
Security of Public Watermarking Schemes for
Binary Sequences

Qiming Li Ee-Chien Chang

School of Computing
National University of Singapore

[liqm, changec]@comp.nus.edu.sg

Abstract. In this paper, we focus on the security aspect of public wa-
termarking schemes. Specifically, given a watermarked sequence Ĩ, we
consider smart attackers whose task is to find a non-watermarked se-
quence I ′ using as few calls to the publicly available detection routine as
possible. We restrict the media to binary sequences and use Hamming
distance as the measure. We study a class of watermarking schemes and
give an attacker who uses expected O(d(1 + log(n/k))) calls to find such
I ′, where d and k are determined by the false alarm and distortion of
the scheme, and n is the length of the sequence. This attacker is optimal
when k = o(n). By taking the number of calls required as a measure of
the security, we can trade-off the requirements on security, false alarm
and distortion.

1 Introduction

We consider the “public watermarking scheme” [7]. Under this setting, the de-
tection routine is a black box accessible to the public, including the attackers.
To access the detection routine, the public sends a sequence to a detector, which
replies with 1 if the sequence is watermarked, and 0 otherwise. Given a water-
marked sequence Ĩ, the task of an attacker is to find a non-watermarked sequence
I ′, which is as close to I as possible, using limited number of queries to the de-
tector. Cox et al [7] give a heuristic for general watermarking schemes and an
estimated number of queries required. The well-known Stir-mark [10] provides
a list of practical attacks, many of which are based on image properties. In this
paper, we view the attacks as games between the attacker and the watermarking
scheme. We focus on a few schemes for binary sequences, and take the Hamming
distance as the measure.

Our problem is related to the Twenty Questions Game proposed by Ulam in
1976 [13]. In the original game, the target is a secretly chosen integer between 1
and 220, and a player is to guess this integer by asking twenty yes-no questions.
There are several variants of the Twenty Questions Game since then. For exam-
ple, the Twenty Questions Game with Genes[11], and [1, 8]. We give a variant of
the game that corresponds to the game between the watermarking scheme and
the attacker. In this game, the player corresponds to the attacker of the water-
marking scheme, and the player’s questions correspond to the queries sent to the

detector. We give a randomized player who uses expected O(d(1 + log(n/k)))
questions, where d, k and n are parameters of the game. The number of calls
required by the attacker can serve as a measure of the security. This can be
traded-off with the requirements on false alarm and distortion.

Our problem is different, however, from the collusion-secure fingerprint prob-
lem [2, 9, 12] in the way the watermarked sequences (queries) are generated. In
the collusion-attack setting, each user is assigned a unique fingerprint, and an
object watermarked with the unique fingerprint is distributed to each user. Some
of the users may collude by comparing the different watermarked copies of the
same object, and attempt to remove or modify the fingerprint. In our problem,
there is only one attacker. The attacker is free to choose any sequence and the
detector (available as a black box) has to disclose whether the chosen sequence is
watermarked or not. Due to this flexibility, the attacker can intelligently choose
a sequence, based on the outcomes of previously chosen sequences, that will lead
to successful watermark removal.

We first give the notations used in this paper (Section 2), and then describe a
class of watermarking scheme (Section 3). In Section 4, we focus on the Twenty
Questions Game. We first give a lower bound (Section 4.1), followed by the
randomized player (Section 4.2), and how the game relates to the original wa-
termarking problem (Section 4.3). In Section 5, we give a few variations of our
problem.

2 Notations

A watermarking scheme consists of an encoder and a detector. The encoder of a
watermarking scheme takes a binary sequence I = 〈a1, a2, . . . , an〉 as input and
gives an encoded sequence Ĩ. Let K, the kernel, be the set of all possible encoded
sequences. The encoder satisfies the distortion constraint, which requires the
Hamming distance of Ĩ from I to be bounded by a predefined distortion ε. In the
other end, the detector takes a sequence as input and outputs a 1 or 0 indicating
whether the sequence is watermarked. Let W be the set of all watermarked
sequences. The detector satisfies the constraint on the false alarm ratio F , that
is, the probability of a randomly selected sequence being watermarked is bounded
by F . If the underling distribution is the uniform distribution, then

F = 2−n|W|.
Besides the above constraint, the scheme should be resilient in the sense that

under the influence of noise, the encoded sequence Ĩ should remain watermarked.
There are many different models and requirements for the noises. A scheme that
can withstand random noise is usually known as a robust scheme. In this paper,
we consider security. We say that a scheme meets the security requirement (S, d0)
if, given a watermarked Ĩ ∈ K, any attacker requires at least expected S number
of calls to the detector, so as to find a non-watermarked I ′, where ‖Ĩ− I ′‖ ≤ d0.
Note that security implies robustness, because an attacker may wish to act like
the random noise.

