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Abstract. A redactable signature scheme for a string of objects sup-
ports verification even if multiple substrings are removed from the orig-
inal string. It is important that the redacted string and its signature do
not reveal anything about the content of the removed substrings. Ex-
isting schemes completely or partially leak a piece of information: the
lengths of the removed substrings. Such length information could be
crucial in many applications, especially when the removed substring has
low entropy. We propose a scheme that can hide the length. Our scheme
consists of two components. The first component H, which is a “colli-
sion resistant” hash, maps a string to an unordered set, whereby existing
schemes on unordered sets can then be applied. However, a sequence of
random numbers has to be explicitly stored and thus it produces a large
signature of size at least (mk)-bits where m is the number of objects
and k is the size of a key sufficiently large for cryptographic operations.
The second component uses RGGM tree, a variant of GGM tree, to gen-
erate the pseudo random numbers from a short seed, expected to be of
size O(k + tklogm) where t is the number of removed substrings. Unlike
GGM tree, the structure of the proposed RGGM tree is random. By an
intriguing statistical property of the random tree, the redacted tree does
not reveal the lengths of the substrings removed. The hash function H
and the RGGM tree can be of independent interests.
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1 Introduction

We are interested in a signature scheme for strings of objects whereby their
authenticity can be verified even if some substrings have been removed, that is,
the strings are redacted. Let x = x125...xz,, be a string, for example a text
document where each object can be a character or a word, or an audio file where
each object is a sample. The string x is signed by the authority and both x and
its signature s are passed to another party, say Alice. Alice wants to show Bob
x but Bob is not authorized to view certain parts of the string, say xox3x4 and
x7. Thus, Alice shows Bob X = x1 ¢ 2526 ¢ 23 . . . ., where each ¢ indicates the
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location of a removed substring. On the other hand, Bob may want to verify the
authenticity of X. A redactable signature scheme allows Alice to produce a valid
signature s for the redacted string X, even if Alice does not have the authority’s
secret key. From the new signature s, Bob can then verify that X is indeed a
redacted version of a string signed by the authority.

Unlike the usual signature schemes, redactable signature scheme has addi-
tional requirement on privacy: information of the removed strings should be
hidden. In this paper, we consider the stringent requirement that, Bob could not
obtain any information of any removed substring, except the fact that a non-
empty substring has been removed at each location ¢. This simple requirement
turns out to be difficult to achieve. Existing schemes are unable to completely
hide a piece of information: the length of each removed substring. Note that
information on length could be crucial if the substring has low entropy. For ex-
ample, if the substring is either “Approved” or “Not Approved”, then its length
reveals everything. The redactable signature scheme proposed by Johnson et al.
[9] employs a Merkle tree [11] and a GGM tree [7] to generate a short signa-
ture. However, it is easy to derive the length from the structures of the redacted
Merkle and GGM trees. A straightforward modification by introducing random-
ness into the tree structure also does not hide the length completely. Schemes
by Johnson et al. [9] (set-homomorphic signatures) and Miyazaki et al. [13] are
designed for unordered sets and are not applicable for a string. A way to extend
their schemes to strings is by assigning a sequence of increasing random num-
bers to the objects [13]. However, this leads to large signatures since the random
numbers have to be explicitly stored, and more importantly, it is insecure since
the gaps in the sequence reveal some information about the number of removed
objects.

Note that the type of information to be removed varies for different applica-
tions. There are applications where the lengths of the removed strings should not
be hidden. As noted by Johnson et al. [9], semantic attack could be possible in
some scenarios if the length information is hidden. On the other hand, there are
also applications where not only the substrings have to be completely purged,
the fact that a string has been redacted must be hidden. Our scheme can be
modified to cater for the above two scenarios.

In this paper, we propose a scheme that can hide the lengths of the removed
substrings. Our scheme incorporates two components: a hash, and a random tree
with a hiding property. We first give a scheme RSS using the first component,
and then another scheme SRSS with both components. The first component
hashes a string of objects to an unordered set. For the unordered set, exist-
ing redactable schemes [13,9] on unordered sets can be applied. The scheme
RSS satisfies the requirements on unforgeability and privacy preserving under
reasonable cryptographic assumptions. However, it produces a large signature.
Essentially, the main portion of the signature is a sequence of random numbers
(ri,m9,...,mm), where each r; is associated with the i-th object in the string.

