
Effect of Malicious Synchronization

Mun Choon Chan, Ee-Chien Chang, Liming Lu, and Peng Song Ngiam

Department of Computer Science
National University of Singapore

{chanmc,changec,luliming,ngiampen}@comp.nus.edu.sg

Abstract. We study the impact of malicious synchronization on com-
puter systems that serve customers periodically. Systems supporting au-
tomatic periodic updates are common in web servers providing regular
news update, sports scores or stock quotes. Our study focuses on the pos-
sibility of launching an effective low rate attack on the server to degrade
performance measured in terms of longer processing time and request
drops due to timeouts. The attackers are assumed to behave like nor-
mal users and send one request per update cycle. The only parameter
utilized in the attack is the timing of the requests sent. By exploiting
the periodic nature of the updates, a small number of attackers can herd
users’ update requests to a cluster and arrive in a short period of time.
Herding can be used to discourage new users from joining the system
and to modify the user arrival distribution, so that the subsequent burst
attack will be effective. While the herding based attacks can be launched
with a small amount of resource, they can be easily prevented by adding
a small random component to the length of the update interval.

Keywords. Network security, Distributed Denial of Service (DDoS) at-
tacks, low rate DDoS attack, synchronization, periodicity, herding.

1 Introduction

There are many applications in the Internet that utilize periodic updates. Some
common examples are stock quote update, news update and sport score update.
Less common examples, but gaining popularity, are web cameras that provide
images of highways, scenic views, or various sites under surveillance. Popular
news web sites like CNN (www.cnn.com), Wall Street Journal (www.wsj.com)
and The New York Times (www.nytimes.com) perform automatic refresh every
1800s, 900s and 900s respectively. For sport events, many sport related web
sites provide periodic score updates, commonly in the intervals of 30s, 60s or
90s. In global events like the Olympics, tremendous amount of traffic reaches a
relatively small number of servers for periodic updates. In this paper, we study
the potential of malicious synchronization on such systems.

The main role of periodic updates is to “spread” the users over the update
interval, so as to obtain a trade-off between the server’s resources and timeliness
of the service. An implicit assumption is that since users arrive randomly, it is
likely the arrivals are also randomly distributed over the update interval.

In general, periodic updates can be performed in an absolute or relative man-
ner. In absolute periodic update, once a user begins an update at T0, subsequent
updates are performed at time T a

i , i = 1, 2, 3..., where T a
i = T0 + i ∗ P and

P is the update period. On the other hand, in relative update, the next up-
date is scheduled P seconds after the completion of the current update. Hence,
T r

i = T r
i−1 + Ni + P , where Ni is a positive component that reflects the net-

work and processing delays. Relative update is easy to implement and is the
common approach used. Many web-pages evoke automatic updates using the
Refresh META tag. For instance, including the following line in a web-page
automatically refreshes the page every 30 seconds in a relative manner.

<meta http-equiv="Refresh" content="30">

Relative update is not only easy to implement; in the absence of maliciously
synchronized requests, it has an implicit adaptive behavior in response to various
load levels and the distribution of initial user arrivals. Through the self-correction
mechanism, it is more stable and outperforms the absolute update, as will be
shown in section 4.

However, the adaptivity of relative update can be exploited by attackers.
Through a process of herding, a small number of attackers can gather a signifi-
cant portion of the normal users to arrive in a relatively small interval, causing
temporary overload, even though the average load over the entire update period
is low. As a result, some new users may receive highly degraded service and
decide to leave the system. Furthermore, herding can condition the user arrival
distribution so that subsequent Denial-of-Service attacks can be effective, even
with a small number of attackers. The combined herd-burst attack can be ex-
ecuted even when each attacker adheres to the normal application semantics,
without excessively consuming resources. Such behavior makes detection very
difficult. The only “tool” needed by the attackers is the timing of the request
arrivals. Experiments show that herding attacks can be successful even when the
total users and attackers load is only a fraction of the server capacity.

The rest of the paper is organized as the following. In Section 2, the related
work on DDoS and synchronization problems in the network is presented. In
Section 3, the model of periodic update is presented. In Section 4, the behavior
of relative update and its advantage over absolute update in high load condition
is examined. The herding behavior and related attacks are discussed in Sections
5 and 6. Implementation results on test-bed are presented in Section 7. Finally,
a prevention measure to stop such attacks is described in Section 8 and the
conclusion is drawn in Section 9.