A lot of works have been done on the robustness of watermarking schemes,
for example [6, 4, 5]. Relatively few theoretical works on smart attackers have
been reported. This is the focus of this paper.

3 A Watermarking Scheme

This section describes a class of watermarking schemes for binary sequences of
length n. This watermarking scheme is analogous to that in [3]. Each scheme is
parameterized by the integers d, ε and k. The value of d, ε and k is made known
to the public, including the potential attackers. What are kept secret by the
encoder is a secret key K and a secret source coding code-book C. The code-
book C is a collection of codewords, which are binary sequences of length k. The
code-book satisfies the distortion requirement ε in the sense that every sequence
is at most ε away from its nearest codeword. The secret key K = {h1, h2, . . . , hk}
is a set of k indices, where 1 ≤ hi ≤ n for all 1 ≤ i ≤ k. For a sequence I, call
the sequence 〈ah1 , ah2 , . . . , ahk

〉 the watermarking coefficients of I.

Encoder. Given a sequence I to be watermarked, the encoder quantizes the
watermarking coefficients of I to the nearest codeword in C. For example,
if 〈a1, a2, . . . , ak〉 is the watermarking coefficients, and 〈a′1, a′2, . . . , a′k〉 is the
codeword in C that is nearest to 〈a1, a2, . . . , ak〉, then the watermarked se-
quence Ĩ is the same as I except its watermarking coefficients are replaced by
〈a′1, a′2, . . . , a′k〉.

Detector. In the other end, the detector declares a sequence I to be water-
marked if and only if the watermarking coefficients are within a distance d from
a codeword in C. Thus, the kernel K of this scheme contains sequences whose
watermarking coefficients are in C, and the watermarked sequences W are all
the sequences within a distance of d from the kernel.

The false alarm and distortion of this scheme can be easily determined. Define
VN,R to be the volume of a sphere in N -dimensional space with radius R, where
the distance is measured as Hamming distance. That is,

VN,R =
(

N
R

)
+

(
N

R− 1

)
+ . . . +

(
N
1

)
+ 1.

The false alarm F satisfies the following bound,

F ≥ Vk,d

Vk,ε
. (1)

The equality holds if and only if C is an ε perfect code. In this case, the distortion
D is:

D = ε. (2)

For k À ε À d, the right-hand-side in (1) is approximately kd−ε. Note that the
false alarm (1) and distortion (2) do not depend on the size n. The size n plays

an important role in security. To see how the security requirement affects the
choice of d and k, let us assume that low false alarm and small distortion are the
only desirable properties. Then, with fixed distortion, k should be as large as
possible and d should be 0. Since d = 0, the watermarked sequences are isolated
“points” in [0, 1]n. This amounts to finding a good source code for the binary
sequence. By bringing in the security requirement, each sequence in the kernel
should be surrounded by watermarked sequences. If not, an attacker can easily
find a non-watermarked sequence by random perturbation. Intuitively, d should
be as large as possible to enhance security. However, larger d will raise the false
alarm (from (1)). Thus an important question is how to choose d and k for
given requirements of false alarm, distortion and security. Next section gives an
analysis on security that provides a trade-off for the watermarking requirements.

4 Twenty Questions Game with Watermark Attacker

Before we describe a watermark attacker, let us consider this guessing game
involving a player and a target. The target K is a set containing k integers from
U = {1, 2, . . . , n}. The player knows the size of K and U before the game starts.
The goal of the player is to determine at least d + 1 elements in K, using as few
queries as possible. A query is represented by a set Q ⊆ U . The outcome of a
query Q, denoted by Q(Q), is Yes if and only if

|Q ∩K| > d.

This game can be considered as a variant of the Ulam’s game [13], and
is similar to the Twenty Questions Game with Genes in [11]. In the Twenty
Questions Game with Genes, the query is of the form “does a given interval
contain an integer from K”. The goal is to reconstruct K using as few queries
as possible. The lower bound for a deterministic player of the Twenty Questions

Game with Genes is log
(

n
k

)
, which is approximately k log(n/k) for k ¿ n.

Our game differs from the Twenty Questions Game with Genes in a few ways.
Our player has an easier job because he only needs to determine d + 1 elements
in K. On the other hand, our queries are more general, and thus might provide
less information.