The goal of the second component is to reduce the signature size by generat-
ing the r;’s from a small seed ¢. If a substring is removed, the corresponding ran-



dom numbers have to be removed accordingly. Thus, a straightforward method
of generating the random numbers iteratively starting from the seed violates
privacy, since the seed t reveals all the random numbers.

We employ a variant of GGM binary tree to generate the r;’s in a top-down
manner, where the 7;’s are at the leaves, and the seed t is at the root. Unlike the
GGM tree which is balanced, we use a random binary tree where the structure
of the binary tree is random. After a substring is removed, the associated leaves
and all their ancestors are to be removed, resulting in a collection of subtrees
(Figure 1). The roots of the subtrees collectively form the new seed t for the
redacted 7;’s. Note that from the structures of the subtrees, an adversary might
still derive some information of the length of a removed substring. Our main
observation is that, by choosing an appropriate tree generation algorithm, the
structure of the subtrees reveals nothing about the size of the original tree.
Consider a game between- Alice and Bob. Suppose Alice randomly picks a binary
tree and it is equal likely that the tree contains 1000 leaves or 9 leaves. Now Alice
redacts the tree by removing one substring and only 8 leaves are left. From the
structure of the remaining subtrees (for example Figure 1(b)), Bob tries to guess
the size of the original tree. Now, if Alice employs a tree generation algorithm
with the hiding property, Bob cannot succeed with probability more than 0.5.
This hiding property is rather counter-intuitive. Since the size of the tree is
involved in the tree generation and thus intuitively the information about the
size of the tree is spread throughout the tree. It is quite surprising that the global
information on size can be completely removed by deleting some nodes.
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Fig. 1. Redacting the tree in (a) by removing r¢, gives rise to the redacted tree (b).

Contribution and Organization.
1.  We propose a “collision resistant” hash H that maps strings to unordered



sets. From H we obtain RSS, a redactable signature scheme for strings. Un-
like previously known methods, RSS is able to hide the lengths of the removed
substrings. We show that RSS is secure against chosen message attack (The-
orem 2) and privacy preserving (Theorem 3) under assumptions weaker than
the random oracle assumption. However, the signature size is large. It consists
of km + kt + k bits, where « is the size of the signature produced by a known
redactable signature scheme for unordered sets, m is the number of objects in
the redacted string, ¢ is the number of substrings removed, and k is a security
parameter (e.g. k = 1024).

2. We observe a hiding property of a random tree (Theorem 4). Based on the
observation, we propose RGGM, a pseudo random number generator which can
be viewed as a randomized version of GGM [7]. If multiple substrings of pseudo
random numbers are to be removed, we can efficiently find a new seed that gen-
erates the retained numbers, and yet it is computationally difficult to derive the
content and length of each removed substring from the new seed, except the
locations of the removed substrings.

3. We propose SRSS by incorporating RGGM into RSS. The expected size of
the signature is in k + O(k + ktlogm). SRSS is secure against chosen message
attack (Corollary 5) and privacy preserving (Corollary 6).

2 Related Work

Johnson et al. [9] introduced redactable signature schemes which enable verifi-
cation of a redacted signed document. Signature scheme with similar property
has also been proposed for XML documents [15], where the redaction operation
is to remove XML nodes. Redactable signatures are examples of homomorphic
signatures which are introduced by Rivest in his talks on “Two New Signature
Schemes” [14] and formalized by Johnson et al. [9]. Micali et al. [12] gave a
transitive signature scheme as the first construction of homomorphic signatures.
They also asked for other possible “signature algebras”. The notions on homo-
morphic signatures can be traced back to incremental cryptography, introduced
by Bellare, Goldreich and Goldwasser [3,4]. Recently, Ateniese et al. [2] intro-
duced sanitizable signature scheme [10, 8,16, 13] allowing a semi-trusted censor
modifies the signed documents in a limited and controlled way.