2 Related Work

One of the most prevalent forms of network attacks is Distributed Denial of
Service (DDoS) attack. In DDoS, many compromised hosts send a large amount
of network traffic to the victim network elements such that the resources of the
elements are exhausted and the performance seen by legitimate users is severely

degraded. A comprehensive overview of common DDoS attacks can be found in
[1].

Normal DDoS attacks are very different from the attacks described in this
paper. Usually in a DDoS attack, the amount of attack traffic is extremely high
which easily overwhelms the victims. Hence, DDoS defense mechanisms always
assume that they are operating in an overloaded system. However, the attacks
to be presented are effective even when the total traffic from attackers and users
is a fraction of the system capacity. In this sense, they are similar to the low rate
attacks described in [2] and [3]. In [2], a low rate attack designed to disrupt TCP
connections is proposed. By sending a burst of well-timed packets, this attack
is able to create packet loss and retransmission timeout for certain TCP flows
(in particular, those with small RTTs). The signature for such an attack is the
existence of a “square wave”. Defense mechanisms like [4] have been proposed
to detect such attacks. In [3], the attack proposed degrades the performance by
disrupting the feedback mechanism of a control system, with a small amount of
attack traffic. Interestingly, the authors also made the observation that the vul-
nerabilities resulting from adaptation of dynamics are potentially serious. The
example used for illustration is a bottleneck queue with Active Queue Manage-
ment(AQM) employing Random Early Detection (RED). The attack effective-
ness is measured in terms of the reduction of quality (RoQ) compared to the
original system. The impact of our attacks is similar to [2] and [3] in that us-
ing only low rate attack traffic, the victim’s service is disrupted; and that the
affected users experiencing prolonged delay are driven to leave the system.

The proposed attacks rely on the periodicity and synchronization of update
requests. Risks caused by periodicity and synchronization have been explored
in domains such as routing updates, NTP and Wireless Sensor Network (WSN)
MAC protocols. [5] highlights the problem that periodic routing messages can
be synchronized unintentionally, causing significant delay in the routing update.
[6] discusses similar problems in ACK compression. It is reported in [7] and [8]
that defective NTP configuration can direct a massive amount of synchronized
requests at a particular NTP server. As a response, the server can explicitly send
a “kiss-of-death” packet, requesting the clients to back off. In [9] and [10], sev-
eral jamming attacks against representative WSN MAC protocols are presented.
In these attacks, the sensor’s sleep-listen schedule and the temporal pattern in
packet inter-arrivals are exploited to create collisions energy efficiently. In [10],
the proposed solutions include the use of link layer encryption to hide the sched-
ule, spread spectrum hardware and TDMA.

3 Periodic Updates

Figure 1 illustrates a periodic update system. At any time, a new user may join
the system; and users existing in the system may periodically send requests for
updates, or leave the service. The delay of a request is measured as the duration
between the initiation of the request and the reception of the reply by the user.
In the case of relative update, after the request is served, the user waits for T

Fig. 1. Periodic updates

seconds before sending the update request. Due to network delay and the service
time, the actual interval between two update requests is more than T . In the
case of absolute update, the time between consecutive update request initiations
is always T . An attacker behaves exactly like a user, except for the timing of the
requests.

In this paper, two settings are considered:

1. The server’s buffer is unlimited and the user requests do not timeout.
2. The server has a finite buffer of size B and a request is dropped when the

buffer is full. Timeout occurs when a request is not served within the initial
timeout period TA. Timeout can occur either due to a dropped request or
the request waiting for more than TA seconds in the buffer. After a timeout
occurs, the user retransmits his request. In addition, each subsequent timeout
period is twice of the previous one. If the user’s request is not served after
NT number of timeouts, the user will depart and is considered lost.

