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(a) Uniform resolution image. (b) Foveated image

Figure 1: Foveation.

Abstract

A foveated image is a non-uniform resolution image whose resolution is highest at a point
(fovea) but falls off away from the fovea. It can be obtained from a uniform image through
a space-variant smoothing process, where the width of the smoothing function is small near
the fovea and gradually expanding as the distance from the fovea increases. We treat this
process as an integral operator and analyze its kernel. This kernel is dominated by its diagonal
in the wavelet bases and thus permits a fast algorithm for foveating images. In addition, the
transformed kernel takes a simple form which can be easily computed using a look-up table.
This is useful since in applications, the fovea changes rapidly. We describe an application of our
approximation algorithm in image visualization over the Internet.

1 Introduction

Figure 1(a) is a uniform resolution image whereas Figure 1(b) is a foveated image. A foveated
image has non-uniform resolution. Its resolution is highest at the fovea but falls off as the
distance from the fovea increases. We call the process of going from a uniform image to a
foveated image foveation. A foveated image is obtained from a uniform resolution image through
a space-variant smoothing process where the width of the smoothing function is small near the
fovea but gradually increases towards the peripheral. In one dimension, the foveation of a
function f : R → R is determined by a smoothing function g : R → R, and a weight function
w : R→ R≥0.

(Tf) (x) :=
∫ ∞

−∞
f(t)

1
w(x)

g

(
t− x

w(x)

)
dt. (1)

The weight w depends upon three parameters and takes the form w(x) = α|x−γ|+β. We call α
the rate as it determines how fast resolution falls off, call γ the fovea as it determines the point
of highest resolution, and call β the foveal resolution as it determines the resolution at the fovea.
Both α and β are non-negative. The smoothing function g is normalized so that

∫∞
−∞ g(x) dx = 1.

Figure 2 shows an example of a foveation with Gaussian as the smoothing function. In general,
we could replace the weight function by any non-negative function. This generalization is useful
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Figure 2: The dotted line is the original function f and the solid line is the corresponding foveated
function Tf with weight function w(x) = (1/45)|x|. The fovea is at the origin. This function is
a scan-line from the test image “Lena” (Figure 12(a)). Observe that details are retained near the
fovea but gradually disappear as the distance from the fovea increases. The smoothing function g
is the Gaussian.

when we are interested in images with multiple foveae. Similar formulations of foveation could
be found in [9, 28].

The foveation operator can be treated as an integral operator

(Tf) (x) =
∫ ∞

−∞
k(x, t)f(t) dt,

where k(x, t) is the kernel of T . Wavelets of high vanishing moments have demonstrated their
potential in approximating an integral operator [4], due to their ability to build sparse repre-
sentation for piecewise smooth functions. In the foveation operator, the width of the function
k(·, t0) on x grows as the value of t0 increases. Figure 3 is the contour plot of k(x, t). Note that
the kernel is smooth except at the origin. This paper shows that the wavelet decomposition of
this kernel is dominated by its diagonal, and gives numerical results to support these findings.

Applications of foveation. Our visual system has a space-variant nature where the res-
olution is high in the center (fovea) but falls off toward the peripheral. This distribution of
resolution provides a fast and simple way of reducing information in the visual field, without
sacrificing the size of the visual field and the resolution around the center. As the biological
visual system is highly effective, this space-variant nature has inspired the design of many com-
puter vision systems. Under the framework of active vision [1, 27, 25], Burt introduces smart
sensing [5] which resembles the biological foveated vision. During the smart sensing process,
the fovea actively and adaptively searches for interesting features; as a result, a sequence of
foveated images are analyzed. We could view smart sensing as a hill climbing strategy which
uses information across different scales.

The space-variant nature of our visual system suggests that if a viewer’s gaze point is fixed
at the fovea of a foveated image, the viewer could not distinguish this foveated image from
the original uniform image. Since a foveated image carries much less information compared
to the original uniform image, it can be encoded by fewer number of bytes. This observation
has been exploited by visualization systems where transmission of images to the display device
is a bottleneck, for example, in video conferencing [2, 3, 11]. Foveation also plays a role in
visualization systems where the image rendering process is not fast enough to meet the real-
time requirement, for example in volume visualization [16] and flight simulation [31, 12].
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Figure 3: The kernel plotted as an image (darker pixel corresponds to a larger value) together with
its contour plot. Observe that it is smooth except at the origin.

