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Abstract. To reconcile the demand of information dissemination and
preservation of privacy, a popular approach generalizes the attribute val-
ues in the dataset, for example by dropping the last digit of the postal
code, so that the published dataset meets certain privacy requirements,
like the notions of k-anonymity and `-diversity. On the other hand, the
published dataset should remain useful and not over generalized. Hence
it is desire to disseminate a database with high “usefulness”, measured by
a utility function. This leads to a generic framework whereby the optimal
dataset (w.r.t. the utility function) among all the generalized datasets
that meet certain privacy requirements, is chosen to be disseminated. In
this paper,we observe that, the fact that a generalized dataset is opti-
mal may leak information about the original. Thus, an adversary who is
aware of how the dataset is generalized may able to derive more informa-
tion than what the privacy requirements constrained. This observation
challenges the widely adopted approach that treats the generalization
process as an optimization problem. We illustrate the observation by
giving counter-examples in the context of k-anonymity and `-diversity.
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1 Introduction

Data dissemination and information sharing is required in statistical analysis
of a population spreading across different organizations, and is also essential
in providing transparency. However, the ease of obtaining and linking different
published dataset lead to the concern on the leakage of personal information.
To protect privacy we may generalize the attribute values, for example by drop-
ping the last digit of the postal code, before the datasets are released. On the
other hand, it is meaningless to disseminate datasets that are over generalized.
To achieve the right tradeoff, a widely adopted framework treats the problem

? This is a refined version of the published paper appeared in the proceeding of
Information Hiding 2008. The authors were unaware of a similar idea in an earlier
work by Wang et al.[19]. This version includes the relevant reference, a new
paragraph in Section 2 on related work, and this footnote.
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of finding the generalized dataset as an optimization problem. The framework
takes a requirement of privacy as the constraint, and a utility function, which
measures the usefulness of a generalized dataset, as the objective function in the
optimization problem. In other words, given a dataset, among all the generalized
datasets that meet the privacy requirements, the one that is optimal with respect
to the utility function is chosen to be disseminated. The framework provides the
assurance that the disseminated dataset meets the privacy requirement, and at
the same time is useful. The well-known notions on k-anonymity [18] and `-
diversity [13] provide notions and requirements of privacy, and both notions are
proposed to be employed in the above-mentioned framework. In this paper, we
observe that the optimal generalized dataset might no longer satisfy the privacy
requirement. Although the disseminated table is chosen from a collection that
meets the privacy requirement, the fact that the disseminated dataset is opti-
mal is an additional piece of information. Taking this piece of information into
consideration, an adversary may able to derive more information than what the
privacy requirement ensured. We will illustrate our observation by investigating
the requirements of k-anonymity and `-diversity.

The notion of k-anonymity requires that every record is indistinguishable
from at least (k− 1) other records for all possible set of attributes. This ensures
that at least k tuples share the same generalized identity and thus individual
cannot be identified. To illustrate, consider a scenario where a hospital published
information of patients in a particular month as shown in Table 1. To protect
privacy, values under the attribute “Name” are removed. Elsewhere, an asso-
ciation released information of dentists with information shown in Table 2. It
happens that the combination of age, gender and company postal code is unique
for Peter in Table 2. Thus, by linking both tables, one may derive Peter’s home
postal code and he was hospitalized in that month. Table 3 shows a generaliza-
tion that is 2-anonymized. From Table 3, it is not easy to identify Peter since
there are two tuples matching his identity.

Table 1. Released table.

Name Age Gender Home postal Occupation Company postal Illness

30 F 48546 Crane operator 54832 Anxiety

41 F 13208 Teacher 11824 Sleeplessness

43 F 15201 Dentist 11857 Sleeplessness

32 F 48356 Driver 54832 Anxiety

26 M 61306 Manager 29054 fever

22 M 61306 Dentist 29089 fever

The notion of `-diversity is introduced to prevent data inference that is not
addressed in k-anonymity. The attributes are classified as sensitive and non-
sensitive, and it is assumed that the publisher knows which attributes are sensi-
tive. Consider the previous scenario where Table 3 is published, and the attribute
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Table 2. Public table.