Below is a summary of the relevant parameters for the model:

– NA: Number of attackers
– NU : Number of users
– µ: Mean service time of a request
– T : Update period
– δ: One-way network delay
– B: Buffer size at the server
– NT : Number of timeouts allowed
– TA: Initial timeout period
– α: Probability of a user to depart

4 Absolute and Relative Update

Before presenting the low rate attack strategies, we first explore the advantage
of relative update over absolute update.

Figure 2 shows the average processing delay vs. the normalized server load,
where the normalized server load is computed as ρ = µNU/T and the mean
service time µ = 50 ms. For ρ below 0.90, the performances of the absolute and
relative updates are very similar and have average processing delays below 0.3s.
However, when ρ approaches 1, the average processing delay for absolute update

Fig. 2. Comparison of absolute and relative updates

increases rapidly. Yet for relative update, the average delay increases slightly to
0.90s when ρ = 1. Even at an extremely high load of ρ = 1.1, the average delay
is only 2.95 seconds. Such robustness is due to the indirect “increase” of the
update period by increasing waiting time in the queue.

While the self correcting behavior of relative update makes the approach
more robust, this dynamic behavior, which is absent in the absolute update, can
be exploited by attackers.

5 Herding

5.1 Concept of Herding

Herding allows attackers to influence the timing of the users such that the users
become part of the attack. The herding action is executed by having a small
amount of attackers performing approximately synchronized updates. Note that it
is not necessary to have perfect synchronization. The idea of herding is illustrated
in Figure 3. User arrivals are (initially) distributed over the update period. In
each herding round, the attackers delay their update time by a duration of Toff

in addition to the usual update period T .
To simplify the explanation, µ is assumed to be constant, δ = 0, and the

attackers are perfectly synchronized. Let NA attackers commence herding at
time Th and send NA simultaneous requests to the server. The buffer size B
is assumed to be large enough that there is no request drop. Under such a
deterministic scenario, all attacker requests arrive at the server at the same
time and for a period of µNA, only attackers are served. Users arriving during
this period are queued behind the attackers. Their request completion times
become more clustered. Since the updates are performed in a relative manner,
the compact completion times entail compact update requests in subsequent
rounds. In fact, a period of µNA is removed from serving users in each herding
round.

Fig. 3. The herding behavior

By setting Toff ≤ µNA, the attackers commence the next herding action at
time Th + T + Toff. With a constant µ and δ = 0, there will be no user update
requests between Th + T and Th + T + µNA. A herding offset of Toff = µNA

per round for the herding scheme in this static scenario is the most efficient. A
smaller offset reduces the speed of the herding process whereas a larger offset
lets some users be served before the attackers and escape from the cluster of
compact request arrivals.

Formally, we say that a user request q is herded if there is no delay between
the completion time of the previously served request q̃ and the time the server
starts to serve q. Furthermore, the previously served request q̃ is either (1) from
an attacker, or (2) from another herded user.

In a probabilistic environment, the network delay and the service time are not
deterministic. In addition, the number of users joining or departing the service
varies. Hence, more analysis is required to determine the optimal offset.

5.2 Modelling of Herding Behavior

In this section, we present a model for the herding behavior. Such model is useful
in estimating the optimal attack offset Toff and monitoring the effectiveness of
herding. We first consider the effect of variable network and processing delay, and
next handle the case with new and departed users. We make the simplification
that the attackers are synchronized. This is a reasonable approximation as the
attackers can estimate the network delay they experience. In the simulation, we
evaluate the impact of synchronization error on the performance.

The two main components in the model are the escape probability, the prob-
ability that herded users become no longer herded, and the average number of
freshly herded users in a period.

Variable Network and Processing Delay For each herded user, we want
to estimate its escape probability which depends on the duration between the

arrival of the request and that of the attacker requests. Suppose the attackers
arrive at T0, they will return at T1 = T0 + T + Toff + δ.

