
Evading	Classifiers	by	Morphing	in	the	Dark

Hung	Dang,	Huang	Yue,	Ee-Chien	Chang
School	of	Computing

National	University	of	Singapore



1.	Motivations



Evasion	Attack	

• Starting	from	a	malicious	sample		x that	is	rejected	by	a	detector,		
the	attacker	wants	to	find	a			x’				s.t.
1. x’	is	accepted	by	the	detector
2. x’	retains	the	intended	malicious	property	

Detectorx

x’ Detector

reject

accept
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Examples:	Malicious	PDF	detection

• Attacker	wants	to	send	a	malicious	PDF	file	as	attachment.		The	email	server	has	a	
malware	detector	in-placed.		Attacker	wants	to	evade	the	detector.

• To	get	feedback	on	whether	a	PDF	x’ is	rejected	or	accepted	by	the	detector	,	the	
attacker can	send	an	email	with	x’,	back	to	the	attacker.			

• The	detector	functions	as	a	black	box.		The	number	of	accesses	to	the	black	box	is	
limited.

Email	Server	with	malware	detectorAttacker

Tagged as	reject/accept			(malicious/benign)

Malicious	PDF		x
as	attachment
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Examples

• Adversarial	Examples	in	machine	learning.	 E.g.	Wearing	carefully	crafted	
spectacle	so	as	to	confuse	face	recognition	system	(M.	Sharif	et	al.	CCS	2016)	

• Sensitivity	attacks	on	image	watermark	– non-machine	learning-based.	
(Linnartz et.	al.		IH	1998)	

• Malware	detection	– non-image	domain.				 E.g.		PDF	malware	(Xu	et.	al.,	NDSS	
2016)

• Many	more….	

[1]	M.	Sharif,	S.	Bhagavatula,	L.	Bauer,	M.K.	Reiter,	Accessorize	to	a	Crime:	Real	and	Stealthy	Attacks	on	State-of-
the-Art	Face	Recognition,	CCS	2016.
[2]	J.-P.M.G. Linnartz and		M.	Dijk,	Analysis	of	the	Sensitivity	Attack	against	Electronic	Watermarks	in	Images,	
Information	Hiding	1998.
[3]	W.	Xu,	Y.	Qi,	and	D.	Evans.	Automatically	evading	classifiers,	In	NDSS	2016.
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Challenges	in	evasion	attacks

• Difficulty	in	applying	algorithms	over	different	domains	– Reliance	on	domain	
knowledge,	such	as	detector’s	architecture	and	domain	representation/metric	
space	that	facilitates	transformation		(e.g.	vector	spaces).

• Limited	feedback	from	the	detector – Minimal	information	and	number	of	
accesses.	However,	many	known	attacks	assume	the	black-box	detector	
provides	a	real-value	feedback	on	confidence	level.

Goal
• To		investigate	evasion	attacks	under	a	generic	setting	(separating	
algorithmic	and	domain-specific	mechanism)	with	binary-output	detector.	
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II.	Evasion	in	the	Dark



Three	black-boxes	

• Detector.		Classifies	a	sample	x
as	malicious	(reject)	or	benign	
(accept).	

• Tester:		Provides	the	ground	
truth.

• Morpher.	Facilitates	sample	
transformation.			

DetectorSample	x
Reject

Accept

TesterSample	x
Malicious

Benign

MorpherSample	x

seed	r

x’

CCS	2017 Evading	Clssifers	by	Morphing	in	the	Dark 8 of	27



Evasion	by	Morphing

• Given	a	malicious	sample	x that	is	rejected	by	Detector.		The	attacker	
wants	to	find	a	successively	morphed	x’		s.t.
– x’		is	accepted	by	the	Detector		
– x’		is	declared	as	malicious	by	the	Tester	
meeting	certain	cost	requirements	on	the	number	of	accesses	to	
the	black-boxes.

Detector Reject

Tester

x

Malicious

Detector Accept

Tester

x’

Malicious

morpher morpher…

r1 rt
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Evasion	by	Morphing

Accepted	by	Detector

Starting	sample

Evading	sample

CCS	2017 Evading	Clssifers	by	Morphing	in	the	Dark

Malicious	(Tester)

10 of	27



Remarks

• Output	of	Detector	and	Tester	are	binary.

• Query	to	Morpher consists	of	both		x and	r.	

MorpherSample	x

seed	r

x’
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Accepted	by	Detector

Starting	sample

Evading	sample

Malicious	(Tester)

with	Inserted	and/or	deleted	objects
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Remarks:		Morphing	in	the	dark

• The	only	mechanism	to	obtain	other	samples	is	through	morphing.

• The	attacker	might	not	know	the	relationship	between	r,	x and	the	morphed	
sample	x’.		To	the	attacker,	the	Morpher performs	“random”	morphing.		Such	
uncertainty	captures	a	situation	where	the	attacker	is	unable	to	exploit	domain	
knowledge	to	manipulate	the	samples.

• E.g.	given	two	samples	x,	y,		the	attacker	may	not	able	to	find	a	morphed	sample	
that	is	the	“average”	of	x	and	y.

• Morpher is	deterministic,	thus	morphing	is	repeatable	if	supplied	with	the	same	
seed.			