Name Age Gender Company postal

... ... ... ...

Peter 22 M 29089

... ... ... ...

Table 3. 2-anonymized table.

Name Age Gender Home postal Occupation Company postal Illness

3* F 48*** Outdoor 54832 Anxiety

3* F 48*** Outdoor 54832 Anxiety

4* F 1**** Indoor 118** Sleeplessness

4* F 1**** Indoor 118** Sleeplessness

2* M 61306 Indoor 290** fever

2* M 61306 Indoor 290** fever

“Illness” is sensitive. Suppose Alice knows that Peter is hospitalized and she has
access to Table 2. Although there are two tuples in Table 3 matching Peter’s
identity, both of them share the same sensitive value. Thus, Alice can infer that
Peter is having fever. To counter this inference, the `-diversity requirement en-
sures that, among the records with the same identifiers, the sensitive attribute
values consist of at least ` well-represented values. There are many ways to de-
fined the meaning of what being “well-represented” values, and a natural choice
is by requiring the entropy of the attribute values is above certain threshold, say
log2 `. If the sensitive values are well represented, then we can have an upper
bound on the chances that the adversary can successfully guess the correct value.

As mentioned in the first paragraph, it is meaningless to publish a table that
is over generalized. Hence, it is desire to find a generalized table that meets
certain requirements on privacy, and optimal with respect to a utility function.
There are many choices of utility functions, and typically, they measure the
distance of the generalized dataset from the original dataset. An example of
utility function counts the number *’s in the generalized table. In general, given
a dataset, it is not easy to find the optimal. In many interesting settings, the
problems are NP-hard [14]. Fortunately, there are extensive works in finding the
optimal and many approximation algorithms and effective heuristic are known
[11, 6, 15, 17].

The rest of this paper is organized as follows. We discuss the related work in
section 2, and give the related background and notations in section 3. In section
4.1 and 4.2 we introduce the formulation and show examples on information
leakage of k-anonymized table, then we move on to information leakage of `-
diverse table in section 4.3 and give a general theorem in section 4.4. Section 5
gives a conclusion.
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2 Related Work

There are extensive works on k-anonymity since Sweeney[18] proposed the no-
tion. The notion of k-anonymity is widely involved in the context of protecting
location privacy[7, 10], preserving privacy in communication protocol[20, 21] data
mining techniques[2, 9] and many others. There are different way of anonymiz-
ing and diversifying a table: achieving via generalization[3, 11], via generaliza-
tion with suppression[16, 12] and via data swapping and randomization tech-
niques[1, 8]. Meyerson et al. have shown that achieving the optimal generaliza-
tion is NP-hard for many different settings[14, 4, 5]. Fortunately, there are many
practical approximation and heuristic. Sweeney has proposed an heuristic-based
approach[17] in 2002. Samarati has also proposed an algorithm of searching a
“k-minimal” group that contains the optimal k-anonymizations based on certain
preference[15]. Bayardo et al. have proposed a lattice top-down search strategy[6]
for optimal k-anonymized tables while LeFevre et al. have proposed a bottom-
up searching algorithm[11]. Machanavajjhala et al. have proposed the idea of
`-diversity [13] and we follow most of the term and definitions they used.

Wang et al. proposed an attack based on the similar assumption that adver-
saries know the generalization algorithm[19]. They observed that, if an algorithm
follows the minimality principle, then an adversary with such knowledge can
carry out the minimality attack. Under the minimality principle, an algorithm
will output a table T ∗ which, (1) meets the privacy requirements, and (2) there
is no other table T̂ that meets the privacy requirements and T̂ ≥ T ∗ (w.r.t. a
partial order to be defined below). For two tables T1, and T2 where T1 can be
generalized to T2, we define T1 ≥ T2. Since the output is only required to be op-
timal among any chain to the original, it is not guaranteed to be optimal among
all possible generalizations of the original. Note the subtle difference from our
assumption, where we consider the optimal among all possible generalizations.
Intuitively, our assumption is stronger (i.e. the adversaries exploit more infor-
mation), since an optimal algorithm must follow the minimality principle. On
the other hand, since computing the optimal is difficult, most known methods
satisfy only the minimality principle.

