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Abstract

Fuzzy extractors are recently proposed error-tolerant

cryptographic primitives that are potentially useful to pro-

tect biometric templates. However, there are challenges in

adopting these primitives. Firstly, fuzzy extractors require

the data obtained during both enrollment and verification to

be in the same feature representation. However, for better

performance on ROC, multiple high quality samples can be

obtained during enrollment, which result in an asymmetric

setting whereby data obtained in enrollment and verifica-

tion are stored in different representations. Secondly, fuzzy

extractors only concern about the strength of the secret key

extracted, and does not directly assure that privacy is pre-

served. In this paper, we consider a simplified asymmet-

ric setting and propose a sketch scheme. We analyze the

key strength measured by the number of secret bits that can

be extracted, and the privacy measured by the information

leakage on the user identities. We next apply and investigate

the scheme on FVC fingerprint datasets.

1. Introduction

Recent developments in biometrics lead to many promis-

ing applications and wide spread adoptions of biometric

systems. As such systems gaining popularity, the concerns

on privacy are also getting more attention. Since biometric

data cannot be easily revoked or replaced, it is essential to

protect the data from being revealed while supporting ap-

plications such as verification and identification. Moreover,

due to the strong bond between identities and biometrics, it

is also often crucial to protect the privacy of users in these

systems.

Security and privacy concerns of cryptographic systems

utilizing biometric data have attracted the attention from

both signal processing and cryptography/security commu-

nities. Various solutions have been proposed in recent years,

ranging from ad-hoc transformations which are intended

to be hard to invert, to rigorous theoretic studies on error-

tolerant cryptography assuming simplified models of bio-

metric data.

In this paper, we take a closer look at fuzzy extractors [8]

that mainly utilize sketches to help in recovering original

biometric templates, and strong extractors to extract secret

keys from templates. In spite of many recent developments

(Section 2.1), there are still challenges in applying fuzzy

extractors to real biometric data. In particular, we observe

that existing notions of fuzzy extractors

1. Do not directly support asymmetric settings, and

2. Do not necessary preserve privacy.

In the following, we are going to explain more clearly what

these issues are and why they are challenging.

Asymmetric Biometric Representations The formula-

tion of fuzzy extractors assumes that the biometric data ob-

tained during enrollment and verification are in the same do-

main and a distance function could be defined on it. How-

ever, for better performance in terms of ROC, a biometric

template can be a description of the distribution of (noisy)

biometric data from an individual, which can be estimated

during enrollment from multiple samples.

In this case, the representations of the biometric data are

asymmetric in the sense that, a template computed during

enrollment would contain much more information than the

data that can be obtained during verification. But is it feasi-

ble (and if so, how) to recover the original template, which

is a distribution, from a single sample obtained during ver-

ification? What would be the information leakage in this

case? Such asymmetry in the amount of information cer-

tainly needs to be studied more carefully, and the construc-

tions of secure sketches (and fuzzy extractors) in this case

is non-trivial.

Privacy Preservation Initially, fuzzy extractors are de-

signed for key extraction, and do not directly address pri-

vacy preservation of the templates. For example, although a

secure fuzzy extractor may allow the extraction of a strong

cryptographic key from the biometric data, if the sketches

are compromised, they may still reveal identities of the

users. The situation is made worse with asymmetric biomet-

ric representations, since it requires more information to be
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stored to successfully extract consistent keys from biomet-

ric data. This may lead to certain types of privacy attacks to

be described in Section 3.

To illustrate the privacy concerns, let us consider an ap-

plication where a fuzzy extractor is used on a mobile phone

such that only the owner can unlock it using his/her biomet-

ric samples. A privacy sensitive user may require that even

if the phone is stolen and the sketch stored in it is compro-

mised, the attacker should not be able to find out his/her

identity. However, this is not guaranteed by the fuzzy ex-

tractor no matter how strong the extracted key is.

In this paper, we study how to build secure sketches for

asymmetric representations of biometric data. In particu-

lar, we take a look at a minutiae-based fingerprint authen-

tication scheme similar to that in [6], and propose a secure

sketch scheme. We analyze the security by investigating

the information leakage of the template, which in turn de-

termines the entropy of the secret key extracted. This is

for applications that use the extracted secret bits for subse-

quent cryptographic operations. Furthermore, we examine

the implications of these sketches on users’ privacy by giv-

ing some attack algorithms. We found that, although asym-

metric biometric representations may improve the ROC and

increase the key strength, potentially it would leak informa-

tion about the identities and thus it is not suitable in pre-

serving privacy.