4.1 Lower Bound

A lower bound for any deterministic player in our game is

log
((

n
d + 1

)
/

(
k

d + 1

))
. (3)

In the guessing game, the player wins if he can identify d + 1 elements in the

target K. Before the game starts, from the player point of view, all the
(

n
k

)

sets of k elements are possible targets. This class of possible targets reduces as
the player asks questions. When all the possible targets contain d + 1 common
elements, the player can confidently outputs these d + 1 elements and wins the
game.

Let us look at the decision tree where each node is a class of possible targets.

Thus, the root is the class of size
(

n
k

)
. In the best scenario for the player, each

leaf is a class with largest possible number of targets, which is
(

n− (d + 1)
k − (d + 1)

)

(this is the number of possible targets where d+1 elements are fixed). Therefore,
the height of the tree is at least

log
((

n
k

)
/

(
n− (d + 1)
k − (d + 1)

))
,

which is equal to (3). This gives the claimed lower bound. Note that the bound is
in Ω(d log(n/k)), and for small k and d, the bound is approximately d log(n/k).

By assigning each node with equal probability, and using the Yao’s princi-
ple[14], we can also show that any randomized player requires expected Ω(d log(n/k))
questions.

4.2 A Player (Deterministic and Probabilistic)

The job of a player is to identify at least d + 1 elements in K. Our strategy
is to first find a small subset U0 ⊂ U that contains at least d + 1 elements in
K. Next, the size of U0 is gradually reduced in a way similar to binary search,
until its size becomes d + 1, which is what we want. To find the small U0, the
deterministic player uses step §1 in the algorithm below. However, this step
requires (k−1)/d−1 queries in the worst case. The randomized player improves
this step to expected constant number of queries by first shuffling the coefficients
(§0).

Deterministic Algorithm. Here we present a deterministic algorithm for the
guessing game.

§1. Divide U evenly into (k − 1)/d groups, U1, U2, . . . , U(k−1)/d. Find an i such
that Q(Ui) gives Yes. Let Q0 = Ui.

§2. Divide Q0 evenly into 2d + 2 groups, G1, G2, . . . , G2d+2. Let L = φ and
G0 = φ, where φ is the empty set.

§3. Find the largest i ∈ {0, 1, 2, . . . , 2d + 2} such that Q((G0 ∪G1 ∪G2 ∪ . . . ∪
Gi) ∪ L) gives No. Update L to be L ∪Gi+1. Repeat step §3 until no such i
exist.

§4. Update Q0 to be L. If Q0 contains only d + 1 elements, Q0 is the result.
Otherwise repeat from step §2.

By the pigeon-hole principle, there exists one group Ui in step §1 that contains
at least d + 1 elements from K, and Q(Ui) gives Yes. Therefore, the number of
queries needed for this step is at most (k − 1)/d− 1.

Since each Gi+1 identified in step §3 contains at least one element from K,
the repeat-loop in step §3 repeats for at most d+1 rounds. Therefore, step §2 to
§3 identify at most d+1 groups among G1, . . . , G2d+2, which in total contain at
least d+1 elements from K. It follows that the size of L is at most |Q0|/2. Note
that step §3 can be completed using a single loop, which uses a total of 2d + 2
queries.

Step §2 to §4 are repeated until |Q0| is reduced to d + 1. Thus, the total
number of rounds is at most max(1, log(n/k)) and the total number of queries
required to complete the outer-loop is O (d(1 + log(n/k))).

In the worst case, the number of queries needed by the player is O(k/d +
d(1 + log(n/k))).

Randomized Algorithm. When k is small, the above is dominated by the
term d log(n/k). However, if k is large, the term k/d would dominate, which is
undesirable. Now we introduce a probabilistic player, who uses expected O(d(1+
log(n/k))) queries.

§0. Permutes the set U uniformly at random.

This probabilistic player performs step §0, and then proceeds from step §1
of the deterministic player.

Recall that the size of a group Ui in step §1 is dn/(k − 1). Since the input
U is randomly shuffled in step §0, each element in Ui has the probability k/n
to be from K. Let Z be the number of elements in Ui that are from K. Then
the expected value of Z is E(Z) = dk/(k − 1). Since d < dk/(k − 1) < d + 1,
the probability Pr[Z ≥ (d + 1)] = Pr[Z > E(Z)], which is greater than some
constant that is approximately 1/2.

Since we are doing selection without replacement in step §1, if the group we
select contains less than d+1 elements from K, the following groups would have
greater probability to contain at least d + 1 elements from K.

Thus, step §1 can be completed in expected O(1) queries. This gives expected
O(d(1 + log(n/k))) for the randomized algorithm. When k = o(n), we have an
optimal O(d log(n/k) algorithm.