All the applications mentioned rely on the observation that information is reduced in a
foveated image. Therefore, it is essential that the representations for foveated images capture
this observation. To illustrate, in video conferencing, a foveated image should be encoded with
significantly fewer bytes than the original uniform image. In most applications, the location and
shape of the fovea changes rapidly. Thus, a fast algorithm is required to extract the foveated
images from the original image.

A number of representations of foveated images have been proposed. In [15, 32], the visual
field is partitioned into cells known as super-pixels. The value of a super-pixel is obtained by
averaging all pixels in the corresponding cell. To construct a foveated image, the value of all
pixels in a cell is replaced by the value of the super-pixel. These methods are computationally
fast but lack flexibility in the sense that the visual field has to be repartitioned if the location and
shape of the fovea changes. Another method by Burt [5] uses subband coding as a hierarchical
representation of the original uniform image, and the foveated image is extracted from various
levels. The third basic approach is based on the log-polar transformation [30, 28], where the
foveated image is obtained by first transforming the visual field under a log-polar transformation,
followed by a convolution and the inverse log-polar transformation.

In this paper, we derived a wavelet-based method for approximating the foveation operator
(1). This method is computationally fast and can be extended for various weight functions.
Furthermore, it permits progressive transmission (or progressive refinement) of images with
multiple foveae.

Outline of this paper. Section 2 describes the relationship between the foveation operator
and the space-variant nature of our visual system. The main results of this paper are in Section
3 which consists of a few subsections, starting with a brief introduction to wavelets in the first
subsection. The second subsection studies the operator using wavelet and show that under the
wavelet representation, the transformed kernel is dominated by the diagonal entries. The sup-
porting numerical results are shown in the third subsection. In the fourth subsection, we give an
approximation of the diagonal entries (of the transformed kernel), which gives good numerically
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approximation and provides insight on the roles of the wavelet. The last subsection gives an
approximation of the operator obtained by suppressing small values in the transformed kernel.
Section 4 generalizes foveation to two dimensions. Finally, Section 5 describes applications of
foveation in image compression and image visualization over the Internet.

2 Logmap and Foveation Operator

Studies of the space-variant structure in the visual cortex could be traced back to the papers [20,
14, 23], who suggest a well-defined map-like representation of the visual field in the cortex. In the
early 1940s, Talbot and Marshall [29] demonstrated and confirmed this hypothesis. Subsequent
studies by Schwartz [24] show that the complex logmap is a good model for this mapping. The
logmap (or log-polar map) is characterized by two real parameters k, a and maps the point (x, y)
in the retinal plane to a point (ρ, θ) in the visual cortex plane where

ρ := k ln(
√

(|x|+ a)2 + y2), and

θ :=





tan−1
(

y
x+a

)
if x > 0,

tan−1
(

y
x−a

)
+ π otherwise.

(2)

For engineering purposes, it is not necessary to adhere to the logmap (2). Thus, we use
the term “logmap” loosely and use it to refer to transformations that have the log-polar favor.
Other forms of logmap can be found in [22, 21]. Schwartz [26] has an overview of the biological
background.

Our definitions of foveation operators and weight functions are motivated by the logmap,
which attempt to capture the situation in which convolution is performed in the visual cortex
plane. Consider a function f where f(t) = 0 for t < 0. We could rewrite foveation as a
convolution after a change of variables. For x > 0,

(Tf) (x) =
∫ ∞

0

f(t)
1
x

g

(
t− x

x

)
dt

=
∫ ∞

0

f(eu)e−yg

(
eu − ey

ey

)
deu

(where ey = x and eu = t)

=
(
f̃ ? g̃

)
(y), (3)

where

f̃(u) := f(eu), and
g̃(v) := e−vg

(
e−v − 1

)
.

Equation (3) suggests a method to compute foveation: apply the logmap transform, followed by
a convolution and the inverse logmap transform [28].

To ensure that the computations are stable, it is important to show that T is a bounded
operator. Since the operator can be treated as a convolution after a logmap transformation, one
would expect this to be the case. We can show the boundedness along this intuition. We state
the following theorem and give the proof in the Appendix.