We give a brief background on the related work in Sec-

tion 2.1. We introduce our security model (Section 3)

and give a generic scheme in simplified asymmetric setting

(Section 4). An identity verification scheme based on fin-

gerprint minutiae is presented in Section 5, followed by its

security and privacy analysis in Section 6. We conclude in

Section 8.

2. Background

2.1. Related Work

Perhaps the most well-known pioneer formal analysis

on how to extract consistent keys from noisy data are the

fuzzy commitment scheme [12], which handles Hamming

distance, and the fuzzy vault scheme [11], which deals with

set-difference. Dodis et al. [8] give a generalized and more

formal framework called fuzzy extractors and prove that se-

cure sketches imply fuzzy extractors. They also give various

improvements and extensions to previous schemes.

Although technically sound, it is not easy to apply the

above results to real biometric data. For example, the

matching between a sample and a template may be com-

plicated and may not define a metric space [5], and the

original data may not even be discrete and/or need to be

quantized [15, 22]. Some other (maybe less rigorous) at-

tempts to apply fuzzy extractors on real biometric data in-

clude [24, 1, 6, 13].

A formal study of information leakage due to multiple

sketches of the same individual is first discussed in [2], and

later generalized in [3], which considered a few different

attack models. It is known that with multiple sketches of the

same fingerprint, the true minutiae may be revealed [21, 14].

Another line of research [16, 26, 25] handles continu-

ous data with additional assumptions on the distributions of

the biometrics, and uses mutual information as the security

measure.

There have been a number of practical results includ-

ing fingerprints [7, 27], iris patterns [9], voice features

[17], hand grip patterns [4], and face features [23]. Other

methods to protect biometric templates but not necessarily

aiming at extracting a key include [19, 20]. It should be

noted, however, that these results are less formal than well-

established cryptographic techniques. For example, some-

times only brute-force attackers are considered.

It is worth to note that in some previous work such as

[13, 4, 10], some extra data (namely, the location of the

most reliable feature components) is stored and sometimes

revealed for consistent extraction of the key. Such extra data

can be viewed as descriptions of individual distributions,

and our asymmetric model can be viewed as a generalized

model for such cases.

2.2. Secure Sketch and Fuzzy Extractors

Informally, a secure sketch P is some information com-

puted from noisy data X such that (1) P does not reveal too

much information about X , and (2) given a Y that is sim-

ilar to X according to some similarity measure, X can be

reconstructed from Y and P .

A fuzzy extractor can be constructed from a secure

sketch and used for verification of biometric data as the fol-

lowing. During enrollment, some biometric measurements

are made, and a sketch P is computed from biometric data

X obtained from the measurements. In addition, an extrac-

tor (such as pair-wise independent hash functions) can be

applied on X to extract a key K. During verification, an-

other measurement of the same biometrics is made to obtain

data Y . If X and Y are sufficiently similar, according to the

properties of secure sketches, X can be reconstructed from

Y and P , hence the same key K can be extracted from X
using the same extractor. In this way, the key K can be used

in the same way as a cryptographic key or a password for

verification. By carefully choosing the parameters, the key

K can be made almost uniform and independent of P [8].

When a sketch P is compromised, an adversary may ob-

tain partial information about X . Dodis et al. [8] formu-

late this as the entropy loss, which is the upper bound of

the difference between the min-entropy of X and the length

(strength) of the key K. Note that P does not leak informa-

tion about K.

When the enrollment data describes distributions instead



of just samples, it may contain too much entropy such that

entropy loss appears to be very high or very difficult to ana-

lyze precisely (e.g., when it involves real numbers). Hence,

in an asymmetric setting, it makes sense to only consider the

entropy loss on the data X that is actually recovered during

verification, and from which the key is extracted. Never-

theless, we need to ensure that other parts that are not con-

sidered in the computation of entropy loss are independent

from the extracted key.

3. Security Models for Biometric Systems

Let us consider two applications described in the intro-

duction. The first intends to extract a secret key K, and its

security level is measured by the key strength, which is the

length ofK. The second application concerns about privacy

protection. There are a number of different privacy attacks.

