frequently occurred values are kept in the histogram,
such that at least 95% of the entries from the trace are covered.
Other values that are not in the histogram are assumed to have
a fixed small probability of occurring.

4) Traffic Rate Control: Throughout our simulations, we
assume that the incoming attack traffic rate is 10 times the
nominal traffic rate.

Recall from Section III-E that the desired traffic ratio ω
is the ratio of accepted traffic rate over incoming legitimate
traffic rate. For our simulations, this ratio is always 2. That is,
we want to accept as many as twice the number of legitimate
packets.

Under rate control, the smallest achievable effectiveness is
0.1, where the false accept is 0.1, and the false reject is 0. This
is the “ideal” filter that accepts all legitimate packets and uses
the remaining rate to accept 10% of the attack packets. On the
other hand, a filter that rejects all legitimate packets will have
false reject 1 and false accept 0.2. Hence, the effectiveness
varies between 0.1 to 1.2 and the attack effectiveness on a
random filter is always 1.

As mentioned in Section III-B, we assume that the policy
can be adjusted in 0 time to achieve the desired rate.

5) Application-Level Semantics: In practice, packets may
have different importance. For example, dropping the initial
SYN packets for a TCP session is much more disruptive than
dropping a data packet later on. In the simulation, we do not
take into account the effect of any transport or application
level semantics.

6) Centralized Attacker: For simplicity, a single attacker is
used in the description of the attacks. All the attacks presented
can be easily implemented in a distributed fashion while
requiring only minimum coordination in some cases.

B. Static Attacker

1) Attack Distributions: In our simulations, we assume that
the attacker uses one of the following attack distributions to

1Similar to [5], only the first 16-bit of the IP addresses are kept in the
histogram, as an approximation of the network of the IP address.

generate the attack packets. For all these distributions, the IP
prefixes are uniformly generated.

a) A1 (uniform): All attributes are uniformly distributed
over all possible values.

b) A2 (refined uniform): All attributes are uniformly
distributed over some values that are believed to be common in
most networks. These values are obtained in two steps. First,
we analyze Trace II, and take the most frequently occurred
values. Next, we make some reasonable guesses, for example,
we add some popular port numbers as server port numbers,
and remove those port numbers above 1024.

In particular, in our simulation the IP header length is
always 20 bytes, the transport layer protocol type is always
TCP, the IP datagram is never fragmented, TTL is centered
below 255, 128, and 64, the IP datagram size is one of the 10
most frequently occurred values in Trace II, the TCP header
length is always 5, the TCP flags are one of 2 (SYN), 16
(ACK) and 24 (ACK and PSH), and server port number is
chosen from 10 values between 0 and 1023 which either occurs
frequently in Trace II, or is used by a popular protocol (such
as SSH, SMTP, FTP, HTTP, etc).

c) A3 (guessed nominal): All attributes follow the distri-
bution Q′, except for source IP prefixes, which are uniformly
chosen. That is, ignoring source IP addresses, the attack
packets statistically reassemble the packets in Trace II. Note
that the attacker does not need to know A3 explicitly. To
generate attack packets, the attacker can just use samples from
Trace II. This gives the attacker two advantages. Firstly, traffic
analysis is not necessary. Secondly, some hidden statistical
properties will still be preserved in the attack packets.

2) Static Filter: Let D1,D2 and D3 be the optimal policies
when the perceived attack distribution is A1, A2 and A3

respectively.
In Table I we illustrate the effectiveness of attacks for

various attack distributions and filter policies, where both sides
are static.

We can see that if the perceived attack distribution happens
to be the same as the actual attack distribution (A1 vs D1,
etc), the filter can be near optimal, i.e., α ≈ 0.1 and β ≈ 0.

However, if the perceived attack distribution is not the same
as the actual attack distribution, then the performance of the
filter can be quite bad. For example, when the filter assumes
that attacks are uniformly distributed and employ policy D1,
and the attacker happens to use attack distribution A2 or A3,
then the attacker achieves effectiveness above 0.17, or false
reject more than 5%.

Interestingly, if the filter thinks that the attack packets
are from A2 and employs policy D2, and it happens that
the attacker actually uses a simple uniform distribution A1,
then the attacker can achieve a false reject of almost 50%.
Similar situation happens when attacker uses A3. This seems
to indicate that if the filter tries to make a smart guess and is
unfortunately wrong, then its performance can be very bad, no
matter the attacks are of a simpler form, or a more complicated
form.