The redactable signature scheme on strings is closely related to directed
transitive signature scheme [12, 17]. It is possible to convert a directed transitive
signature scheme to a redactable signature scheme on strings. However, existing
directed transitive signature schemes do not provide privacy in the sense that
the resulting signatures reveal some information about the removed substrings.

There are extensive works on random tree. Aldous [1] considered random
trees satisfying this consistency property: removing a random leaf from R(k)
gives R(k — 1), where R(k) is a random tree with k leaves. Thus, given a tree
with k leaves, it can be originated from a tree with k + ¢ leaves, and then with ¢



randomly chosen leaves removed, for any ¢. This consistency property is similar to
the hiding property we seek. Unfortunately, it cannot be applied in our problem,
since the leaves to be removed are not randomly chosen.

3 Formulation and Background

Johnson et al.[9] gave definitions on homomorphic signature schemes and their
security for binary operators. The next two definitions (Definition 1 & 2) are
based on the notations by Johnson et al.[9].

A string is a sequence of objects from an object space (or alphabet) O. For
example, O can be the set of ASCII characters, collection of words, or audio
samples, etc. We assume that the first and last object in x can not be removed.
This assumption can be easily met by putting a special symbol at the front and
back of the string. After a few substrings are removed from x, the string x may
break into substrings, say X1, Xa,...,X,. The redacted string (X,e), which we
call annotated string®, is represented by the string X = x;[|x2]| ... ||x, and an
annotation € = (m, by, ba, ..., b,) where || denotes concatenation, b;’s is a strictly
increasing sequence indicating the locations of the removed substrings, m is the
number of objects in X, and v € {u — 1,u,u + 1}. For each i, b; indicates that
a non-empty substring has been removed in between the b;-th and (1 + b;)-th
locations. If b; = 0 or b, = m, this indicates that a non-empty substring has
been removed at the beginning or end of the string respectively. For example,
(abeda, (5,0, 3)) is a redacted string of the original xaxzabcyyyda. For convenient,
we sometimes write a sequence of objects as (x1,%2,23,...,Z;y) Or as a string
T1X2X3 ... T

Let us define a binary relation > between annotated strings. Given two an-
notated strings X} = (x1,e1) and Xy = (X2,€2), we say X; > Ao, if either xo
can be obtained from x; by removing a non-empty substring in x;, and the e,
is updated from e; accordingly, or there is a X’ s.t. A7 = A and X > As.

DEFINITION 1 (REDACTABLE SIGNATURE SCHEME [9]) A redactable signature
scheme with respect to binary relation &, is a tuple of probabilistic polynomial
time algorithms (KGen, Sign,Verify, Redact), such that

1. for any message x, 0 = Signg-(v) = Verifyp,(x,0) = TRUE;
2. for any messages x and y, such that x -y,

Verify,,(z,0) = TRUE A o' = Redactpi(z,0,y) = Verifyp,(y,o’) = TRUE,
where (PK,SK) « KGen(1%) and k is the security parameter.

Both Johnson et al.[9] and Miyazaki et al.[13] presented a redactable signa-
ture scheme w.r.t superset relation. Johnson et al.[9] also gave security definition
for homomorphic signature schemes. We adapt their definition for redactable sig-
nature scheme. Let - denote a binary relation. For any set .S, let spany(S) denote
the set {x: 3y € S, s.t. y -z}

! A string with an annotation which specifies the locations of redactions.



DEFINITION 2 (UNFORGEABILITY OF REDACTABLE SIGNATURE SCHEME [9])
A redactable signature scheme (KGen, Sign, Verify,Redact) is (¢, q, €)-unforgeable
against existential forgeries with respect to = under adaptive chosen message
attack, if any adversary A that makes at most q¢ chosen-message queries adap-
tively and runs in time at most t, has advantage AdvA < €. The advantage
of an adversary A is defined as the probability that, after queries on £ (¢ < q)
messages xi,Ta,...,xTe, A outputs a valid signature o for some message v &
spany({x1,za,...,x¢}). Formally,

(PK,SK) « KGen(1%); ASi&sk = (z,0);

AdvA = Pr Verifyp,(x,0) = TRUE and = & span-({x1,22,...,2¢}) |’

where the probability is taken over the random coins used by KGen,Sign and A.