4.3 A Watermark Attacker

For a set X of indices, let IX be the sequence whose i-th coefficient is 1 if and
only if i ∈ X. Given a sequence I and a (n, k, d, ε) scheme, the task of the
attacker is to find a non-watermarked sequence I ′ such that ‖I ′ − I‖ ≤ d + 1.
The attacker knows the values of n, k, d, and ε. What he does not know is the
code-book and the secret key K. Here, we assume that the code-book is a perfect
binary code.

Without loss of generality, we can assume that the given sequence I consists
of only 0’s, that is I = 〈0, 0, . . . , 0〉, and the code-book contains 〈0, 0, . . . , 0〉. Now,
it suffices for the attacker to find a set of indices X such that |X| = d + 1 and
X ⊆ K. Since |X ∩K| = d + 1 and C is a perfect code, IX is non-watermarked.

The watermark attacker corresponds to the player in the Twenty Questions
Game in Section 4, the secret key K corresponds to the target, and the detector
corresponds to the query. The sequence IX is watermarked if Q(X) gives No.
Note, however, the two problems are not completely equivalent. Consider a X ′

where |X ′ ∩K| > d. It is possible that IX′ is still watermarked, although Q(X ′)
gives Yes. However, the number of such X ′ is insignificant comparing to the
number of X̃ where |X̃ ∩K| > d.

Trade-off with False Alarm and Distortion. For a given false alarm F and
distortion D, we want to know how to choose d, k, and ε to achieve the highest
security. By taking the approximate lower bound on the number of calls to the
detector required as a measure of the security S,

S = log
((

n
d + 1

)
/

(
k

d + 1

))
, (4)

combining with the equation for false alarm (1) and distortion (2), we can deter-
mine the right parameters. For simplicity, use the approximations S ≈ d log(n/k)
and F ≈ kd−ε. Together with (2) and (4), it can be shown that S has the maxi-
mum value

Smax = (
√

D log n−
√

log F−1)2 (5)

when

d = D −
√

D logn F−1. (6)

5 Variations of the Game

In this section we will examine some variations of the game and the corresponding
watermarking schemes. These variations try to confuse the player by introducing
a liar and multiple targets into the game. However, as we will see, although these
mechanisms make the game more difficult, they degrade the performance on false
alarm and distortion. In the overall tradeoff, they do not improve the security.

5.1 Twenty Questions Game Between Watermark Attacker and
Liar

The Twenty Questions Game with watermark attacker can be extended to a
game with a liar. That is, with some constant probability p < 1/2, the answer
to the query would be wrong. The error can be two-sided: a type-1 error with
probability p1, when |Q ∩K| > d but the answer is No; and a type-2 error with
probability p2, when |Q ∩K| ≤ d but the answer is Yes.

If p2 = 0, our algorithm will still give a correct solution. However, because
of the effect of p1, the expected number of groups identified in step §2 and §3
will be increased to (d + 1)(1 + p1). So the factor by which U0 is reduced is not

1/2 but (1 + p1)/2. Thus the expected cost of our randomized algorithm will be
increased by a constant factor 1/(1− log(1 + p1)), but is still O(d log(n/k)).

In order to take p2 into consideration, we need to slightly modify step §3 as
the following.

§3. Find the largest i ∈ {0, 1, 2, . . . , 2d + 2} such that Q((G0 ∪G1 ∪G2 ∪ . . . ∪
Gi)∪L) gives No. Update L to be L∪Gi+1. Repeat step (3) until no such i
exist. If L = Q0, stop with no solution.

Now our algorithm becomes a Monte Carlo algorithm, which gives a correct
solution with certain probability. Obviously, if no errors occur in all the queries,
the result would be correct. The probability of such cases is P = (1−p)c1d log(n/k),
where c1 is some positive constant.

If we repeat the same query for T times and take the majority answer, the
new probability of error p′ < e−c2T , for some positive constant c2. Now the
probability for our algorithm to give a correct solution is P = (1−p′)c1d log(n/k),
which is approximately 1 − p′c1d log(n/k) for small p′. Let p′c1d log(n/k) <
e−c2T c1d log(n/k) < 1/2, then T > (1/c2) ln(2c1d log(n/k)). Thus for P > 1/2,
the expected number of queries required by our algorithm is

O(d log(n/k) log(d log(n/k))).

Therefore, by repeating the algorithm for an expected constant number of times,
we will have a correct solution.