MorpherSample	x

seed
r

x’

CCS	2017 Evading	Clssifers	by	Morphing	in	the	Dark 12 of	27



Recent	work	on	black-box	evasion

• Xu	et	al.	(NDSS	2016)	gave	an	attack	on	pdf	malware	using	the	
3	black-boxes.
– Real-value	confidence	level		feedback	from	Detector.
– Domain	knowledge:	assume	“trace	replay”,	i.e.	a	same	sequence	of	
morphing	steps	(trace)	could	produce	similar	effects	on	different	
samples	(replay).
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II.	Proposed	Evasion	Algorithm



Overcoming	Binary	Output:	Flipping	distances

Evading	samples

Malice-flipping	distance

Reject-flipping	distance

Given	a	path	of	successively	morphed	samples,	we	can	define:	

• Malice-flipping	distance:	 Distance	the	samples	first	switch	from	Malicious to	Benign.
• Reject-flipping	distance:				Distance	the	samples	first	switch	from	Reject to	Accept.

Evading	path
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Assigning	numeric	state	to	samples	

• For	a	sample	s,	we	can	assign		the	following			to	be	the	state	of	s:
Probability	(	a	random	path	starting	from	s is	evading)	

Such	real-value	state	would	be	useful	in		the	search	of	evading	samples.

• However,	it	is	difficult	to	estimate	the	probability.

• Alternatively,	assign		Expected	Gap	to	be	the	state.		
– Intuitively,	a	smaller	Gap	implies	the	sample	has	a	higher	chance	of	generating	a	evading	path.
– Can	be	estimated	from	a	few	(or	a	single)	random	paths.			

Malice-flipping	distance

Reject-flipping	distance

Gap	≜ Reject-flipping − Malice	Flipping

Evading	path

s
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Search	heuristic:	Main	Idea	

1. Generate	q random	paths	from	the	candidate.
2. Determine	the	path	with	the	shortest	gap	(or	other	criteria	based	

on	flipping	distances).	Choose	a	sample	along	this	path	as	the	
next	candidate.	

GapStarting	
sample

Malicious	 Accept
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Search	heuristic:	Main	Idea	

GapStarting	
sample

Evading

Malicious	 Accept
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• To	reduce	the	number	of	queries	to	Detector	and	Tester
– “Batch”	binary	search	on	multiple	paths:		constant	number	of		
Detector	query	per	path.	

Algorithmic	improvement

GapStarting	
sample Malicious	 Accept
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III.	Experimentation	Results



• PDFRATE:		 Random	Decision	Forest.
• Hidost:	 SVM-based.

• Trained	with	5,000	benign	and	5,000	malicious	PDF	files,		and	test	with	
another	500	malicious	samples.		PDF	files	obtained		from	Contagio	archive.

[4]	C.	Smutz	and	A.	Stavrou.	Malicious	PDF	detection	using	meta-data	and	structural	features.	In	ACSAC	2012.
[5]	N.	Šrndić	and	P.	Laskov.	Detection	of	malicious	pdf	les	based	on	hierarchical	document	structure.		NDSS	
2013.

PDF	malware	classifiers:	PDFRATE	 [4],	Hidost [5]
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Evasion	rate	on	“hardened”	classifiers	
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Hidost
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EvadeHC:					Proposed	method.
BiRand: Baseline	algorithm	that	performs	binary	
searches	on	random	paths.
EvadeGP:					A	previous	method	that	has	accesses	to	the	
real-value	confidence	score.

• Classifiers	are	hardened	by	adjusting	the	rejection	
threshold.

• Search	limited	to	2500	queries	to	Detector

• Interestingly,	EvadeHC outperforms	EvadeGP which	
has	accesses	to	more	info.		We	suspect	this	could	due	
to	
– EvadeHC makes	decision	based	on	Detector	and	Tester’s	

feedbacks.	EvadeGP only	based	on	the	Detector’s	feedbacks.
– Reject-flipping	distances	could	be	a	more	accurate	indicator	

compares	to	the	confidence	level.	



Evasion	rate	on	“hardened”	classifiers	
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Trace	of	a	search
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Average	Flipping	distances	
after	one	morphing	step	(Hidost)
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An	abstract	Hidden-state	Morpher model

• Every	sample	has	a	hidden	2-value		state	(a,b).			
– Tester	returns	“Malicious”	iff (a>0);		
– Detector	returns	“Reject”	iff (b>0).			
– We	can	view	the	two	hidden	values	corresponding	to	

the	average	malicious-flipping	and	reject-flipping	
distances.		

• Morpher outputs	a	random	morphed	sample	
with	hidden	values	reduced	according	to	a	
distribution.

• The	Morpher is	“random”	and	yet	consistent	to	
previous	output.		Similarly	to	Random	Oracle.	

• Such	model	is	useful	in	analyzing	search	
algorithm.	
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Average	Flipping	distances	
after	one	morphing	step
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IV.	Discussion	&	Conclusions



Conclusion

• Many	evasion	attacks	heavily	rely	on	domain	knowledge.		It	would	be	interesting	to	investigate	the	
effectiveness	of	evasion	attacks	in	a	generic	setting.	

• We	formulate		Evasion	in	the	Dark.	 This	model	gives	a	restricted	setting	where	domain	knowledge	
are	confined	in	the	3	black-boxes.	From	the	attacker’s	point	of	view,	no	other	specific	domain	
knowledge	are	required	in	evasion.		

• The	model	is	useful	for	complex	domain	– as	long	as	a	morpher &	tester	are	available,	one	can	carry	
out	evasion	attack.	

• We	give	a	method	(flipping	distances)	to	assign	meaningful	real-value	states	to	the	samples,	and	
show	that	evasion	is	possible	even	with	binary	black-boxes.

• Evasion	attacks	can	be	employed	to	enhance	defense	– by	feeding	evading	samples	as	training	
samples.		
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