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ABSTRACT

The goal of this paper is to study how a-prior knowledge
of the image database could be exploited for better water-
marking performance. Unlike most formulations, where the
encoder and detector only know the distribution of the im-
ages, under our formulation, theactual set of images to be
watermarked are known, either in a static or dynamic set-
ting. To achieve better performance, instead of choosing a
random watermarking key or predefined code-book as is the
usual practice, we derive the watermarking keys from the
database. We study two settings, static and dynamic. In the
dynamic setting, the image database starts from a single im-
age and grows as more images arrive. Thus the watermark-
ing keys have to be updated frequently. This setting can be
applied to applications where the detector has access to the
Internet. To demonstrate the main idea, we extend a variant
of spread-spectrum method to a few schemes, and analyze
their performance. Interestingly, the requirements on false-
alarm, robustness and distortion can be traded-off with the
size of the watermarking keys. We perform our experiments
on both natural images and Gaussian source. Our anal-
ysis and experiments show promising improvement in per-
formance by exploiting the a-prior knowledge of the image
database, specifically for fixed robustness and false alarm
we achieve significant reduction of distortion. Similar idea
can be incorporated into other watermarking methods.

1. INTRODUCTION

In the recent years, watermarking has emerged as an active
research field. Many theoretical models, and applications
have been proposed. In several watermarking models, the
watermark detector can communicate with a server. For ex-
ample, the detector in Digimarc MediaBridge Reader [3]
makes use of the Internet to lookup more information based
on the extracted message. Theoretical models like zero-
knowledge proof [2] and public watermarking also exploit
communication to enhance security.

In this paper, we propose another way to exploit com-
munication. In the proposed model, the encoder knows the

actual images that are to be watermarked. Based on this
knowledge, the encoder tailor-makes an encoding routine (a
set of watermarking keys) that is suitable for the database.
The watermarking keys are then stored in the server. To de-
termine whether an image is watermarked, the detector first
obtains the watermarking keys from the server, which is in
turn used in the detection (Fig. 1). Although our discussion
centers on images, the main idea can be extended to other
multimedia source.

Unlike the model of informed watermarking [5], and
watermarking as communication with side information [4]
where both the encoder and decoder know the distribution
of the images, in the proposed model, we exploit the addi-
tional assumption that the encoder knows theactual images
to be watermarked, and the decoder knows a compact but
partial description of the actual images (Fig. 1). Note the
fundamental differences between a-prior knowledge of the
distribution and knowledge of the actual database. The ac-
tual images are samples from the distribution, and can be
used to estimate the distribution. On the other hand, know-
ing the image distribution is not sufficient to determine the
actual images. Also note that in practice, the image distri-
bution is usually assumed to be Gaussian, which is an over
simplification for natural images.

Compact description of database. Given the databaseI,
a possible but inefficient scheme takes the whole database
as the keys,W = I. Thus nothing is done during encoding
and zero distortion is achieved. To decide whether an image
is watermarked, the detector searches for the image inW.
If it is within the proximity of a key inW, then it is declared
to be watermarked. Although this scheme achieves zero dis-
tortion, the number of keys is too large and thus inefficient.
This brings forth the interesting issue of finding a trade-off
between efficiency (number of keys) and performance (dis-
tortion, false alarm, and robustness).

Static vs. Dynamic setting. We study two settings. In the
static setting, the database remains unchanged throughout
the encoding and detection process. In thedynamicsetting,



Fig. 1. A schematic diagram of the proposed system in the
static setting with̀ keys.

new images can be added to the database. The database
starts from a single image, and grows as new images ar-
rive. The encoding must be done in a “on-line” manner, that
is, when a new imageI arrives, the encoder must immedi-
ately encodeI before the arrival of the next image. This set-
ting is practically applicable when a watermarking service
provider has a dynamic database of images i.e., the database
can be updated with new images. The detector, having ac-
cess to the Internet, can contact the server and retrieve the
updated keys.

2. FORMULATION

Let I = 〈I1, I2, . . . , Im〉 be a database ofm images. Each
image is a sequence ofd coefficients which is generated
from an underlying source distribution. We study two set-
tings,staticanddynamic.

Static Setting. Given the image databaseI, the encoder
derives a set of keysW = 〈w1, w2, . . . , w`〉 and the set of
encoded images̃I = 〈Ĩ1, Ĩ2, . . . , Ĩm〉. The keys once de-
termined remains unchanged throughout the process. Given
an imageI ′ and the keysW, the detector declares whether
it is watermarked (outputYes) or not watermarked (out-
put No). The detection should be robust under the additive
white Gaussian noise (AWGN).