The liar in the Twenty Questions Game corresponds to a detector that gives
a wrong answer in the watermarking scheme. With probability p1, the sequence
is not watermarked but the detector says that it is; with probability p2, the
sequence is watermarked but the detector says that it is not. We can see that
in practice p2 should be negligible, otherwise we could just randomly select a
sequence near the watermarked one, and make the detector say that it is not
watermarked by repeatedly sending the sequence to it. Because of p1, the false
alarm F will be increased to F ′ = F +p1. In order for p1 to be significant enough
to our algorithm, p1 has to be greater than c3/d log(n/k), for some constant c3.
However, since the original false alarm F ≈ kd−ε ¿ 1/d log(n/k), it is very
difficult, if not impossible, to compensate for the false alarm by adjusting the
values of k and d. Even if we want to do so, the number of queries will increase
because of the changes to d and k.

5.2 Modified Twenty Questions Game with Multiple Targets

We can also extend the Twenty Questions Game to have two secret sets K1 and
K2. The answer to the query would be Yes if |Q ∩ K1| > d and |Q ∩ K2| > d,
and No otherwise. The player is still required to identify more than d elements
from K1.

Interestingly, the algorithm and analysis in Section 5.1 are still applicable,
with p2 = 0. Therefore it also can be solved in expected O(d log(n/k)) queries.
This variation can be easily extended further to more than two secret sets,

where different secret sets may have different values of d and k. However, those
variations will not make the game more difficult.

The corresponding watermarking scheme would have multiple code-books,
and only use one of them to watermark a sequence. The choice of the code-
book to be used can be random, or based on sequence specific information, such
as the nearest distances from the codewords of each code-book. Similar to the
watermarking scheme in Section 5.1, the false alarm F increases significantly due
to p1, and the number of calls to the detector increases if we want to compensate
for F .

6 Remark and Future Works

We have also explored other watermarking schemes on binary sequences. It turns
out that the simple watermarking scheme in Section 3 outperforms them. This
leads to a general question: given the requirements on false alarm and distortion,
what is the highest security (measured in term of number of calls to the detector)
we can achieve. We do not know the solution to this general question. We suspect
that the security of a watermarking scheme is closely related to the critical
distance, that is, the radius of the smallest sphere centered at the kernel, whose
surface contains roughly half watermarked sequences. Note that our randomized
player given in Section 4.2 uses this distance to obtain the set U0. We also do
not know any non-trivial bound of this distance with a given false alarm and
distortion. Many interesting problems remain open.

References

1. Andris Ambainis, Stephen A. Bloch, and David L. Schweizer. Playing twenty ques-
tions with a procrastinator. In Proceedings of the tenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 844–845. ACM Press, 1999.

2. D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data. IEEE Trans.
on Information Theory, 44(5):1897–1905, 1998.

3. E.C. Chang and M. Orchard. Geometric properties of watermarking schemes. In
ICIP, volume 3, pages 714–717, 2000.

4. B. Chen and G.W. Wornell. Achievable performance of digital watermarking sys-
tems. IEEE Int. Conf. on Multimedia Computing & Systems, 1:13–18, 1999.

5. J. Chou, S.S. Pradhan, and K. Ramchandran. On the duality between distributed
source coding and data hiding. 33rd Asilomar conference on Signals, System and
Computers, pages 1503–1507, 1999.

6. M. Costa. Writing on dirty paper. IEEE Trans. on Information Theory, 29(3):439–
441, 1983.

7. I.J. Cox and J-.P. Linnartz. Public watermarks and resistance to tampering. IEEE
Int. Conf. on Image Processing, 3(0 3–0 6), 1997.

8. Aditi Dhagat, Peter Gács, and Peter Winkler. On playing ”twenty questions” with
a liar. In Proceedings of the third annual ACM-SIAM symposium on Discrete algo-
rithms, pages 16–22. ACM Press, 1992.

9. J. Kilian, F.T. Leighton, L.R. Matheson, T.G. Shamoon, R.E. Tarjan, and F. Zane.
Resistance of digital watermarks to collusive attacks. In IEEE International Sympo-
sium on Information Theory, page 271, 1998.

10. Fabien A. P. Petitcolas, Ross J. Anderson, and Markus G. Kuhn. Attacks on
copyright marking systems. In Information Hiding, Second International Workshop,
number 1525 in LNCS, pages 219–239. Springer-Verlag, 1998.

11. P.A. Pevzner. Computational Molecular Biology: An Algorithmic Approach. The
MIT Press, 2000.

12. Harold S. Stone. Analysis of attacks on image watermarks with randomized coef-
ficients. Technical report, NEC Research Instititute, 1996.

13. S. Ulam. Adventures of a mathematician. Scribner and Sons, 1976.
14. A.C.-C. Yao. Probabilistic computations: Twoard a unified measure of complexity.

18th IEEE Symposium on Foundations of Computer Science, pages 222–227, 1977.

