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Abstract. Our goal is to extract consistent bits from the same finger-
print in a noisy environment. Such bits can then be used as a secret
key in several cryptographic applications. In order to correct inevitable
noise during scanning and processing, a known approach extracts and
publishes an additional information, known as secure sketch from the
minutiae. During subsequent scanning, the sketch aids in correcting the
noise to give the consistent bits. However, for minutiae (represented as
2D point set), known constructions produce sketches that are large, and
are difficult to adapt to slight variations of the 2D point representation.
Furthermore, even with simplified model on the noise and distribution of
the minutiae, it is not clear what is the entropy of the bits extracted. To
overcome the problems, we suggest using a locality preserving hash in
sketch construction. We give a method that produces a small sketch and
thus suitable for applications involving mobile devices. Since the sketch
size is small, with a reasonable assumption, we can estimate the entropy
of the secret bits extracted. In addition, we can incorporate statistical
properties of the noise, and distribution of the minutiae in fine-tuning the
method. Our method also includes registration of fingerprints. Experi-
ments conducted on 4000 fingerprint images from the NIST 4 database
show promising results. Assuming that an intermediate representation is
uniformly distributed, with FNMR = 0.09 we are able to extract about 8
secret bits (by a conservative estimate) or 10 bits (with certain assump-
tion on the underlying codebook).

Key words: Secure sketch, Fuzzy vault, Locality preserving hash, Cryp-
tography.

1 INTRODUCTION

Fingerprints are probably one of the most widely used biometrics today. A typ-
ical fingerprint based authentication system, when given a template (obtained
during enrollment) and a query (obtained during verification), decides whether
the query is authentic by measuring its distance from the template. A less well
studied application extracts a sequence of bits from the template, and such bits
? This is a revised version of the published paper in the ICB proceeding with these
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are then served as a secret key in other cryptographic operations. For example,
one may use the secret bits to encrypt a file. During decryption of the file, the
exactly same sequence needs to be extracted from the query. Note that when
used as a key in cryptographic applications, the representative sequence has a
stronger requirement, that their match must be exact, i.e., two similar minutiae
must map to the exactly same bit sequence. This requirement is much more
restrictive than the requirement of similarity (not necessarily exact match) be-
tween the minutiae, as in typical authentication systems. In this paper, our goal
is to extract consistent bits from minutiae.

In order to achieve consistency, a technique, known as fuzzy commitment[9],
secure sketch[7], shielding function[10] and helper data[13], extracts an additional
information from the template during enrollment. We follow notations by Dodis
et al. [7] and call the additional information a sketch. The sketch has to be
made public. In the example on encryption, the sketch is to be stored in clear
in the header information of the encrypted file. During verification, the sketch
is employed to remove the noise, in a similar role as the parity check bits of an
error correcting code. Since the sketch is published in clear, it has to be secure
in the sense that it does not reveal too much about the original template.

Relationship with traditional authentication system. Note that a system which
is able to extract consistent bits, can be adopted (although not preferable) to
serve the purpose of a typical biometric authentication system. This is done
by simply using the bits as the template: two templates are declared to be a
match iff their extracted bits are exactly the same. Hence, if the systems is able
to extract m consistent bits, the false match rate (FMR) of the corresponding
authentication system is 2−m. Since biometric authentication system is relatively
more extensively studied, the performance of bit extraction system is unlikely
to out-perform the state-of-the art biometric authentication system in terms of
false match rate (FMR) and false non-match rate (FNMR). In other words, if
the state-of-the-art authentication system achieves FMR of 0.1% at a particular
FNMR, it is unlikely that we can extract more than 10 bits(with the same
FNMR). Although 10 bits is too small for cryptographic operations and thus
seems pessimistic, we could employ multi-modals to increase the bits size. Some
previous works claim to extract significantly more bits from a single fingerprint.
However, these claims may be based on simplified noise models, or the claims
may not consider information leaked by the sketch and information leaked during
alignment. The relationship between the FMR with the bits size is also discussed
by Buhan et al. [1] from another perspective.

Challenging issues in sketch construction. The design of a secure sketch heav-
ily depends on the notion of similarity between templates, which is related to
the associated underlying metric space. Although there are near optimal con-
structions for some metrics like Hamming distance for binary strings [9, 7], and
set-difference for sets [8, 7, 2], extending such constructions to the more “com-
plicated” metric for minutiae is not straightforward. This is because the sketch
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has to handle both white noise, which corresponds to Hamming distance, and
replacement noise, which corresponds to set-difference [6, 3].