3 Background and Notations

In this section, we describe k-anonymity and `-diversity, based on definitions in
[13] with slight modifications. The definition given in [13] requires the classifi-
cation of attributes into sensitive and non-sensitive. However, this requirement
is not enforced in some known works and the classification may not be trivial in
some real life datasets. Hence, for definition of k-anonymity, we do not classify
the attribute.

Each dataset T = {t1, t2, . . . , tn} is a set of tuples, and can be viewed as a
table as shown in Table 1, where a row corresponds to a tuple, and a column
corresponds to an attribute. For a t ∈ T and an attribute A, let us denote t[A]
the value of attribute A of the tuple t.
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3.1 Generalization

Let D to be the domain of an attribute value, for example, D can be {0, 1}, set
of integers or set of strings. We say that D∗ is a generalization of D if D∗ is a
partition of D. That is, D∗ is a collection of non-intersecting subsets of D, whose
union is D. We say that a c∗ ∈ D∗ is the generalized value of c ∈ D if c ∈ c∗. If
every value in a table T is replaced by its generalized value for some D∗, then
we say that the new table T ∗ is a generalized table of T . For two generalized
domain D∗

0 and D∗
1 , we say that D∗

1 is a generalization of D∗
0 if, for any c∗0 ∈ D∗

0 ,
there exists a c∗1 ∈ D∗

1 such that c∗0 ⊆ c∗1. Similarly, if D∗
0 and D∗

1 is the domain
of T ∗0 and T ∗1 respectively, then we say that T ∗1 is a generalization of T ∗0 .

For example, the domain of “Home postal” in Table 3 is the set of 5-digits
strings. Replacing the string 13205 to 1320* is a generalization. The generalized
D∗

0 domain contains the set { 13200, 13201, . . ., 13209 }.
If the string is further replaced by 132**, the new generalized domain D∗

1

contains a set {13200, 13201, . . ., 13299 }. Furthermore, D∗
1 is a generalization

of D∗
0 . Since a generalized domain is a partition of the original domain, it is not

possible to have both 13*** and 132** appeared in a column of the table.

3.2 k-anonymity

A set of attributes {A1, A2, . . . , Aw} of a table is called a quasi-identifier. Let
QI be a collection of quasi-identifiers1. We say that a tuple t1 is k-anonymized,
if for any quasi-identifier C ∈ QI, there exist k − 1 other tuples t2, . . . , tk such
that t1[C] = t2[C] = . . . = tk[C]. A table T is k-anonymized if every tuple is
k-anonymized.

If a table T is k-anonymized, given any quasi-identifier in QI, each tuple
cannot be distinguished from at least k−1 tuples. For example, in a 2-anonymized
table shown in Table 3, even if an adversary knows Table 2, he is unable to
identify Peter’s tuple in Table 3, since the third and fourth tuple has the same
generalized value.

3.3 `-diversity

Under the notion of `-diversity, each attribute is classified as either sensitive or
non-sensitive but not both. Furthermore, a quasi-identifier contains only non-
sensitive attributes. Hence, only the non-sensitive attributes can be linked with
other public tables. The publisher is assumed to know which attributes are sen-
sitive before the table is generalized. Note that such classification of attributes
is not enforced in k-anonymity.

Given q∗, a value of a quasi-identifier, let us define the q∗-block to be the
set of tuples with value q∗. Let n(q∗, s, T ) denote the number of tuples that
has value q∗ and value s for a sensitive attribute. For example, in Table 7, the

1 It is not necessary that QI contains all possible quasi-identifiers. Some previous
works restrict QI to quasi-identifiers that can be linked with other tables.
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block of tuples with values (130**, M, A-) has two sensitive value, “Anxiety”
and “Cancer”.