Consider the requests in the current period. Let the i-th herded user served
after the attackers be ui and its service time after T0 be ti. Hence, for ui, it
will have its service completed at T0 + ti and will return at T0 + ti + T + 2δ.
The user ui will not be herded in the next update period if it arrives (early)
before the attackers, therefore if T0 + ti +T +2δ < T1. The converse may not be
true but the chances that ui escapes by arriving late is low. Therefore, we can
approximate,

Pr(ui escapes) = Pr(ti + δ < Toff). (1)

Let us assume that the processing time is exponentially distributed with
mean µ. The distribution of ti is the Gamma distribution where

fn(t) = λe−λt (λt)(n−1)

(n− 1)!
with n = NA + i, λ =

1
µ

. (2)

Suppose there are k1 herded users in the current update period, for a spe-
cific NA, Toff and a constant δ, using equation 1, the expected number of users
escaping in the next period can be written as

esp(k1) =
k1∑

j=1

Pr(uj escapes). (3)

Note that the escape probability is heavily dependent on Toff. It increases
with increasing Toff since users are more likely to arrive before the attackers but
decreases with increasing δ since the reverse is true.

New and Departed Users After his request is served, a user may depart after
any request with probability α > 0. For simplicity, we consider a model where
the number of users in an update period is kept constant. In other words, for
every user departure during the current period, a new user will join in the next
period, and its arrival time is uniformly distributed over [T0 + T, T0 + 2T].

Let r = (Toff/T). Suppose the number of herded users in the current update
period is k1, the expected number of users captured in the next period can be
approximated by

cap(k1) = rαk1 + r(NU − k1), (4)

where the first term gives the average number of new users who join and
are captured immediately; the second term gives the average number of un-
herded users that are captured in each round. Assuming a small α, the first term
increases with i but the second term decreases with i. Overall, as i increases,
cap(k1) decreases.

Hi, the expected number of herded users in the i-th update period can be
computed using equations 3 and 4. We calculate Hi iteratively as

Hi = Hi−1 − esp(Hi−1) + cap(Hi−1). (5)

5.3 Simulation Results on Herding

Fig. 4. Request arrivals with herding

In this section, we use simulations to demonstrate the effect of herding. For
the experiments reported here and in Section 7, the parameters are set as (unless
otherwise specified): the update period T=30s, the number of attackers NA=50
and the number of users NU=250. The service time of a request is exponentially
distributed with mean µ=50ms. So the normalized server load is ρ = (250 +
50)0.050/30 ≈ 50%. The herding offset is chosen as 2.25s, which is slightly less
than µNA = 50 × 50ms. In addition, in every update period, 5% of new users
join the system and 5% of existing users leave.

Fig. 5. The effect of herding as ratio of users herded

Figure 4 illustrates the user behavior during herding. As herding progresses,
user requests become increasingly clustered after the attacker requests.

Fig. 6. The effect of herding on new
user delay

Fig. 7. Impact of Toff

Figure 5 presents the progress of herding in each period as the ratio of users
clustered. The graph shows 6 lines, each line corresponds to the percentage of
users herded or arriving within 1, 2, 4, 7 and 11 seconds after the attackers.
Initially, user arrivals are uniformly distributed. The ratio of herded users grad-
ually increases to 90% after 10 rounds and stabilizes. The partial escape of
users from herding is caused by variation in the network delay and the server’s
processing time. Figure 6 compares the delay experienced by new users when
herding is present and absent. For the case with herding, the delay experienced
by new users is measured after 10 rounds of herding, when the herding effect
has stabilized. When herding is absent, the new user delays average at 0.50s.
With herding, close to 40% of the new users experience prolonged delay. Among
which, 22.1% has delay greater than 1.5s and 8.8% has delay greater than 2s.

The choice of herding offset Toff greatly impacts the effectiveness of herding,
because a small Toff takes much longer to herd the users; while a large Toff allows
many users to escape herding. Figure 7 shows how the ratio of herded users varies
with different Toff after 100 and 500 seconds of herding. In this simulation, the
number of attackers NA = 100, and the expected service time µ = 10ms (µNA =
1s). The result shows that when Toff = 0.1s, herding is too slow while the effect of
herding decreases dramatically for Toff larger than 1.2s. Herding is most effective
when Toff approximates µNA, which is between 0.9 to 1.1s in this scenario.

6 Effect of Herding and Attacks

Herding achieved two results. Firstly, by herding most of the users into a much
smaller time interval, the average delay of many normal users increases substan-

tially. In particular, the delay experienced by new users who arrive during the
herding interval will be excessive. In the context of web server, the new users
requesting for web pages are more sensitive to delays. A noticeable delay is suffi-
cient to discourage a new user from browsing further. Recent studies show that a
user usually decides whether he satisfies with the web page quality within 50ms
[11]. Hence, herding alone is sufficient to turn away a significant number of new
users.