Redactable signature schemes have an additional security requirement on
privacy [2]: the adversary should not be able to derive any information about
the removed substrings from a redacted string and its signature.

DEFINITION 3 (PRIVACY PRESERVING) A redactable signature scheme

(KGen, Sign,Verify,Redact) is privacy preserving if, given the public key PK
and any annotated strings Xy, Xo, X, such that X1 = X and Xo = X, the follow-
ing distributions 81 and Sy are computationally indistinguishable:

S1 = {0 : 0 =Redactpi(X1,Signg,c(Xi;r1), X5ra)},
Sy = {0 : 0 = Redactpi(Xo, Signg,c(Xa;r1), Xjra)},

where r1 and ro are random bits used by Sign and Redact respectively, and
public/private key (PK,SK) is generated by KGen.

4 RSS: Redactable Signature Scheme for Strings

We propose RSS, a redactable signature scheme for strings that is able to hide
the lengths of the removed substrings. Our approach is as follows: we first propose
a hash function H that maps an annotated string X and an auxiliary input y to
an unordered set. This hash is “collision resistant” and satisfies some properties
on substring removal. Using H and some known redactable signature schemes
for unordered sets, we have a redactable signature scheme for strings.

4.1 Hashing strings to unordered sets

Let H be a hash function that maps an annotated string X and an auxiliary input
y to a (unordered) set of elements from some universe. The auxiliary could be
a sequence of numbers from a finite ring, and is not of particular interest right
now. In our construction (Table 1), H maps the input to a set of 3-tuples in
Ly X Loy X Ly, where n is some chosen parameter.



DEFINITION 4 (COLLISION RESISTANT) H is (t, €)-collision-resistant if, for any
algorithm A with running time at most t,

Prixi # Xo N H(Az,y2) C H(X1,y1)] <,

where (X1, Xa,y2) is the output of A on input y1, and the probability is taken
over uniformly randomly chosen y1 and random bits used by A.

To be used in constructing a secure scheme, besides collision resistance, the
hash function H is also required to be,

1. redactable, that is, given X;, X5 and y1, such that X; = A5, it is easy to
find y2 such that H(X1,y1) D H(Xs,y2); and

2. privacy preserving, that is, H(Xs, y2) must not reveal any information about
the removed substring.

The property on privacy preserving is essential and used in the proof of Theo-
rem 3. However, for simplicity, we will not explicitly formulate the requirement
here.

4.2 Construction of H

We present a hash function H(:,-) in Table 1 based on some hash functions h
that output odd numbers. In practice, we may use popular cryptographic hash
function like SHA-2 as h, but with the least significant bit always set to 1.
For security analysis, we choose functions with certain security requirements as
stated in Lemma 1.

Let n be a RSA modulus, and h : Z,, — Z, be a hash function. Given X = z1x2...2Tm
associated with annotation e, r = r17r2r3...7y, and w = wiwaws . .. w,, where for
each i, x;,7i, w; € Zy (i.e. x,r and w are strings over alphabet Z,), we define H as

H((x,e), (r,w)) £ {t; : t; = (zs, 7, (11}71-,-[;:l nrs) mod n)),1 <i < m}.

Table 1. Definition of H(-,-).

Redactable requirement. Note that the hash H is redactable as mentioned in
Section 4.1, that is, given (x1,e1), (r1, w1) and (X2, e2) where (x1,e1) > (x2,e2),
it is easy to find a (ra, wy) such that

H((x1,e1), (r1,w1)) D H((x2, e2), (r2, w2)).

The design of ‘H is “inspired” by the following observation. Let us view the
sequence (t1,ta,...,t,) as the outputs of an iterative hash. We can rewrite t;’s



in the form: ¢;+1 = C(t;, z;41,7i+1), where C is the basic block in the iterative
hash. In the event that a substring, say at location ¢ — 1 and 4, is to be removed,
both (z;—1,7;—1) and (x;,7;) also have to be removed. Yet, we want the iterative
hash can still be computed. This can be achieved with the help of the witness
w;’s.