TABLE I

STATIC ATTACKER AND FILTER

D1 D2 D3

A1

α = 0.1109
β = 0.0000
e = 0.1109
ω = 2.1089

α = 0.1453
β = 0.4964
e = 0.6416
ω = 1.9562

α = 0.0874
β = 0.0000
e = 0.0875
ω = 1.8744

A2

α = 0.1273
β = 0.0574
e = 0.1848
ω = 2.2161

α = 0.0904
β = 0.0000
e = 0.0905
ω = 1.9044

α = 0.1110
β = 0.0122
e = 0.1232
ω = 2.0978

A3

α = 0.1034
β = 0.0709
e = 0.1743
ω = 1.9635

α = 0.1527
β = 0.4980
e = 0.6507
ω = 2.0293

α = 0.1039
β = 0.0000
e = 0.1039
ω = 2.0387

3) Adaptive Filter: If the filter is adaptive and learns the
attack distribution, it can perform optimally, provided that the
attacker remains static. The diagonal entries in Table I show
the optimal performance.

C. Dynamic Attacker and Adaptive Filter with No Feedback

1) Simulation Slots: The simulations are divided into slots
as mentioned in Section III-B. In each slot, the attacker
chooses a distribution from which the attack packets are
generated, and the filter chooses a perceived distribution,
which may be based on the observed attack distributions in
the previous slots, and derives the optimal dropping policy. In
our simulations, 40 slots are simulated, in each of them 105

attack and legitimate packets are generated.
We assume that the filter has the ability to know the exact

distribution used by the attacker in every previous slot. As
mentioned in Section III-E, the filter may choose to keep the
history of attack distributions for W slots. In the simulations,
W ranges from 0 to 40.

2) Attack Distribution: Based on an initial guessed nominal
traffic profile Q′, an erratic attacker derives the following
distributions.

A4 (erratic guessed nominal): Similar to A3, but for
each attribute, the distribution is equally divided into M
pieces, where M is a parameter chosen by the attacker. For
illustration, we will use M = 10 in our simulations unless
otherwise stated. For example, suppose the distribution for
the transport layer protocol type is B, which is formed by
95% TCP and 5% UDP, then after division we would have
10 distributions B1, . . . , B10, where B1, . . . , B9 are the same,
which are 100% TCP, and B10 consists of 50% TCP and 50%
UDP.

When a new attack distribution is to be determined, one
piece of distribution for each attribute is randomly chosen
from the M pieces, and the attack packets are then generated
according to the chosen pieces.

Since the filter can accurately learn each Bi, when the
learning window size W is larger than M , the filter can learn
Q′. This is verified in Fig. 2, which shows a steady decrease
in e when W > 10.

3) Filter with Strategy S1: In Fig. 2, we illustrate how
the effectiveness changes with the filter’s learning window
size. The solid lines show the average false accept, false
reject, and effectiveness over the 40 slots. For example, when
W = 10, the average effectiveness over 40 slots is about 0.3.
The dashed lines show e1, the optimal effectiveness when
the perceived attack distribution is actually Q′, and e0, the
effectiveness when no adaptation is carried out. We assume
that the filter uses strategy S1 (Section V), that is, the learnt
attack distribution in the previous W slots is used as the
perceived attack distribution in the current slot to derive the
optimal policy. The standard deviations of the false accept and
false reject are shown in Fig. 3.

0 5 10 15 20 25 30 35 40
Learning window size W

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Average effectiveness
Average false accept
Average false reject

e0

e1

Fig. 2. Erratic attacker and adaptive filter with strategy S1. The average
is taken over the 40 simulation slots. For example, when W = 5, the
effectiveness 0.3255 is the average of the corresponding values as in Fig.
4.

0 5 10 15 20 25 30 35 40
Learning window size W

0

0.1

0.2

0.3 Standard deviation of false accept
Standard deviation of false reject

Fig. 3. Standard deviations of false accept and false reject with strategy S1.

0 5 10 15 20 25 30 35 40
Slot Number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
E

ff
e
ct

iv
e
n
e
ss

Learning window size W = 5
Learning window size W = 40

e0

e1

Fig. 4. Effectiveness when W = 5 and W = 40 (γ = 0)

We can see that if the size of the learning window is small
(say, less than 10), then the attacks are quite effective, in the
sense that the average effectiveness would be quite far from
that in the perfect (static) case. In particular, when learning
window is 1, the average false reject can go as high as 35%,
while the false accept is about 14%. Only when the learning
window size is above 20 before the average effectiveness
becomes smaller than the case where W = 0, which means
adaptation with a learning window size smaller than 20 would
perform worse than static filtering. Notice that the false reject
β never falls below 5%.

This is again verified in Fig. 4. In this figure we further
illustrate the effectiveness over the 40 slots, for the cases when
the learning window size is 5 and 40.