In this paper, we only consider the scenarios in Table 1, and

use identity leakage to measure the security, which is basi-

cally the amount of information about the identities leaked

by the stored templates.

KS KB Attack objective

S1 Many One Which sketch belongs to this user?

S2 One Many Which user enrolled this sketch?

S3 Many Many Match sketches and identities.
Table 1. Privacy Attacks

In this table, “KS” stands for “knowledge of sketches”,

and “KB” stands for “knowledge of biometric samples”.

In Scenario S1, the attacker knows all the sketches in a

database and obtains one sample from a user. The at-

tacker’s goal is to determine which sketch belongs to this

user. In Scenario S2, the attacker knows only one sketch in

a database but has the access to biometric samples of many

users. The goal of the attacker in this case is to identify

which user this sketch belongs to. Scenario S3 is a combi-

nation of these attacks.

It is worth noting that a scheme can achieve high key

strength, yet suffer from high identity leakage. This is po-

tentially so in an asymmetric setting, where a relatively

large amount of information is required to describe each in-

dividual’s distribution, and such description itself could be

used to identify the individuals.

There are naturally many variations of the scenarios in

Table 1. For example, instead of finding out which sketch

corresponds to a given identity, we could ask if an individ-

ual is enrolled in the database at all. Furthermore, we could

consider two databases with sketches, and see if it is fea-

sible to find out if some individuals have enrolled in both

databases. Or we can try to find more about the key from

multiple sketches (i.e., correlation attack [14]). Neverthe-

less, in this paper we only examine the above 3 scenarios

and leave other variations as further work.

4. A Fuzzy Extractor Scheme

Here we give a simplified model for asymmetric biomet-

ric representations and propose a fuzzy extractor scheme.

Despite its simplicity, our model is general, and is poten-

tially applicable to various types of biometric data. As an

example of application, we give a concrete construction on

fingerprints in Section 5.

Feature Representations We assume that each biometric

sample S is represented as a real feature vector of length n.
That is, S = (s1, · · · , sn), where si ∈ R. We further as-

sume that each component si in the vector is independent,

but is associated with a different weight wi that represents

its “importance”. The locations of those important compo-

nents may be different for different individuals.

During enrollment, m samples are obtained from each

individual and feature vectors computed. Whereas during

verification, only one sample is acquired from an individual.

Component Grouping We compute the weights

(w1, · · · , wn) from the m feature vectors obtained during

enrollment. According to these weights, we divide the

components into q groups. The grouping is done such that

the total weight for each group are approximately the same.

After that, the components in each group is combined into a

single combined component that represents the group. Let

G = (G1, · · · , Gq), where each Gi describes the indices

of the components in the i-th group, and how they are

combined. Furthermore, for each combined component, we

quantize it to r bits, where r is a pre-determined parameter.

Let X be the resulting binary string of length qr.
The template for an individual consists of the binary

string X , and the grouping information G.

Construction of Sketch Given a biometric template

(X,G), an encoder E computes a sketch PX for X using

a known symmetric secure sketch scheme, and output the

tuple P = (PX , G) as the final sketch. Given another bi-

nary string Y , the recovery algorithm R computes an X ′

from PX and Y , and we will have X = X ′ if Y and X are

similar enough. The actual sketch scheme depends on r, q,
and the similarity measure between X and Y .

This asymmetric sketch is different from a symmetric

sketch in a few ways. First of all, part of the sketch P
(i.e., the grouping information G) is only used to compute

the binary string Y from a new sample, and is not involved

in the recovery of X from Y . Secondly, although G may

reveal information about the original data obtained during

enrollment, it is tricky to include G in the computation of

entropy loss, since G may be of very high entropy, and the

entropy loss can be difficult to bound. Nevertheless if G
can be made independent from X , we can conclude that G



would not reveal any information about the extracted key,

and hence the entropies can be computed on X and PX

only, as if we only consider a symmetric case. However,

G may indeed reveal information about the identities, as in

the case of our scheme for fingerprints (Section 5).

Reconstruction During verification, only a single scan is

obtained. The same feature vector of n components is com-

puted, and the grouping G is applied to obtain a binary

string Y of length q. The sketch PX is then used with Y
to recover the original X .