Remarks on r;’s. It is crucial that the value of r; is explicitly represented in t;
for each i (Table 1). If the r;’s are omitted in the design, for instance, by using
this alternative definition,

H;‘:1 h(r;)

ﬁ((X, e)a (I‘,W)) = {tAl : fl = (xiv (wz mod n))}a

then there would be no linkage between the r;’s and x;’s. Such lack of linkage
can be exploited to find collisions.

LEMMA 1 The hash function H as defined in Table 1, is (poly:(k), m)-
collision-resistant for any positive polynomials polyy(-) and polys(-), where k
is the security parameter, i.e. the bit length of n, assuming that h is division

intractable? and always outputs odd prime integers, and Strong RSA Problem is
hard.

Essentially, the proof reduces Strong RSA Problem or Division Problem [6]
to the problem of finding collisions. Gennaro et al.[6] gave a way to construct a
hash function that is division intractable and always outputs odd prime numbers.
Thus the conditions of the Lemma 1 can be achieved.

4.3 Construction of RSS

We construct a redactable signature scheme RSS, which consists of four al-
gorithms KGen, Sign,Verify, and Redact, for strings with respect to binary
relation > based on the hash function H defined in Table 1 and a redactable
signature scheme for (unordered) sets with respect to superset relation 2.

The signer chooses a RSA modulus n and an element g of large order in
Zy. Both n and g are public. Let the object space be Z,, , that is, a string is a
sequence of integers from Z,,. Let h : Z,, — Z,, be a hash which satisfies security
requirement stated in Lemma 1. Note that in practice, it may be suffice to employ
popular cryptographic hash like SHA-2 (but with the least significant bit of the
output always set to 1) as the function h. Let SSS = (keygen, sig, vrf,rec)
be a redactable signature scheme for unordered sets w.r.t superset relation D.
The signer also needs to choose the public and secret key pair (PK,SK) of the
underlying signature scheme SSS. The details of KGen, Sign, Verify, and Redact
are presented in Table 2, Table 3, Table 4 and Table 5 respectively.

The final signature of a string xixs...x,, consists of m random numbers
71,72, ..., m, the witnesses wy, ws, ..., w,, where r;,w; € Z, for each i, and a
signature s constructed by SSS.

2 Division intractability [6] implies collision resistance.



KGen. Given security parameter k.

1. Choose a RSA modulus n, and an element g of large order in Z,.
2. Run key generating algorithm keygen on input 1% to get key (PK,SK).
3. Output (n, g, PK) as public key and SK as private key.

Table 2. RSS: KGen.

Sign. Given x = z122...Zy, and its associated annotation e = (m)

1. Let w; = g for each i. Choose m distinct random numbers r1,72,...,7mn. Let
r=rirars... m and w = wiwaws . . . Wy, Compute

t =H((x,e), (r,w)).
2. Sign the set t using SSS with the secret key SK to obtain s:
s = sigg,(t).

3. The final signature consists of the random numbers r;’s, witnesses w;’s, and the
signature s. That is,

(F7W7S) or (T17T27---77’m; Wi, W2, .., Wi} S)

Table 3. RSS: Sign.

Initially, the witness is set to be w; = g for each i (Step 1 in Table 3). The
witness will be modified during redactions. By comparing the neighboring value
within the witness w, we can deduce the locations of the removed substrings.
Specifically, for any 1 < i < m, w;_1 # w; if and only if a non-empty substring
has been removed between x;_1 and x;. Recall that the first and last object in
the string cannot be removed (Section 3) and thus we do not have to consider
cases when i =1and i — 1 =m.

Since the witness w should be consistent with the annotation b, and the H
is collision-resistant, it can be used to verify the integrity of b, as in the Step 1
of Table 4.

THEOREM 2 RSS is (t, q, 1= )-unforgeable against evistential forgeries with re-
spect to relation =, if SSS is (t + qto, q, €1)-unforgeable against existential forg-
eries with respect to superset relation 2, and H is (t+ qt1, €2)-collision-resistant,
where to is the running time of H and t1 is the time needed by RSS to sign a
document.

Our construction of H (Table 1) is collision resistant (Lemma 1). Johnson
et al.[9] showed their redactable signature scheme Sig (in Section 5 of [9]) is
(t,q, €)-unforgeable under reasonable assumptions (see Theorem 1 in [9]), for
some proper parameters ¢,q and e. Miyazaki et al.[13] also showed a similar



Verify. Given a string x = 2122 ...x,;, associated with annotation e, its signature
(r,w,s), the public information n, g, and the public key PK of SSS.