Dynamic Setting. The database grows as new images are
added. LetIt = 〈I1, I2, . . . , It〉 be the database with the
first t images, and̃It be the corresponding set of encoded
image. The encoding is done in an online manner, that is,
the imageIt must be encoded beforeIt+1 arrives. Once an
Ĩt is obtained it cannot be recalled for modification.

Similar to the static setting, detection is done based on
a set of keys. However, because the database dynamically
changes, the keys are updated once a new image arrives. Let
Wt = 〈wt

1, w
t
2, . . . , w

t
`〉 be the keys afterIt has arrived and

encoded. An additional requirement is that the setWt has
to bebackward compatible, i.e., the detector must be able

to detectĨs, for anys ≤ t based onWt. Same as the static
setting, the detection should be robust under AWGN.

Performance measures. For completeness and clarity, we
give a formal description offalse alarm, robustnessanddis-
tortion. The encoder takes eachI ∈ I and gives an encoded
Ĩ. We call the average distance

1
m

∑

I∈I
‖I − Ĩ‖22

the distortion. The false alarm is the probability of a ran-
domly chosen sequence (from the image distribution) to be
declared as watermarked by the detector. The scheme is ro-
bust if, under the influence of AWGN, an encoded image is
still declared to be watermarked with high probability (the
actual probability is not a concern in this paper). We take
the variance of the noise as the measure of robustness.

Variant of spread-spectrum method. For the purpose of
comparison, we consider a variant of the well-known spread-
spectrum method [5]. However, our idea is not restricted to
this method. Similar idea of exploiting the a-prior knowl-
edge of image database can be extended to other methods.

This variant is parameterized by a watermark keyw, a
constant thresholdT and a constantK. The encoding ofI
giving Ĩ is achieved by

Ĩ = I + max(0,K − I · w)w. (1)

Thew is normalized so that‖w‖22 = 1. An I ′ is declared to
be watermarked if

w · I ′ ≥ T. (2)

The false alarm, robustness and distortion of this scheme
can be obtained analytically.

3. WATERMARKING SCHEMES

This section generalizes the spread-spectrum method to the
static and dynamic setting. Their performance is compared
with the spread-spectrum method, which can be viewed as
an equivalent scheme with no a-priori knowledge of the im-
age database. The false alarm and robustness is fixed in all
schemes, which amount to the parametersK andT being
fixed. Thus by comparing the distortion we can determine
which scheme attains better performance.

3.1. Static with single key

This section gives two schemes (staticandstatic iterative).
The encoder of the first scheme, (static), computes the nor-
malized sum of the database, that is,

w =
∑

I∈I
I/‖

∑

I∈I
I‖22, (3)



and takes this as the key i.e.,W = 〈w〉.
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Fig. 2. Distortion verses (m/d) for images from a Gaus-
sian distribution. The number of coefficients is fixed at
d = 1000, andK = 0.1414. For the 2-key setting, the
size of the database is twice of that for the single key set-
tings. For example, atm/d = 0.2, the number of images is
200 for the single key setting, and400 for the 2-key setting.
(For images from a Gaussian Distribution.)

The encoding and detection is same as the spread spec-
trum method given in (1) and (2). Unlike the spread spec-
trum method where the watermarking key is randomly cho-
sen, in this scheme,w is computed from the image database.
Note that if both parametersK andT are the same as in the
spread spectrum method, then the false alarm and robust-
ness of this scheme are the same as that of the spread spec-
trum method. By fixingK andT , we want to know which
scheme provides lower distortion.

To analyze the reduction in distortion, let us define the
baselineB as the average ofI · w among the images in the
database,

B =
1
m

∑

I∈I
I · w.

The baseline is a good indicator of the reduction in distor-
tion. If w is randomly chosen (assuming Gaussian distribu-
tion with unit variance), then the baseline is expected to be
0. In our scheme, the expected baseline is1/

√
m. Since

the baseline is raised to1/
√

m, the distortion required to
“push” the image over the thresholdK is reduced.

Fig. 2 shows the result of an experiment, confirming the
gain in performance of usingw obtained from (3) against
a randomly chosen key. The experiment is done on images
generated from Gaussian distribution. In this experiment,
we fix the robustness and false-alarm (that isK andT ). The
curve labelled as “Static” in Fig. 2. indicates the reduction
in distortion from the spread spectrum method. The distor-
tion is reduced by1/

√
m, confirming the above analysis.

The second encoder (static iterative) in this section, fur-
ther improves the performance by searching for the keyw̃

Fig. 3. Keys for the 2-key static setting, for the image
database. Note that the 2 keys are almost complementary
to each other.

which minimizes the average distortion. The minimiza-
tion is done in an iterative manner. In Fig. 2 (the curve la-
belled as “Static(iterative)”), noticeable but less significant
improvement is achieved by the second encoder.