5. A Minutiae-Based Verification Scheme

We consider locations of minutiae extracted from fin-

gerprint images as biometric features. We assume that the

samples are pre-aligned, for example, using the scheme pro-

posed by Nandakumar et al. [18]. The scheme follows the

generic scheme presented in Section 4 with the following

necessary details specific to the fingerprint data.

Feature Vector Generation The minutiae of a fingerprint

are transformed such that they are represented as a vec-

tor of independent components. We use a transformation

T similar to the method in [6] to obtain n components

w1, w2, . . . , wn for each set of minutiae.

In particular, We randomly draw n straight lines in the

2-D space, and for each line, we record the difference be-

tween the number of minutiae on the “left” of the line and

that on the “right”, where the left and right are defined ar-

bitrarily but consistent for all fingerprints. Next, from a li-

brary of scanned fingerprints (we use FVC 2006 datasets

in our experiments), we extract the n components for each

fingerprint and treat them as the training data. Using PCA,

we obtain a linear transformation whereby n pairwise inde-

pendent components can be obtained from each fingerprint.

The linear transformation is then set as a global parameter.

Computation of Weights For the i-th component, the

standard deviation si and the mean mi are estimated from

the m samples. We treat the ratio wi = mi/si to be the

SNR for the component.

Grouping and Combination For the i-th group, let the

components be di,1, · · · , di,g , and we combine the compo-

nents by computing xi =
∑g

j=1
cjdj , where cj ∈ {−1, 1}.

The coefficients ci’s are chosen such that the absolute value

of xi is maximized, yet the sign of xi is uniformly random-

ized. For example, we can randomly choose xi to be nega-

tive first, and then set cj to be−1 for all positive dj , and vice

versa. We assign one bit for each group (i.e., r = 1), such
that for the i-th group, the assigned bit bi = 1 iff xi > 0.
The grouping information Gi hence contains (1) the indices

of all components in the i-th group, and (2) the coefficients

ci’s used in the combination.

Sketch Construction To compute a sketch PX for X , we

first determine a threshold t on the number of bit errors to

tolerate, which can be computed from the data acquired dur-

ing enrollment and the desired FAR and/or FRR.

Next, to compute PX , we use a “code-offset” scheme

[12, 8]. In particular, we construct a (q, k, t) binary error-

correcting code C where the minimum distance between

codewords is at least 2t + 1. After that, we randomly

choose a codeword c ∈ C, and then compute the sketch

PX = X − c. This can be achieved by randomly choose a

q-bit string and decode it using C. During verification, after
obtaining a string Y , we use the sketch PX to recover X by

first computing w = Y − P , followed by decoding w using

C to get c, and finally adding PX back to c.

6. Security Analysis

Entropy Loss due to P It is shown in [8] that the entropy

loss of the code-offset scheme is bounded by 2t + 1 if the

code is perfect, where t is the number of bit flips we want to

tolerate. Hence, for the scheme as in Section 5 and, it is not

difficult to show that if the codebook is perfect, the entropy

loss of PX in the asymmetric setting is at most 2t + 1.

Moreover, we can see from Section 4 that the grouping

information G is indeed independent from the secret bits

extracted, since it only reveals the relative signs among the

components within each group, and the final bits are actu-

ally randomly chosen at the time of sketch construction.

Furthermore, an upper bound of the entropy of the ex-

tracted key that is independent of the sketch is given by the

logarithm of the Varshamov-Gilbert Bound. In actual ap-

plications, a random binary codebook would suffice in most

cases.

If we assume the independence of the bits in X , we can

then estimate the strength of the extracted key. Some nu-

merical analysis on an actual fingerprint database will be

given in Section 7.

Privacy Attacks using G It is not difficult to show that,

although allowing consistent extraction of reasonable num-

ber of secret bits, our scheme does not preserve privacy un-

der the attack scenarios in Table 1.

For example, in Scenario S1, we can attack the scheme

described in Section 5 as the following. For a given bio-

metric sample, we perform the transformation T and exam-

ine the grouping information G of each user, and see how

likely the sample belongs to that user. For moderate number

of users in question, we can assess the likelihood for all of

them and choose the most likely one.



In particular, we keep track of a score for each sketch-

sample pair. For each group of components to be combined,

the sketch contains their relative signs. If the signs of the

corresponding components are consistent with the informa-

tion in the sketch, we increase the score for this pair. Like-

wise, for those groups with only one component, we check

if the value of the component is large enough and increase

the score accordingly. In the end, we choose the identity

with the highest score as the result.