When the filter’s learning window is 5, the changes in
effectiveness in different slots is very drastic. We can see that
in some slots, the effectiveness goes even beyond 1, which
means that the filter is doing worse than random dropping in
those slots.

When the filter has a large learning window (W = 40), the
effectiveness still fluctuates in the first few slots because the
filter has not learnt all the pieces of Q′ yet. After 10 slots the
variance in the effectiveness becomes smaller, but it is only
after 20 slots that the filter learns all of Q′ and achieves the
optimal value of e1.

Therefore, we can see that when the learning window is
small, the filter perform very badly even on the average.
When learning window is large, the filter can eventually learn
the attack distribution and push the effectiveness close to the
optimal e1. However, during the learning process, especially
the first few slots, the attack is still effective.

4) Filter with Strategy S2: To overcome these disadvan-
tages when using strategy S1, the filter could employ the
second strategy S2 (Section V), where the perceived attack
distribution is not what is learnt in the previous slots, but a
weighted composition of what is learnt and the initial guess

(which assumes a uniform distribution).
Fig. 5 illustrates the improvement of S2 over S1. Fig. 6

shows the corresponding standard deviations. In Fig. 5, the
filter uses γ = 0.5. That is, the perceived attack distribution
Ã is the weighted composition of the learnt attack distribution
in the previous W slots, and the uniform distribution, where
both distribution have equal weight. Similar to Fig. 2, the
dashed line represents the perfect (static) case where the filter,
using strategy S2, knows the distribution Q′ and achieves the
effectiveness of e1. When we compare Fig. 5 with Fig. 2, it
is clear that by using strategy S2, the average effectiveness of
the attacks is reduced drastically when the learning window
W is small, compared to the case where strategy S1 is used.

0 5 10 15 20 25 30 35 40
Learning window size W

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Average effectiveness
Average false accept
Average false reject

e0

e1

Fig. 5. Erratic attacker and adaptive filter with strategy S2 (γ = 0.5)

0 5 10 15 20 25 30 35 40
Learning window size W

0

0.1

0.2

0.3 Standard deviation of false accept
Standard deviation of false reject

Fig. 6. Standard deviations of false accept and false reject with strategy S2.

Note that the optimal effectiveness here is almost the same
as that in Fig. 2. This shows that mixing the learnt attack

distribution with a uniform distribution would, asymptotically,
not make much lost in performance, but significantly reduce
the average attack effectiveness when the learning window is
small.

On the safe side, the filter should learn slowly and one way
to achieve that is to purposely introduce noise in the learnt
distribution. Nevertheless, this strategy still performs worse
than static filtering during at least the first 10 slots.

0 5 10 15 20 25 30 35 40
Slot Number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ff
e
ct

iv
e
n
e
ss

Learning window size W = 5
Learning window size W = 40

e0

e1

Fig. 7. Effectiveness when W = 5 and W = 40 (γ = 0.5)

Fig. 7 shows the attack effectiveness for 40 slots, where
γ = 0.5 and the learning window size is 5 and 40. As we
can see, the variance of the effectiveness in both cases is also
reduced compare to S1. However, there is a price to be paid
for using S2. When S2 is used, even after a long learning
period, the attack effectiveness can still spiked up to a much
larger value.

We have also done additional simulations with various
values of M . The results confirm that as M becomes larger,
it takes longer for the filter to learn the attack distribution,
and its performance is worse than static filtering during the
learning process. We compare the effectiveness of the attacks
for M = 5, M = 10 and M = 20 in Fig. 8 and 9, where
γ = 0 and γ = 0.5 respectively.

D. Dynamic Attacker with Feedback

In this section, we illustrate the effectiveness of the attacks
with feedback by simulating the probing algorithm presented
in Section VI. The result is shown in Fig. 10 .

Recall from Section VI that the attacker can make use
of feedback to make good choices of features that will be
accepted by the filter with high probability. With the rate
control mechanism, it is not possible to make the false accept
to go higher than 0.2, but as we can see in Fig. 10, the attacker
can force the false reject to go unacceptably high.