1. If e and w are not consistent, output FALSE.
2. Compute t=H(x,(r,w)).
3. (r,w,s) is a valid signature of x under RSS, if and only if s is a valid signature
of t under SSS, i.e.
vripi(t,s) = TRUE.

Table 4. RSS: Verify.

Redact. Given a string x = z122 ..., associated with annotation e, and its sig-
nature (r,w,s), where r = 7172 ...7m, W = WiW2...Wn, the public information n, g,
public key PK for SSS, and (z,7) the location of the string to be removed (that is
ZiTit1 ... 2; 1s to be removed).

1. Update e to obtain new annotation é. Compute u = i:z h(rk), to update the
witnesses in the following way: for each £ > j, update wy

- u
we — wp, mod n.

2. Let X = z122...Zi-1%j41...Tm, T = mro...7Tio1Tj1.. . Tm and w =
wiwsy .. .wi_le+11b]-+2 - lf)m. Compute

t=H((%,8),(F,W)).

3. Compute

§ = recpx(t,s,t)

where t = H((x, e), (r,w)).
4. Output (¥, W, 8) as the signature of (%X, &).

Table 5. RSS: Redact.

result on the unforgeability of the redactable signature scheme they proposed.
Hence, conditions in Theorem 2 can be satisfied.

THEOREM 3 The redactable signature scheme RSS is privacy preserving (as de-
fined in Definition 3), assuming that hash function h satisfies the property: the
two distributions X = "2 mod n and Y = gh(U{) mod n are computa-
tionally indistinguishable, where n is a RSA modulus, g is an element of large
order in Zy, and U;’s and U}’s are all independent uniform random variables
over Ln,.

Note that the scheme SSS does not need to satisfy requirement on privacy, this
is because information is already removed before algorithms of SSS are applied.



4.4 Efficiency

The size of s depends on SSS, and let us assume it requires x bits. The number
of distinct w;’s is about the same as the number of redactions occurred. So w;’s
can be represented in t(k + [logm]) bits, where ¢ is the number of substrings
removed, and k is the bit length of n. Thus the total number of bits required is
at most k(m + t) + t[logm] + . The dominant term is km, which is the total
size of the random numbers r;’s.

Disregarding the time taken by the scheme SSS, and the time required to
compute the hash h(-), during signing, O(m) of k-bits exponentiation operations
are required. During redaction, if £ consecutive objects are to be removed between
position ¢ and 7, and ¢’ number of redactions have been made after position j,
then the number of k-bit exponentiation operations is at most £(¢' 4 1), which is
in O(¢m). During verification, O(tm) number of k-bits exponentiation operations
are required. Hence, our scheme is suitable for small ¢, which is reasonable in
practice. In sum, the main drawback of RSS is the size of its signature. In the
next section, we will reduce its size using a random tree.

5 RGGM: Random tree with Hiding property

We propose RGGM, a variant of GGM tree [7] to generate a sequence of pseudo
random numbers, where the structure of the tree is randomized. This generator
provides us with the ability to remove multiple substrings of pseudo random
numbers, while still being able to generate the retained numbers from a short
seed. The expected size of the new seed is in O(k 4 tklogm) where ¢ is the
number of removed substrings, m is the number of pseudo random numbers,
and k is a security parameter. More importantly, the new seed does not reveal
any information about the size nor the content of the removed substrings.

Pseudo random number generation. To generate m pseudo random numbers
we employ a method similar to that in the redactable signature scheme proposed
by Johnson et al. [9], which is based on the GGM tree [7]. Let G: K — K x K
be a length-doubling pseudo random number generator. First pick an arbitrary
binary tree T" with m leaves, where all internal nodes of T have exactly two
children, the left and right child. Next, pick a seed t € IC uniformly at random,
and associate it with the root. The pseudo random numbers r1,79,...,7,, are
then computed from ¢ in the usual top-down manner along the binary tree.