In general, a table is said to be `-diverse if, for every q∗-block, the values of
any sensitive attribute is “well-represented” by ` values. There are a number of
ways to quantify how “well-representative” a block is. A simple requirement is
to have at least ` sensitive values in every q∗-block. In this paper, we adopt the
notion of entropy `-diverse as defined in [13].

Entropy `-diverse. A table T is said to be entropy `-diverse if, for every
q∗-block, and any sensitive attribute with domain S,

−
∑

s∈S

P (q∗, s, T ) log(P (q∗, s, T )) ≥ log(`), (1)

where P (q∗, s, T ) = n(q∗, s, T ) /
∑

s′∈S

n(q∗, s′, T ) .

P (q∗, s, T ) is the ratio of tuples that has the sensitive value s among the
tuples in the q∗-block.

Suppose an adversary has the value q of a quasi-identifier, and the generalized
table T ∗. Let q∗ be the corresponding generalized value of q in the table T ∗. Let
us assume that, in the original table T , q is unique, and each tuple in the q∗-block
(in the table T ∗) is equally likely to be the actual tuple with quasi-identifier q.
Hence, if he predicts that the tuple has sensitive value s, his chance of success
is the ratio P (q∗, s, T ). This can be viewed as the posterior belief of the tuple
having sensitive value s. Let us write it as,

βq,s .

Hence, the left hand side in inequality (1) is the entropy of the posterior
belief.

3.4 Utility Function

Ideally, a utility function measures the amount of information retained in a gen-
eralized table T ∗. Generally, its value increase as the “distance” between T ∗ and
the original T decreases. Here is an example of a simple utility function which
counts the number of *’s in the generalized table T ∗.

U(T ∗) = −
∑

t∈T∗

∑

q∈QIT∗

f(t, q) , (2)

where f(t, q) = k is the number of *’s contained in t[q].
There are many choices of utility function, we uses the above function (2), which
is widely adopted, in our discussions.
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3.5 Optimal Generalized Table

Given a table T , let C(T ) be the collection of all possible generalizations of T .
Given a privacy requirement, which can be k-anonymity, and/or `-diversity, let
P to be the set of all tables that satisfy the requirement2. Let G(T ) be the table
in (C(T )∩P) that is optimal with respect to a given utility function. Conversely,
given a generalized table T ∗, we write G−1(T ) to be:

G−1(T ) = {T | T ∗ = G(T )} . (3)

That is, it is the inverse of the function G.

Remarks. Note that the definition of G(·) relies on the definition of the privacy
requirement, and the utility function. Also, note that the set G−1(T ) does not
contain generalized tables.

We assume that the optimal is unique, and the generalization process is de-
terministic. Our main observation can be extended to generalization algorithms
that are probabilistic. However, for clarity, we choose to handle deterministic
algorithms in this paper.

4 Information Leakage

This section gives the formulation of information leakage (Section 4.1 and 4.3).
Examples of information leakage in k-anonymized and `-diversified table will be
given in Section 4.2 and 4.4 respectively.

4.1 Formulation of Leakage in k-anonymized Tables

Given a T ∗, we say that it can be inverted if

1. |G−1(T ∗)| = 1, and
2. the table in G−1(T ∗) is not k-anonymized.

That is, from T ∗, there is only one table T whose optimal generalized data
is T ∗. Note that it is more interesting to include the second condition since a
table that is already k-anonymized will be published as it is.

In cases where the inverse is not unique, all tables in G−1(T ∗) may still able
to be generalized to a single table that is not k-anonymized. Given a generalized
T ∗, we say that it can be partially inverted if there is a T ∗0 such that

1. For all T ∈ G−1(T ∗), T can be generalized to T ∗0 , and
2. T ∗0 is not k-anonymized.

Hence, if a table can be partially inverted, by linking with certain tables,
there exists a tuple t0 and quasi-identifier Q, such that t0 shares the same identity
(with respect to Q) with at most (k − 2) tuples. Thus, the original assurance of
k-anonymity is compromised.
2 To simplify notations, we do not parameterized P with the requirements. In the

paper, it is always clear from the context which privacy requirement is referred to.
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4.2 Examples for k-anonymized Table

Example 1: Inverting a table. This section gives an optimal generalized table
T ∗ that can be inverted. This simple example provides a simple form that can
be extended to larger examples. The original table T contains one attribute Att1
whose domain is binary strings of length 2. The 2-anonymized table is shown in
Table 4 (a).