3.2. Static with Multiple keys

In this scheme, instead of using a single key, the detector
uses a set of keysW = 〈w1, w2, . . . , w`〉. A sequenceI is
declared to be watermarked if there is ani such that(wi ·
I) > T .

We now give two encoders for̀= 2. Other values of̀
can be easily generalized.

The first encoder randomly partitions the database into
two subsets of equal size. The key for each subset is gener-
ated using (3), by treating each subset as a single database.
It is easy to verify that the baseline will improve by a fac-
tor of 1/

√
2 and this implies that the distortion will also

improve by approximately the same factor. On the other
hand, the false alarm will increase by a factor of approxi-
mately 2. This is because in the 2-key situation, a sequence
I is declared to be watermarked if either(I · w1) ≥ T or
(I · w2) ≥ T . However, constant factor growth of the false
alarm is insignificant, because the false alarm decreases ex-
ponentially as the thresholdT increases linearly. Thus, it is
desirable to allow more keys, if efficiency is not a consider-
ation.

The second encoder searches for a good partition of the
the database using the well-known 2-mean algorithm. Our
experimental results show that the 2-means algorithm gives
an improvement in distortion compared to the first encoder
which randomly partitioned the database. In Fig. 2, the
graph for static 1-key setting can be treated as the perfor-
mance of the first encoder. The distortion is higher than the
graph labelled as “Static (2 key)”.

3.3. Dynamic with single key

In the dynamic setting, the images arrive sequentially. Let
wt

1 be the key computed after the arrival ofIt. The encoding
and detection is similarly performed as in (1) and (2). The
key satisfies the additional backward compatibility require-
ment, i.e.,Ĩs·wt

1 ≥ K, for anys < t. There are two interest-
ing issues. The first issue is concerned with how backward
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Fig. 4. Evolving of keys in the dynamic 2-key case, for the
image database. First row depicts the evolving of the first
key for 10, 40, 125 and 500 images. The second row depicts
evolving of the second key.

compatibility is to be enforced. It is also interesting to study
the reduction in performance when information is available
in the on-line manner, as opposed to the static setting where
full knowledge of the database is readily available.

On arrival of thet−th image, the following iterative
method searches for the new keywt

1. It is important to
choose the weighting function as(1/

√
t) in §1.

§1. Letwt
1 = wt−1

1 + (1/
√

t)It.
§2. If there is ar < t such thatIr ·wt

1 < K, then update
wt

1 = wt
1 + (K − Ir · wt

1)Ir.
§3. Repeat step 2 until no suchr is found.

3.4. Dynamic with multiple key

In this setting, more keys are allowed as is in the static set-
ting (Section 3.2). The encoder employs a combination of
the encoders in the dynamic setting and the 2-key static set-
ting. Details are omitted here. The graph in Fig. 2 shows
that this encoder performs better than a 2-key encoder which
partitions the database randomly.

4. EXPERIMENT WITH IMAGE DATABASE

We conducted an experiment on a database of 500 natural
images from [1]. The main goal of this experiment is to
test our idea on non-Gaussian image distributions. Because
image representation is not the focus of this paper, we repre-
sent each image by its rescaled 128 by 128 gray level image.
Fig. 5 shows 3 of these images.

We tested our database using the static single key en-
coder. The average distortion is0.41233, which is better
than the estimated distortion of1.0946 if we assume the
images are Gaussian. The improvement is due to strong co-
herence among images in the database.

Fig. 5. Three images in the database with the respective
encoded images below them.

We also tested our database in the 2-key static and dy-
namic setting. The keys generated for the static 2-key and
dynamic 2-key setting are illustrated in Fig. 3 and Fig. 4
respectively. The keys in Fig. 3 are complementary in
the sense that both point towards the opposite direction if
treated as vectors in the 128 by 128 dimensional space. This
is characteristic of the 2-mean algorithm. The keys in the
dynamic 2-key (Fig. 4) setting are updated as new images
arrive.

5. CONCLUSION

In this paper, we propose a watermarking formulation which
exploits the a-prior knowledge of an image database. Such a
formulation is realistic because in some applications, the de-
tector has access to the Internet. We also give few schemes
for various settings and analyze their performance based
on the assumption that the image and noise are Gaussian.
We also test our main idea on non-Gaussian images, which
is a set of natural images. Our experiment and analysis
show promising improvement in performance by using a-
prior knowledge of the image database. Similar idea can be
incorporated into other watermarking methods.
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