Secondly, by making many users arrive in a small time interval, the impact
of a burst attack can be magnified. In other words, herding can be used as a
means to “condition” the user distribution so that subsequent attacks can be
effectively carried out.

In the previous discussion, we assume the buffer size is unlimited. As men-
tioned in Section 3, limited buffer can lead to request drop, entailing timeouts
and retransmissions, which in turn leads to user lost. In the next few subsections,
we will consider limited buffer when comparing three attacks: flood, burst and
herd-burst attacks.

6.1 Attacks without Herding

DDoS attacks are typified by flood attacks. In such attacks, a large amount
of attack traffic is generated to overwhelm the server. Success of such attacks
is achieved when the combined load from the users and attackers exceeds the
server capacity.

In a burst attack, attackers are synchronized and the attack packets are sent
at the same time to the server. Such attack achieves short term congestion, yet
it still requires a large amount of attack traffic for an ongoing congestion.

6.2 Combining Herding and Burst Attack

Intuitively, burst attacks are effective when the aggregated user and attacker
request rate is close to or exceeds the system capacity. On the other hand, with
herding, short term congestion can be created. This motivates the following
herd-burst attack.

The strategy is to alternate herding and burst attack. When herding creates
sufficient short term congestion, burst attack can then be used for maximum
impact. The attack strategy is present below:

– Perform herding using NH (< NA) attackers for R1 rounds
– Repeat

• Perform burst attack using NA attackers
• Perform herding for R2 rounds

At the start of the attack, R1 rounds of herding are performed to increase
user density over a short period of time which will help in the later attack stages.

The above attack can be stealth, since during herding, there is no request
drop or excessive processing delay. Hence, unless details on arrival time are cap-
tured and analyzed, it is difficult for the system administrator to notice that

the herding process is going on. When the initial “preparation” herding is done,
burst attack commences.

Fig. 8. Delay of user access Fig. 9. Comparing user request lost

Figure 8 shows the result of a herd-burst attack with R1 = 20 and R2 = 2.
The simulated duration is 1500 seconds, and the parameters are NH = 100, NA =
300, B = 100 and T = 30s. The µ and δ are exponentially distributed with mean
10ms and 50ms respectively. The initial timeout TA is uniformly distributed
between 1s and 2s. Each subsequent timeout value is twice of its previous one.
The user always retransmits in case of timeout. Three lines are shown in Figure
8, indicating the percentage of users experiencing processing delay of more than
10, 15 and 30 seconds at least once. For example, at a normalized load of 60%,
40% of the users experience a processing delay of more than 10s, 8% experience
delay of more than 15s and 0.5% experience delay of more than 30s. Depending
on the application level timeout specified or user impatience, the number of users
who feel unsatisfied with the service and leave the system can range from 0.5%
to 40% if the application level timeout is between 10s to 30s.

6.3 Comparison of Herd-Burst, Flood & Burst Attacks

In this section, we compare the performance of the proposed attack to the flood-
ing and the burst attacks. For the herd-burst attack, there are two experiments.
The first experiment sets R1 to 0, meaning there is no pre-herding and the al-
ternating herd-attack starts immediately. In the second experiment, herding is
first performed for 20 rounds. The number of users, NU , is varied from 200 to
3400. Therefore, the normalized load, ρ = (NA + NU)µ/T , varies from 0.17 to
1.23. The rest of the parameter values follow those from the previous subsection
for all attacks, except NT = 1, that is, one retransmission is allowed, a user will
be lost if the retransmission also timeouts. This definition is used in the rest of
the simulation in this section.

Figure 9 illustrates that the proposed herd-burst strategy is much more ef-
fective. With R1 = 0, R2 = 2, the user lost rate is 72.2% at 60% load. When
20 rounds of pre-herding are performed to cluster users (R1 = 20), the attack
efficiency is improved to 82.7% user loss at 60% load.

6.4 Effect of Network Delay and Attacker Synchronization Error

In this section, we study the effect of network delay and synchronization error
on the effectiveness of herding.