Clancy et al. [6] proposed a sketch construction for fingerprint that uses chaff
points. Essentially, a large set of random points (known as the chaff points) is
first generated, and the union of the chaff points and the minutiae is the sketch.
The chaff points-based approach is adopted in a few other schemes [12, 13, 3].
However, it is very difficult to analyze the security achieved by this approach.
Without rigorous analysis, it is not clear how many secret bits can be extracted.
Indeed, an attack is proposed by Chang et al. [4] which demonstrates that the
information revealed by the sketch is more than what was previously estimated.
Although there are constructions with provable bounds on entropy loss[3] (based
on formulation by Dodis et. al.[7]), it is not clear how effective are those con-
structions in practice. Furthermore, although the original minutiae are hidden,
specific important information is revealed. For example, a point that does not
appear in the sketch is definitely not in the original.

Besides the difficulty in analyzing the security of chaff points-based approach,
there are also a few practical issues. Firstly, the sketch should be small so as to
be fitted into mobile devices like smart card. Chaff points-based methods give
large sketch since the size has a tradeoff with the security. Secondly, since the
template is not available during verification, it is not clear how to align the query.
Earlier works typically assumed that the fingerprints are already aligned with
the exception of some recent works by Uludag et al. [13], which employ orien-
tation field flow curves for alignment. Thirdly, previous works assume simplified
models of noise and distribution of the minutiae. It is not clear how to fine-tune
chaff generation for different noise models, and different statistical models of the
minutiae.

Main idea in our construction. To handle the above mentioned issues, we pro-
pose applying a locality-preserving transformation3 on the minutiae to a vector
space of real coefficients. The function is locality preserving in the sense that two
close-by data in the original metric space remains close to each other in the trans-
formed space. Besides being locality-preserving, the function should decorrelate
the original and give mutually independent real coefficients. We decorrelate the
original by applying Principle Component Analysis so that the coefficients are
pair-wise independent.

Note that we do not propose a new representation for fingerprint. Instead,
we apply a transformation that preserves distance information of a well-accepted
representation for fingerprints, and then extract bits from the transformed data.

Below are some advantages of the proposed method.

1. The transformation provides a way to map the minutiae to a metric space,
whereby sketch can be easily constructed. It is fairly easy to adapt our
transformation to different variants of minutiae representation. For example,
if the orientation of each minutia is to be included, it is easy to modify the
transformation to accustom this variation.

3 Also known as biometric embedding[7]
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2. The transformation “diffuses” certain information on each individual minu-
tia. In particular, some important specific information, for e.g. total number
of minutiae, possible locations of the minutiae etc, are diffused and not leaked
out.

3. Our method is able to handle a wider class of noise models. As we shall see
later, we use a maximum likelihood decoding to search for the the secret
bits. As long as the noise model is able to facilitate maximum likelihood
decoding, it can be incorporated.

4. Our method can also handle a more general model of minutiae distribution.
This is achieved by applying PCA in the transformed domain.

5. As opposed to the chaff points-based method, no randomness is injected
during the sketch construction. As a result, the size of our secure sketch is
small.

Our method includes registration of fingerprints. This is achieved by includ-
ing singular (core/delta) points[5] in the final sketch. These points carry global
information and are independent of the minutiae, and thus unlikely to reveal
any information of the minutiae, whereby the secret bits are extracted.

Our experimental data set consists of 2000 pairs of fingerprints from the
NIST 4 database, using 100 pairs as training data and the rest as test data.
Experimental studies show that the method can extract 10 consistent bits with
FNMR of 0.09 and the total sketch size is around 320 bits. Hence, if this bit
extraction system is adopted to serve in the traditional authentication system,
its FNMR is 0.09 and FMR is 0.1%, which is close to typical authentication
systems.

2 Proposed Method

2.1 Enrollment/Sketch construction

Step 1. Extracting minutiae and singular points. Given a fingerprint, the set
of minutiae x is extracted. Next, the singular (core and delta) points of the
fingerprint are extracted using the complex filter based method proposed by
Nilsson et al. [11].

Step 2. Locality Preserving Hash. Herein the set of minutiae x are mapped to
a vector v in Rk. This step consists of two transformations, M1 and M2, where
M1 maps the minutiae to a real vector, and M2 de-correlates the vector and
keeps only k coefficients. The final output is

hx = M2(M1(x)).

The transformations M2, M1 and the parameter k are chosen during the
design stage. First, a set L of 2D lines are selected, where|L| = q is some integer
greater than k. Given the set x, and a line ` ∈ L, we can obtain an integer which
is the difference of number of points on the two sides of the line. Since there
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are q lines in L, given x, we obtain q integers. Let v = (v1, v2, . . . , vq) where vi

is the integer obtained corresponding to the i-th line in L. Let M1 denote this
transformation, that is v = M1(x).

Using knowledge of the statistical distribution of v (derived from a large
collection of fingerprints), Principle Component Analysis (PCA) can be carried
out to derive a linear transformation that de-correlate the coefficients in v. By
keeping only k decorrelated coefficients, we obtain the linear transformation M2.