The original value for 0* can be either 00 or 01. Due to symmetry, there are
only 5 possible tables that can be generalized to T ∗: either it contains four 00’s,
three 00’s, two 00’s, one 00, or none. Let us examine these cases.

1. Four 00’s, two 00’s and none: In each case, the table already satisfies 2-
anonymity, and thus its optimal generalized table is itself. Hence, they are
not in G−1(T ∗).

2. Three 00’s: In this case, there is only one 01. Hence, it does not satisfy 2-
anonymity. However, its optimal anonymized table is not T ∗. Instead, the
table with three 00’s and three *1’s attains optimal.

3. One 00: Table 4 (b) shows this case. This table does not satisfy 2-anonymity,
and it is easy to verify that T ∗ is its optimal 2-anonymized table.

Therefore, G−1(T ∗) contains only one table and it does not satisfy 2-anonymity.

Table 4. (a) An optimal 2-anonymized table. (b) The only possible original.

(a) (b)

Att1

11

11

0*

0*

0*

0*

Att1

11

11

01

01

01

00

Example 2: Partially inverting a table. We now give an optimal 2-anonymized
table T ∗ that can be partially inverted. The original table T contains one at-
tribute Attr1 whose domain is binary strings of length 4. The anonymized table
T ∗ is shown in Table 5.

There are two generalized values, 000* and **01. The original value for 000*
can be either 0000 or 0001. Similar to the previous example, by examine each
case, we can deduce that the original table has two 0011’s, three 0001’s, one
0000, for the four 000*’s.

Now, let us consider the two tuples with **01. The *’s appear in the first
and second position. If, the values are the same at either the first or the second
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position, then we can have a generalized table with lower utility. For example,
{0001, 0101} can be generalized to 0*01, which requires only two *’s. Thus, their
optimal is not T ∗ and the choices for G−1(T ∗) are narrowed to {0010, 1110} and
{1010, 0110}. It is easy to check that both cases have Table 5 as its optimal
generalization. Therefore, G−1(T ∗) contains two tables as shown in Table 6 (a)
& (b), which can be generalized to the table T ∗0 as shown in Table 6 (c). Hence,
T ∗ can be partially inverted.

Table 5. An optimal 2-anonymized table.

Att1

0011

0011

000*

000*

000*

000*

**10

**10

Table 6. (a) & (b) The two possible original of Table 5. (c) A generalized table T ∗0
that does not satisfy 2-anonymity.

(a) (b) (c)

Att1

0011

0011

0001

0001

0001

0000

0010

1110

Att1

0011

0011

0001

0001

0001

0000

0110

1010

Att1

0011

0011

0001

0001

0001

0000

**10

**10



10 Information Leakage in Optimal Anonymized and Diversified Data

4.3 Formulation of Leakage in `-diversified Tables

Recall the definition of posterior belief βq,s in Section 3.3. If the fact that the
table T ∗ is optimal is taken into consideration, the probability that a tuple in the
q∗-block having the sensitive value s may change and is not longer P (q∗, s, T ).
Let us call this probability the enhanced belief and write it as:

γq,s .

Consider a table T , and its optimal `-diversified table T ∗, in addition, let
S be a sensitive attribute, Q a quasi-identifier. We say that T ∗ suffers partial
disclosure if there exist some q ∈ Q and s ∈ S such that:

βq,s < γq,s .

Furthermore, we say that T ∗ suffers total disclosure if

βq,s < γq,s = 1 .