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200

%
 o

f U
se

r
Lo

st

One-way Network Delay (ms)

Fig. 10. Impact of network delay

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200

%
 o

f U
se

r
Lo

st

Standard Deviation of Synchronization Error (ms)

Fig. 11. Impact of attacker synchro-
nization error

Figure 10 shows the impact of increasing the network delay variation. The
network delay is exponentially distributed with mean varying from 0ms to 200ms.
As expected, as network delay variation increases, the attack efficiency decreases.

In Figure 11, the attacker synchronization error is assumed to have a normal
distribution with 0 mean. The standard deviation of the distribution is varied
from 0ms to 200ms. The result is similar to the variation in the network delay.
The attack efficiency remains high for standard deviation less than 50ms.

6.5 Effect of Buffer Size

In previous experiments, we assume that the buffer size is known and herding
can be performed by sending the exact number of attacker requests. However,
such values may not be available and needs to be estimated by probing. Figure 12
shows the impact of estimation errors in the server buffer size, with the attacker
assuming that B = 100. For herding to work correctly, it is important for the
attackers to not over-estimate the buffer size as it will result in missing too many
users in the herding process. The figure shows that if the buffer is less than 60,
the attackers are progressing too quickly and too many users are left behind.
The resulting lost rate is 0. The herding process is sufficiently robust such that
when the actual buffer size is between 80 to 120, the lost rate remains high,

 0

 2

 4

 6

 8

 10

 12

 14

 16

 40 60 80 100 120 140 160 180 200

%
 o

f U
se

r
Lo

ss

Buffer Size

Fig. 12. Impact of buffer size

between 10% to 14%. However, if the buffer size is beyond 120, attack efficiency
drops. When the buffer size reaches 200, the loss rate drops to 3%.

7 Results on Test-Bed

In order to validate that herding can indeed be carried out in practice, we re-
peat the experiments done in Section 5.3 using PlanetLab (http://www.planet-
lab.org). 10 nodes from U.S.A, Canada, Spain, Italy and Singapore were used to
make the experiments as realistic as possible. Attackers and users are emulated
on PlanetLab nodes and each node emulates a total of about 30 to 50 users and
attackers. Our server is represented by a Java program that places arrived re-
quests in a First-In-First-Out queue. For each request, the server provides some
dummy calculations as service.

Fig. 13. Number of requests served per
second

Fig. 14. The effect of herding

In the first set of experiments, we observe the temporal pattern of user re-
quests during herding. Figure 13 illustrates the serving rate at the server as
herding progresses. Observe that after each herding round, herded users are
pushed forward. Also notice that the service rate in between peaks is non-zero.
This is due to new users entering the system periodically. Figure 14 shows the
effect of herding by measuring the percentage of users herded and that arrives
within 11s from a herding round. Note that after 10 rounds of herding, almost
all users within 11s are herded.

Next, we repeat the experiment with different herding offsets and compare
the values after 10 herding rounds. Figure 15 shows the effectiveness of the
different offsets for herded users and users arriving within 11s. Note that the
optimal herding offset is approximately µNA= 2.5s which corresponds to the
optimal offset analyzed from the model.

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5 4

Herding Offset (s)

U
se

r
D

is
tr

ib
u

ti
o

n
 (

%
)

Users within 11s from herding round 10

Herded users within 11s from herding
round 10

Fig. 15. The effect of herding offset

0

20

40

60

80

100

0 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0
Delay (s)

N
ew

 U
se

rs
 (

%
)

Herding

No Herding

Fig. 16. Delay experienced by new
users

Finally, we conduct another set of experiments to illustrate the effect of
herding on new users. As before, in every period, 5% of new users join the system
and 5% of existing users leave the update cycle. Compared to the existing users,
a new user is more sensitive to the delay because he initiates the first request.
We first conduct herding with 50 attackers for 10 rounds by which the system
behavior has stabilized. Next we measure the delay experienced by new users over
30 update periods. We also consider the case in which no herding is performed.
Figure 16 shows that with herding, 40% of new users are likely to experience a
delay of more than 2s. Compared to Figure 6, measurements from the test-bed
display larger delays. This is because the network nodes employed for test-bed
experiments have longer links and larger network delay variation to reach the
server.