The q lines in L are randomly chosen during the design stage. One could
choose the lines with certain properties, for example, equally spaced horizontal
and vertical lines. One could also choose much more lines, i.e., using a larger
q. Nevertheless, experiments suggest that the final performance is similar. The
prior knowledge of the statistical distribution can be obtained from a database
of samples. For example, the NIST fingerprint database [14] provides ample
fingerprints to estimate the distribution of M1(x).

Step 3. Convert hx to bits. The sequence h = (h1, h2, . . . , hk) is converted to
k bits b = (b1, b2, . . . , bk), where bi = 0 iff hi < 0, for each i.

Note that the PCA ensures that coefficients of hx are pairwise uncorrelated.
Hence we assume that the k-bits b are uniformly distributed, and its entropy is
k.

Step 4. Extract consistent bits and secure sketch. This step requires a codebook
C = {Ci}2m

i=1 where each Ci is a k-bits string and m is a parameter to be decided
during the design stage. The message associated to the codeword Ci is its index i.
Given the k-bits sequence bx, its nearest codeword cr, with respect to Hamming
distance, is determined. The message associated to cr is output as the consistent
bits. The sketch is the bit sequence

sx = bx ⊕ cr,

where ⊕ is the xor operations.

The codebook is determined during the design stage, and m an important
parameter needs to be determined. In our implementation, in order to facilitate
experimental studies for different values of k and m, we use a random codebook.
That is, the codewords are randomly chosen during the design stage. To improve
the performance, for a particular k and m, a good error correcting code can be
used as the codebook. The use of xor operation here seems abrupt. This is
a common technique in sketch construction for binary strings with Hamming
distance as the underlying metric[7, 9]

The message can be represented as a m-bits string. It is not necessary that
the entropy of the message is m. We will discuss this further in Section 3. Alter-
natively, instead of taking the message as the secret, we can also use cr as the
secret bits. However, there is high redundancy in the k-bits cr.
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Step 5. Publish the final sketch. The final sketch consists of the sketch sx, and
the singular (core and delta) points information. The final sketch is then made
public, for example, by storing it in the header of the encrypted file.

2.2 Verification

Now, given a query fingerprint and the final sketch (recall that the final sketch
consists of the singular points, and the sketch sx, we want to extract the consis-
tent bits.

Step 1. Alignment. Same as Step 1 in enrollment, the minutiae y and singular
points of the query are extracted. Next, using the extracted singular points, and
the singular points in the final sketch, alignment is carried out.

Step 2 & 3. Obtain hy and by. The same steps (Step 2 & 3) in the enrollment
are carried out to obtain the k-bits by.

Step 4. Maximum Likelihood Decoding. Together with the sketch sx, compute

b̃ = by ⊕ sx.

Next, using maximum likelihood decoding, find the most likely codeword cr that
gives b̃ (the method is to be described below). The message corresponding to cr

is the consistent bits.
Given the 100 pairs of fingerprints (original x and noisy version y) as training

data, we compute the k-bits bx and by. Next, every pair is compared to note
the corresponding bit flip for every bit. This gives an estimate of the probability
pj that the j-th bit flips under noise. During maximum likelihood decoding,
for each codeword Ci = (c1, c2, . . . , ck), we estimate the probability Pi that
b̃i = (b̃1, b̃2, . . . , b̃k) is a noisy version of the codeword.

Pi =
k∏

j=1

p
b̃j⊕cj

j (1− pj)(1−b̃j⊕cj).

The codeword with largest Pi is chosen as the most likely codeword.

2.3 Remark

In sum, during the design stage, we determine a set of lines L, and perform PCA
to obtain two transformations M1 and M2. A codebook C, and the probability of
bit flip pj is also determined during the design stage. There are two important
parameters: k, the number of transformed bits, and m = log2 |C|, where |C| is
the number of codewords.

There is a subtle difference between enrollment and verification. During en-
rollment, the nearest word is determined with respect to the usual Hamming
distance. However, during verification, we employ maximum likelihood decod-
ing, which is essentially finding the nearest code with respect to a weighted
Hamming distance.
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Fig. 1. (a) Singular point (core and delta) detection results for a fingerprint from the
NIST database. (b) Covariance matrix of coefficient vectors (for 1900 fingerprint pairs
of dimension 600) before applying PCA (c) Covariance matrix of coefficient vectors
(for 1900 fingerprint pairs of dimension 600) after applying PCA.

3 Experiments and Analysis

Parameters The performance of our method is evaluated based on the tradeoff
that can be achieved by varying the two parameters. (1) k, the number of PCA
coefficients retained, and (2) |C| the size of the codebook needed. For each set
of parameters, we measure (1) the entropy of the sketch, denoted by |s| and (2)
FNMR of the system.