4.4 Results for `-diversified Tables

Table 7. An optimal 2-anonymized and 2-diversified table.

Postal code Gender Blood group Condition

1 130** M A+ Heart Disease

130** M A+ Viral Infection

2 130** M A- Anxiety

130** M A- Cancer

3 130** M B* Cancer

130** M B* Fever

130** M B* Cough

130** M B* Diabetes

Example. We now give an optimal diversified table T ∗ that suffers total
disclosure in this section, and we will extend this example to a more general
form later in this section.

The table T ∗ is shown in Table 7. The attribute “Condition” is the only
sensitive attribute and the others are non-sensitive. Similar to previous examples,
the utility function is based on the number of *’s. The QI contains the set of
all non-sensitive attributes. The leftmost column indicates different blocks and
is not part of the table. This table is an optimal 2-anonymized and entropy
2-diversified table.
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It is entropy 2-diversified because for block 1 and block 2 we have the follow-
ing for the inequality (1),

−2 ·
(

1
2

)
log2

(
1
2

)
= log2 (2) .

and for block 3, we have

−4 ·
(

1
4

)
log2

(
1
4

)
> log2 (2) .

Consider an adversary who has a quasi-identifier value (13021, M, A+), which
can be identified with block 3. This block has 4 different sensitive values. Thus,
the posterior belief for this identity having “cancer” is 1

4 .
Now, using the fact that the table is optimal, the probability changes. The

original value for the attribute “Blood group” for each tuple in block 3 can be
either B+ or B-. There are 8 different cases for block 3.

1. The non-sensitive value of the first tuple in block 3 is (130**, M, B+) and
the number of the other three tuples in block 3 having original value (130**,
M, B+) is:
– 1 or 3: In these two cases, block 3 is already 2-anonymized and 2-diversified.

This is against the assumption that T ∗ is optimal.
– 2: In this case, block 3 contains only 1 tuple having the non-sensitive

value (130**, M, B-). This tuple can be generalized with tuples in block
2 as “*-” to achieve one less *. Thus, this case can be eliminated.

– 0: Only the first tuple in block 3 has the non-sensitive value (130**,
M, B+) with can be generalized with tuples in block 1 to achieve one less
*. Thus, this case can also be eliminated.

2. The non-sensitive value of the first tuple in block 3 is (130**, M, B-) and the
number of the other three tuples in q∗-block 3 having original value (130**,
M, B-) is:
– 1 or 3: In both cases, the original table is already 2-diversify.
– 2: In this case, the optimal generalized table is not T ∗

– 0: It is easy to verify that its optimal generalized table is T ∗.

A generalization of the original table is as shown in Table 8. In addition, for
the identity (13021, M, B-) having “cancer”, the enhanced belief is 1 which is
higher than the posterior belief of 1

4 . Thus, this table suffers total disclosure for
tuple (13021, M, B-). Furthermore, this table also suffers partial disclosure for
(13021, M, B+) (details omitted).

General Result. The previous example is for k, ` = 2. We now show that total
disclosure can occurred for any k, ` where k ≥ ` ≥ 2.

Theorem 1 For any k, ` such that k ≥ ` ≥ 2, there exists an optimal k-
anonymized and `-diversified table T ∗ that suffers total disclosure.



12 Information Leakage in Optimal Anonymized and Diversified Data

Table 8. Generalization of the original table for Table 7.

Postal code Gender Blood group Condition

1 130** M A+ Heart Disease

130** M A+ Viral Infection

2 130** M A- Anxiety

130** M A- Cancer

3 130** M B- Cancer

4 130** M B+ Fever

130** M B+ cough

130** M B+ diabetes

Proof:
Let m = dk

` e and let n be a large number greater than 3k. Consider a table
containing a non-sensitive attribute Attr1 whose domain is bit string of length
2, and a sensitive attribute Attr2 whose domain is the set {A1, A2, ..., An} and
its k-anonymized, `-diversified table T ∗ as shown in Table 9. For abbreviation,
the right-most column indicates the number of tuples with the same values. For
example, in the first row, the “m” indicates that T ∗ contains m tuples with value
(11, A1).