8 A Prevention Approach

In this section, we present an approach to negate the effect of the proposed
herd-burst attack. Though the herd-burst attack is shown effective and robust,
it depends on the constant period of updates. In particular, herding relies on
the periodicity to work correctly. Therefore, one simple way to prevent herding
is to add a small random component with mean 0 to the length of the update
interval.

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

%
 U

se
r

Lo
st

Normalized Load

DDOS
Burst

Randomized Update
Herd-Burst (R1=20)

Fig. 17. Effect of adding a randomization component of 3s

In Figure 17, the same parameter setting used to generate Figure 9 is used.
The experiment on herd-burst attack without pre-herding is modified. It is exe-
cuted over an update period uniformly distributed between 27 and 33 seconds.
With such randomization added to the update period, the herding process fails
and the user lost rate drops slightly lower than the burst attack. This is because
with R2 = 2, the herd-burst attack only burst once every three rounds.

9 Conclusion

Periodic updates can be viewed as a feedback queue whereby the served requests
are further delayed before rejoining the queue. Due to the growing popularity of
the use of automatic refreshment of web services, it is interesting to investigate
such model. In this paper, we first study the advantages of relative update verse
absolute update. We show that relative update gives better performance in term
of average service delay. More interestingly, we found that relative updates in-
directly provides a self-correcting mechanism, and can be stable even when the
system is overloaded. Although relative updates provides good performance, po-
tentially it can be manipulated by a small number of attackers. We give a herding
strategy whereby a small number of attackers can herd a significant portion of
the users to arrive in a small time interval. Such herding can be used as a way to

“condition” the request arrival distribution so that subsequent burst attacks can
be effectively carried out. It can also be employed to discourage new users from
joining the system. The herding can be performed by adhering to the normal
application semantics, and thus it is difficult to identify individual attackers.
Fortunately, herding can be easily prevented by introducing randomness to the
length of the update interval.

References

1. Mirkovic, J.: D-WARD: Source-End Defense Against Distributed Denial-of-Service
Attacks. PhD thesis, UCLA (2003)

2. Kuzmanovic, A., Knightly, E.: Low-Rate TCP-Targeted Denial of Service Attacks.
Proc. ACM SIGCOMM (2003) 75–86

3. Guirguis, M., Bestavros, A., Matta, I.: Explaining the Transients of Adaptation
for RoQ Attacks on Internet Resources. Proc. Int. Conf. Network Protocols (2004)
184–195

4. Sun, H., Lui, John C.S, Yau, David K.Y.: Defending against Low-Rate TCP At-
tacks: Dynamic Detection and Protection. Proc. Int. Conf. Network Protocols
(2004) 196–205

5. Floyd, S., Jacobson, V.: The Synchronization of Periodic Routing Messages.
IEEE/ACM Trans. Networking, Vol. 2. (1994) 122–136

6. Mogul, J.: Observing TCP Dynamics in Real Networks. Proc. ACM SIGCOMM
(1992) 305–317

7. Plonka, D.: Flawed Routers Flood University of Wisconsin Internet
Time Server Netgear Cooperating with University on a Resolution.
http://www.cs.wisc.edu/∼plonka/netgear-sntp (2003)

8. Mills, David L.: Survivable, Real Time Network Services. DARPA Report (2001)
9. Law, Y., Hartel, P., Hartog, J. den, Havinga, P.: Link-Layer Jamming Attacks

on S-MAC. Proc. IEEE 2nd European Workshop on Wireless Sensor Networks
(EWSN) (2005) 217–225

10. Law, Y., van Hoesel, L., Doumen, J., Hartel, P., Havinga, P.: Energy-Efficient Link-
Layer Jamming Attacks against Wireless Sensor Network MAC Protocols. Proc.
3rd ACM Workshop on Security of Ad Hoc and Sensor Networks (SANS) (2005)
76–88

11. Lindgaard, G., Dudek, C., Fernandes, G., Brown J.: Attention web designers: you
have 50 milliseconds to make a good first impression. J. Behaviour & Information
Technology, Vol. 25 (2005) 115–126