Recall that we assume that the k-bits b are uniformly distributed. If the
entropy of the sketch is |s|, then the entropy of the consistent bits will be k−|s|.
However, it is not easy to estimate the sketch entropy. In this paper, we use a
conservative estimate (i.e. a upper bound). Thus k−|s| could underestimate the
number of consistent bits. From another perspective, the sketch is essentially the
syndrome with respect to the error correcting code. If we further assume that
the syndrome is independent from the message, then log2 |C| is the number of
consistent bits.

Data Set and Experimental setup. Experiments were conducted on a database
of 4000 fingerprints from the NIST fingerprint database[14], which consists of
two scans of 2000 fingerprints. 100 fingerprint pairs were taken as training data
for modeling the noise and distribution of minutiae. The remaining 1900 pairs
were left as test data. Minutiae were extracted from the image using mindtct,
a minutia extraction software provided with the NIST package. The extracted
minutiae information consists of the 2D coordinates, the orientation and the
quality of the minutiae. Only high quality minutiae were selected based on a
threshold. The final set consisted of around 50 to 60 minutiae, and it would
require at least 800 bits to represent the minutiae.
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Fig. 2. (a) FNMR vs. k, for different values of log2(|C|). (b) FNMR vs. k under ham-
ming and weighted hamming distance. Illustrates the efficacy of using knowledge of
noise is designing a distance function.

The singular points for alignment is extracted using complex filters filters[11].
Figure 1(a) depicts the singular points detected in one of the fingerprint scans.

The sketch size |s| is estimated by first counting the number of 1’s among
the sketches sx for all fingerprints in the test data. Now, we can estimate the
probability that a bit in the sketch is 1, which in turn give the entropy of the
k-bit sx.

Effect of PCA and the noise model. A total of q = 600 lines were chosen
to perform locality preserving hash and then PCA is applied to generate 600
coefficients. The PCA attempts to decorrelate the coefficients and make them
pairwise independent so that the bits in bx would be uncorrelated. Figure 1(b)-
(c) depicts an image of the covariance matrix of the coefficients for 1900 ×
2 test fingerprints, before and after applying PCA. The high intensity along
the diagonal of the covariance matrix image in Figure 1(c) is indicative of the
statistical independence of the coefficients. The low intensity of the off-diagonal
elements indicate low correlation.

Figure 2(b) illustrates the affect of weighted hamming distance and hamming
distance on FNMR. Clearly, from the graph, using the noise model derived from
the training data improves the FNMR.

Relationship among different parameters. Fig. 2 (a) shows the FNMR for dif-
ferent k and |C|. As expected, FNMR reduces with larger k. This is expected
because using more bits should preserve more distance information. FNMR also
reduces with lesser codewords in C. This is because with lesser codewords, the
distances among them increase and thus more tolerance to noise. A line drawn
parallel to the x-axis gives the number of coefficients k, that need to be retained
for a given requirement on FNMR and log2|C|.
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Fig. 3. (a) FNMR vs. log2(|FMR|) for different values of k. (b) k − |s| vs. k. Since |s|
may be overestimated, this gives a lower bound on the number of consistent bits.

Figure 3(a) depicts the change in FNMR with log2(|FMR|) for different sizes
of k. Note that for a 10 bit consistent key (i.e., codebook of size 210) for k = 300
bits, FNMR=0.09 (∼ 0.1), which is very close to the FNMR obtained in typical
biometric authentication systems. Figure 3 (b) depicts the change in sketch size
|s| for different k and log2|C|. An straight line draw parallel to the y-axis gives
the sketch size for a given constraint on k and |C|.

An observation is that to extract more bits, the size of the sketch |s| has to be
higher otherwise it leads to high FNMR. When k is around 300 bits we expect
to be able to extract 10 bits with FNMR ∼ 0.1, which is around the FNMR
of typical authentication systems. For larger values of k, the FNMR does not
improve significantly, hence 300 is a good tradeoff.

4 Conclusion

In this paper, a method for generating consistent bits from minutiae is proposed.
Such bit sequences can be used as secret keys in cryptographic operations that re-
quire the exact sequence from different scans. Compared to known bit extraction
methods, our proposed method allows for registration of the fingerprints using
information (singular points) that is independent of the secret and thus does not
leak any information about the minutiae. A locality preserving transformation
followed by a PCA is performed on the minutiae to generate a binary sequence.
Although some information is thrown away during the transformation, some of
the obvious advantages of the method are that information is diffused and the
binary sequence generated is robust. Unlike existing techniques, no randomness
is injected during sketch construction and thus the sketch size is small. We show
the use of a maximum-likelihood based distance measure for decoding that can
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incorporate different noise models. Experimental results verify the efficacy of our
proposed method.
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