In our experiment, we assume that the attacker initially
generates 105 packets according to Q′ with uniform source

0 5 10 15 20 25 30 35 40
Learning window size W

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

 E
ffe

ct
iv

en
es

s

M = 20
M = 10
M = 5

Fig. 8. Average effectiveness for different M (γ = 0)

0 5 10 15 20 25 30 35 40
Learning window size W

0.125

0.15

0.175

0.2

0.225

0.25
A

ve
ra

g
e
 E

ff
e
ct

iv
e
n
e
ss

M = 20
M = 10
M = 5

Fig. 9. Average effectiveness for different M (γ = 0.5)

IP prefixes. We assume that the attack distribution perceived
by the filter is uniform. In the first round, the attacker sends
all the packets and see which packets are accepted. In the
subsequent rounds, the attacker learns the distribution of the
features of those accepted packets and send according to the
learnt distribution. The total number of attack packets in each
round is always maintained at a rate that is 10 times the
nominal traffic rate. We can see that after the 5-th round,
the false reject β gets very close to 1 and the false accept
α gets close to 0.2. Hence, attackers with feedback can force
the performance to be worse than random filtering.

In this case, one possible way to prevent the attacker from
learning from the feedback is to keep the initial false accept
α as close to 0.1 as possible. However, this is very difficult

1 2 3 4 5 6 7
Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False accept
False reject

Fig. 10. Dynamic attack with feedback

to achieve in practice.

VIII. CONCLUSION

There is a growing interest in the use of statistical-based
filtering to identify “abnormal” packets during DDoS attacks.
As such statistical techniques gain popularity, DDoS attacks
with the corresponding counter-measures should be expected
to appear in the future. In this paper, we study the effectiveness
of statistical-based filtering against possible counter-measures.
We show that optimal static filters are not robust in the sense
that, if a filter wrongly estimates the attack distribution, its
performance would be far from optimal. Although adaptive
filters seem to be a potential remedy, we also show that they
can perform much worse than a static filter, when the attackers
behave in an erratic manner such that it is difficult for the
filter to adapt its policy effectively. Adaptive filters are also
vulnerable to attackers with probing ability, or have partial

knowledge of the network statistics, if they are unable to
adapt much faster than the attackers. Although our results
are pessimistic, there are ways to enhance statistical-based
defence. For example, effective attacks often require that
initial effectiveness cannot be too low. It may be possible to
use application-layer knowledge, in addition to network and
transport layer knowledge, to significantly reduce the initial
attack effectiveness.

REFERENCES

[1] Jelena Mirkovic, Gregory Prier, and Peter L. Reiher, “Attacking DDoS at
the source,” in Proceedings of the 10th IEEE International Conference
on Network Protocols, September 2002, pp. 312–321.

[2] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred, “Statistical
approaches to DDoS attack detection and response,” in Proceedings of
the DARPA Information Survivability Conference and Exposition, April
2003, pp. 303–314.

[3] Cheng Jin, Haining Wang, and Kang G. Shin, “Hop-count filtering: An
effective defense against spoofed traffic,” in Proceedings of the ACM
Conference on Computer and Communications Security, 2003, pp. 30–
41.

[4] Tao Peng and K. Ramamohanarao C. Leckie, “Protection from dis-
tributed denial of service attacks using history-based IP filtering,” in
Proceedings of the IEEE International Conference on Communications,
May 2003, vol. 1, pp. 482–486.

[5] Yoohwan Kim, Wing Cheong Lau, Mooi Choo Chuah, and Jonathan H.
Chao, “PacketScore: Statistics-based overload control against distributed
denial-of-service attacks,” in Proceedings of IEEE INFOCOM, 2004, pp.
2594–2604.

[6] Jelena Mirkovic, D-WARD: Source-End Defense Against Distributed
Denial-of-Service Attacks, Ph.D. thesis, UCLA, 2003.

[7] J. B. D. Cabrera, L. Lewis, X. Qin, W. Lee, R. K. Prasanth, B. Ravichan-
dran, and R. K. Mehra, “Proactive detection of distributed denial
of service attacks using mib traffic variables-a feasibility study,” in
Proceedings of the IEEE/IFIP International Symposium on Integrated
Network Management, May 2001, pp. 609–622.

[8] Haining Wang, Danlu Zhang, and Kang G. Shin, “Detecting SYN
flooding attacks,” in Proceedings of IEEE INFOCOM, 2002, vol. 3,
pp. 1530–1539.

[9] Ratul Mahajan, Steven M. Bellovin, Sally Floyd, John Ioannidis, Vern
Paxson, and Scott Shenker, “Aggregate-based congestion control,”
Computer Communication Review, vol. 32, no. 3, July 2002.

[10] Kihong Park and Heejo Lee, “On the effectiveness of route-based packet
filtering for distributed DoS attack prevention in power-law internets,”
in Proceedings of ACM SIGCOMM, 2001, pp. 295–306.

[11] Stefan Savage, David Wetherall, Anna Karlin, and Tom Anderson,
“Practical network support for IP traceback,” in Proceedings of ACM
SIGCOMM, 2000, pp. 295–306.