Hiding random numbers. If r; is to be removed, the associated leaf node and all
its ancestors will be removed, as illustrated by the example in Figure 1(b). The
values associated with the roots of the remaining subtrees, and a description
of the structure of the subtrees, form the new seed, whereby the remaining
random values 7;’s (j # i) can be re-computed. By the property of G, it is
computationally difficult to guess the removed value r; from the new seed.
Unlike the method proposed by Johnson et al. [9], our tree T is randomly
generated. If the tree is known to be balanced (or known to be of some fixed



TreeGen: Given m, output a binary tree T" with m leaves:

Pick a p uniformly at random from {1,2,...,m — 1}.

Recursively generate a tree 17 with p leaves.

Recursively generate a tree Tb with m — p leaves.

Output a binary tree with 71 as the left subtree and T» as the right subtree.

W=

Table 6. TreeGen: a random tree generation algorithm

structure), some information on the number of leaf nodes removed can be derived
from the redacted tree. Our random trees are generated by the probabilistic
algorithm TreeGen in Table 6. Note that descriptions of the structure of the tree
are required for the regeneration of the random values 7;’s.

At the moment, for ease of presentation, the descriptions are stored together
with the seed. This increases the size of the seed. To reduce the size, we can
replace the description by another short random seed ¢, which is assigned to the
root. The random input required in Step 1 of the algorithm can be generated
from £ using G. A difference between the two methods of storing the (redacted)
tree structure information is that in the former, we will have an information
theoretic security result, whereas in the later, the security depends on G.

Our main observation is as follows: after a substring of leaves is removed from
the random tree, the remaining subtrees do not reveal (information theoretically)
anything about the number of leaves removed, except the fact that at least one
leaf has been removed at that location.

Notations.  Given a binary tree T, its leaf nodes can be listed from left to
right to obtain a sequence. We call a subsequence of consecutive leaves a sub-
string of leaves. After multiple substrings of leaves and all of their ancestor nodes
are deleted, the remaining structures form a redacted tree® represented by two
sequences, T = (T1,Ts,...,T,) and b = (m,by,ba,...,b,), where T;’s are the
subtrees retained, and each b; indicates that a substring was removed between
the b;-th and (b; + 1)-th locations in the remaining sequence of leaf nodes. Let
@; be the number of leaves that were removed in this substring. We call the se-
quence {m, (b1,q1), (b2,q2),- .., (bu,q.)) the original annotation of b. Thus, the
total number of leaf nodes removed is >, g;.

Let us consider this process. Given an original annotation by = (m, (b1, ¢1),
(b2,42) ., (by,qu)), a random tree T of size m + Y . ; ¢; is generated using
TreeGen, and then redacted according to b;. Let RED(b;) be the redacted tree.

From an adversary’s point of view, he has RED(b;), represented as (T,b),
and wants to guess the ¢;’s in the original annotation b;. We can show that the
additional knowledge of T does not improve his chances, compared to another
adversary who only has the annotation b but not the tree T. It is suffice to

3 Although strictly speaking it is a forest.



show that, given any b and any two possible original annotations b; and bg, the
conditional probabilities of obtaining (T, b) are the same. That is,

THEOREM 4 For any redacted tree (T, b), any distribution B on the original an-
notation, and bl = <m7 (bla QI)a (an qQ)7 SRR (buv QU)>7 b2 = <m7 (b17 Qi): (b27 ql2)7
oy (bur @),

Prob(RED(B) = (T, b) | B =by) = Prob(RED(B) = (T, b) | B = b)

6 SRSS: A Short Redactable Signature Scheme for
Strings

RSS produces a large signature, whose main portion is a sequence of true ran-
dom numbers r;’s. We can combine RGGM with RSS to produce a short sig-
nature by replacing the r;’s with pseudo random numbers generated by RGGM.
Let us call this combined scheme SRSS, short redactable signature scheme for
strings. It is easy to show that SRSS is unforgeable and privacy preserving
from Lemma 1, Theorem 2, Theorem 3, Theorem 4, and the fact that RGGM is
a pseudo random number generator.

Unforgeability.  From the definition of cryptographic secure pseudo random
number generator and Theorem 2, we conclude that SRSS is unforgeable.