Clearly, this attack does not need to access the extracted

secret key. In Section 7, we will evaluate the effectiveness

of such attacks on privacy.

7. Evaluation

To evaluate our scheme, we apply our scheme on two

databases DB2 and DB4 from Fingerprint Verification

Competition 2006 (http://bias.csr.unibo.it/fvc2006/) which

are of relatively good quality. Each database contains 12

imprints for 150 fingers. We employ the free minutiae

extraction program from NIST Biometric Image Software

(http://fingerprint.nist.gov/NBIS/) to obtain minutiae from

the databases.

For each finger, we use the first 11 imprints as the train-

ing data to build our templates and use the last one as the

testing data. As we mentioned in Section 5, all 12 samples

for each finger are pre-aligned.

We follow the algorithm in Section 5, and use n = 600
random lines to transform each set of minutiae to a feature

vector with 600 components, which is then normalized. Af-

ter PCA, we divide the resulting 600 components to q = 86
groups according to their SNR. The first 36 group of one

component each are used as is. The next 78 groups have

two components each. There are 40 groups with four com-

ponents each, and the last 1 group has 8 components. The

components in every group are combined as in Section 5.

In the end, we obtained 86 combined components for each

fingerprint, from which we obtain an 86-bit string X .

For each of the 12-th samples, we follow the same steps

and obtain a binary string Y that is then matched with X .

Based on the histogram of the number of bits matched, we

can set the threshold t on the number of bit errors to tolerate

and construct the sketch accordingly. Furthermore, we can

estimate the key strength as q − (2t + 1), which is actually

the lower bound of the key strength if the all the bits in X
are independent. Figure 1 shows the trade-off between the

bound on key strength versus the FRR on the corresponding

threshold t. We can see that the grouping step we performed

always helps to extract more bits with the same FRR, al-

though in general we cannot hope to extract a lot of bits

from these fingerprints.

An ROC curve on the false accept rate and false reject

rate is shown in Figure 2. The false reject curve is obtained

by varying the threshold t, whereas the false accept rate is

computed as the probability that a uniform random binary

string is considered as a match with any given X . The false

accept rate is computed in this way because of the lack of

data, the fact that the components are normalized to zero-

mean, and the assumption that each bit is independent.
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From Figures 2 and 1 we can explore various trade-offs

of the scheme. For example, if we require that FAR is just

below 1%, from Figure 2 we see that FRR is slightly above

20%, which corresponds to 15 secret bits in Figure 1.

To evaluate our privacy attacks as presented in Section 6,

we apply our simple attack algorithm on the templates we

generated, and found that in both attack Scenarios S1 and

S2 in Table 1, we can identify the identity in question with

an accuracy much better than random guessing.

In particular, our experiments show that for Scenario S1,

we can correctly link a sample with a sketch with an ac-

curacy of about 19% for 150 subjects, and in Scenario S2,

the accuracy is about 20%. Compared with 1/150 for ran-

dom guess, the leakage on identities is about− log 1/150−
(− log 0.2) ≈ 4.9 bits in both scenarios. Scenario S3 is a

simple combination with a similar accuracy.

This implies that the template would reveal important

information on the identities that allows attackers to link

sketches with identities, even when the secret keys are safe.



8. Conclusions

Key strength and privacy issues are crucial in secure

biometric systems based on fuzzy extractors. We identify

several challenging problems in applying fuzzy extractors

under an asymmetric setting, where an enrolled biometric

template has a different representation than its matching

samples, which is in contrast with existing fuzzy extractor

framework where both are assumed to be from the same do-

main. We propose a general scheme in a simple asymmetric

setting. We give an scheme on fingerprints as an example of

the general scheme, and evaluate it using public fingerprint

datasets.

We further examine the privacy properties of the scheme

by looking at how much information would be leaked about

the identity by the sketches computed from the templates.

We found that although the sketches are secure in the clas-

sical sense (i.e., the scheme gives reasonable key strength),

they do reveal some information about the identities that al-

lows certain types of privacy attacks.

Hence, asymmetric representations can be employed

when the main concern is the key strength, but are unde-

sirable when strong protection is required on the identities.
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