This table T ∗ is entropy `-diverse because for block 1 and 2 we have −` ·
( 1

` ) log2(
1
` ) = log2(`) = log2(`) and for block 3 we have−(n−`)·( 1

n−` ) log2(
1

n−` ) =
log2(n− `) > log2(`).

Suppose an adversary wants to guess the sensitive value of non-sensitive value
00, which is generalized to block 3. His posterior belief for this tuple has sensitive
value A`+1 is β0*,A`+1

= 1
n−` .

Now, let us consider the scenario where the adversary knows the fact that
T ∗ is optimal.

Let us introduce the following lemma.

Lemma 2 Given a q∗-block Q of exactly ` different sensitive values, it is entropy
`-diverse only if all these ` different sensitive values have the same number of
tuples in this q∗ block.

This lemma holds because only when all sensitive values are of same number,
the entropy −(`) · 1

` log2(
1
` ) is equal to log2(`).

In this scenario, we should consider the enhanced belief with the above
lemma. Note that the original value for 0* can only be either 00 or 01. We
divide the possible original tables to the following cases:

1. The first tuple of block 3 is 01 and the number of other tuples having 01 as
their non-sensitive attribute is:
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Table 9. Released table in k-anonymity and `-diversity.

Attr1 Attr2 number of tuples

1 11 A1 m

11 A2 m

11 A3 m

... ... ...

11 A` m

2 10 A2 m

10 A3 m

10 A4 m

... ... ...

10 A`+1 m

3 0* A`+1 1

0* A`+2 1

... ... ...

0* An−1 1

0* An 1

(a) More than k − 2 but less than n − k. tuples with 01 and 00 are more
than k and they all have different sensitive value. Therefore, the original
table is already k-anonymized and `-diversify without generalizing the
Attr1. This is against the assumption that T ∗ is optimal.

(b) More than n−k−1. The number of tuples having non-sensitive value 00
is less than k and hence the original table is not k-anonymized. However,
we can generalize those tuples having 00 with block 1 and reduce the
number of *’s. Therefore, this case can be eliminated.

(c) Less than k − 1. We can generalize these tuples with block 2 to reduce
the number of *’s. Thus, T ∗ is not optimal.

2. The first tuple of block 3 is 00 and the number of other tuples having 00 as
their non-sensitive attribute is:
(a) More than k− 2 but less than n− k. This case can be eliminated as the

original table is already k-anonymized and `-diversified.
(b) More than n− k − 1. T ∗ is not optimal in this case.
(c) Less than k − 1 but more than 0. This case can still be eliminated. As

long as there are more than one tuple having the non-sensitive value 00,
we can still combine these tuples with block 2 (Lemma 2).

(d) Zero. T ∗ is optimal as we cannot add the first tuple of block 3 alone to
block 2 (Lemma 2).

Thus, G−1(T ∗) contains only a unique table to as shown in Table 10, andγ00,A`+1

is 1.
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Table 10. Original table of Table 9.

Attr1 Attr2 number of tuples

1 11 A1 m

11 A2 m

11 A3 m

... ... ...

11 A` m

2 10 A2 m

10 A3 m

10 A4 m

... ... ...

10 A`+1 m

3 00 A`+1 1

4 01 A`+2 1

... ... ...

01 An−1 1

01 An 1

5 Conclusion

In this paper, we have showed that the framework of choosing an optimal (w.r.t
an objective function) table from a collection of candidates that satisfies certain
privacy requirements, does not provide the assurance that the chosen table will
retain the privacy requirements. This is because the fact that the table is optimal
is a piece of additional information, which can be exploited by the adversaries.
This observation is demonstrated by counter-examples of optimal anonymized
and diversified tables. It is interesting to find out whether such framework has
been followed in other formulation of privacy, or other security requirements.
On the other hand, it is also interesting to find out whether there is a choice
of utility function and privacy requirement that can be securely applied in this
framework.
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