COROLLARY 5 For any positive polynomials (in k)t and ¢, SRSS is (t,q, 15 )-
unforgeable against existential forgeries with respect to =, if SSS is (t+qto, q, €1)-
unforgeable against existential forgeries with respect to 2, H is (t + qt1,€2)-
collision-resistant, and G is a cryptographic secure pseudo random number gen-
erator, where tg is the running time of H, t1 is the time needed by SRSS to sign
a document, and k is the security parameter.

Privacy.  From the definition of cryptographic secure pseudo random num-
ber generator, Theorem 3 and Theorem 4, we conclude that SRSS is privacy
preserving.

COROLLARY 6 The redactable signature scheme SRSS is privacy preserving (as
defined in Definition 3), assuming that the hash function h satisfies the property:
the two distributions X = g"UDMU2) mod n and Y = gh(U{) mod n are com-
putationally indistinguishable, and G is a cryptographic secure pseudo random
number generator, where n is a RSA modulus, g is an element of large order in
Zy and U;’s and UJ{ ’s are all independent uniform random variables over Z,,
and h(-) is used to define H in Table 1.

Efficiency. The improvement of SRSS is in signature size. Given the unredacted
string, the size of the signature is k4 2k, where & is the signature size of SSS, and
k is the length of each seed. Recall that we need two seeds in RGGM, one for the
generation of the numbers, and the other for the tree structure. If ¢ substrings
are removed, the signature size is k + tk + O(ktlogm), where the term tk is for
the witness, and O(ktlogm) is required for the RGGM.



7 Other variants

7.1 Allowing removal of empty substring

Both RSS and SRSS do not allow removal of empty substrings. In fact, it is
considered to be a forgery if a censor declares that a substring has been removed
but actually the censor does not remove anything. However, some applications
may want to allow removal of empty substrings. This can be achieved by slight
modifications to our schemes. To sign a string x12s...x,,, special symbol }
is inserted to obtain the expanded string x = faifaof. .. a1 which will be
signed directly using RSS or SRSS. To remove a substring xg, the expanded
substring of x( is actually removed. In the case where a substring has already
being removed in front or at the end of xg, the f is not included at the front
or the end accordingly. To remove an empty substring, simply remove the fj at
intended location.

7.2 Hiding the fact that the string is redacted

There is a question on whether one should hide the location of a removed sub-
string or even the occurrence of redaction. This requirement is also known as
invisibility or transparency [2,13]. For a small object space, if invisibility is sat-
isfied, a censor may take a long signed string, remove some substrings to form
an arbitrary “authentic” short string. Nevertheless, some applications may need
invisibility.

Here is a simple variation of RSS that achieves this. To sign a string, sim-
ply add a special symbols f in-between any two consecutive objects. Sign the
expanded string and then immediately redact it by removing all f’s. Redaction
and verification is the same as before. However, this variant produces a large sig-
nature even if we use SRSS. Furthermore, the computation during verification
is high. At least £2(m?) exponentiation operations are required.

To reduce the size of signature, there is an alternative: sign all the pairs of
objects. To sign the string x = z1xox3... %y, first generate random numbers
71,72, ..., m such that r;||z;’s are distinct. Next, let t be the set of all pairs
{(ril|lzi,jl|x;)}ic; and employ SSS to sign t. When an object z; is to be removed,
simply remove all the pairs that involve x; from t. Since the role of r; is to ensure
that all elements are distinct, the size of each r; can be smaller than the random
numbers required by RSS.

8 Discussion and Conclusion

We considered a simple but difficult requirement in redactable signature scheme:
hiding the lengths of the removed substrings. We exploited an intriguing statis-
tical property of random trees, and employed a hash from strings to unordered
sets to achieve the requirement. Although the signature is short, its size still
depends on the number of substrings removed and the length of the string. In



contrast, there are known schemes for unordered sets, whose signature size is a
constant. Hence, it is interesting to find out whether it is possible to close the

gap.

The two main components, the hash H and the RGGM tree, proposed in

this paper, could be of independent interests. The hash function may play a
role in the design of transitive signature with additional property on privacy
preservation. Many secure outsourced database applications involve Merkel tree
or GGM tree. The hiding property of the RGGM tree may be useful in those
applications.
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