Theorem 1 Let g be bounded and g ∈ L1(R). The operator

(Tf)(x) =
∫ ∞

−∞
f(t)

1
|x|g

(
t− x

|x|
)

dt

is bounded in L2 and

‖T‖ ≤
∫ ∞

−∞
(|g(u− 1)|+ |g(u + 1)|) du√

u
< ∞.
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3 Wavelet and Foveation Operator

Recall that
(Tf) (x) =

∫ ∞

−∞
k(x, t)f(t) dt,

where k(x, t) = |x|−1g ((t− x)/|x|). If we take N sample points from f uniformly, then computa-
tion of the foveated function amounts to a matrix multiplication, which takes O(N2) arithmetic
operations. For some integral operators, by representing the kernel using a wavelet base, the
magnitude of most entries in the transformed kernel become small. Suppressing these small en-
tries gives a sparse matrix. Together with the fast wavelet transform, this sparse matrix provides
a fast approximation for the integral operator which could take O(N) arithmetic operations.
In this section, we show that a fast approximation for the foveation operator can be similarly
obtained.

3.1 Wavelet Bases

Wavelet bases have important applications in mathematics and signal processing due to their
ability to build sparse representations for large classes of functions. The first orthonormal
wavelet bases were introduced by Strömberg and Meyer [19]. A multi-resolution interpretation
of wavelet bases provides a general framework for constructing wavelets [17]. It also leads to a
fast discrete algorithm that takes O(N) arithmetic operations to compute N wavelet coefficients
[18]. Daubechies [10] discovered wavelets with compact support. An orthonormal wavelet base
of L2[0, 1] is a family of functions

{φ`0,n}0≤n<2`0 ∪ {ψj,n}j≤`0,0≤n<2−j .

Each ψj,n is a dilated and translated copy of the mother wavelet ψ,

ψj,n(t) =
√

2−jψ
(
2−jt− n

)
,

and each φ`0,n is a dilated and translated copy of the scaling function φ,

φ`0,n(t) =
√

2−`0φ
(
2−`0t− n

)
.

The subspace V` at scale ` is the subspace generated by

{φ`0,n}0≤n<2`0 ∪ {ψj,n}`<j≤`0,0≤n<2j .

Boundary wavelets are modified to keep the support inside [0, 1].
The subspaces at different scales V`0 ⊂ V`0−1 ⊂ V`0−2 ⊂ . . . form a multi-resolution ladder:

each V` is coarser than V`−1. The approximation of a function f at scale ` is
∑

0≤n<2`0

〈f, φ`0,n〉φ`0,n +
∑

`<j≤`0

∑

0≤n<2j

〈f, ψj,n〉ψj,n.

The wavelet coefficients {〈f, ψj,m〉}j,m of a function f are small in the finer scale (smaller j)
and in the neighborhood where f is smooth. Thus, in finer scale, the above approximation
contains more local “details.” By truncating the small coefficients, we have an adaptive sparse
representation of f .

In two dimensions, the ladder is constructed using three mother wavelets, Ψh, Ψv and Ψd,
where

Ψd
j,m,n(x, y) := ψj,m(x)ψj,n(y),

Ψv
j,m,n(x, y) := ψj,m(x)φj,n(y), and

Ψh
j,m,n(x, y) := φj,m(x)ψj,n(y),

with the scaling function
Φj,m,n(x, y) := φj,m(x)φj,n(y).
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(a) (b)

Figure 4: (a) Original image I. (b) Magnitude of coefficient for {|〈I,Ψk
j,m,n〉|}j,m,n. The bottom

right square contains the diagonal coefficients for {Ψd
0,m,n}m,n, the upper right square contains the

vertical coefficients for {Ψv
0,m,n}m,n and the bottom left square contains the horizontal coefficients

for {Ψh
0,m,n}m,n. Coefficients in higher scales (smaller j) are recursively arranged in the upper left

square.

The wavelet coefficients for {Ψk
j,m,n}, k ∈ {h, v, d}, are sensitive to the local orientation of edges

in the images and are interpreted as the horizontal, vertical, and diagonal components respec-
tively. Figure 4 shows an example of a wavelet transform. Note that most of the coefficients
are small except in the neighborhood of an edge. Also note how the local orientation of an edge
affects the coefficients in different components.

3.2 Analytic Bounds

Consider a foveation operator T with a weight function w(x) = α|x|, and a smoothing function
g whose support is in [−α−1, α−1]. Let

θj,m,k,n := 〈Tψj,m, ψk,n〉 (4)

=
∫ ∞

−∞

∫ ∞

−∞
ψj,m(t)ψk,n(x)

1
α|x|g

(
t− x

α|x|
)

dt dx.

The matrix {θj,m,k,n} can be viewed as the wavelet transform of the kernel along the t-axis
followed by wavelet transform along the x-axis.

It is easy to verify the following property.

Property 2 (Self-Similarity)

θj,m,k,n = θj−`,m,k−`,n for any ` ∈ Z.

Intuitively, this property tells us that the amount of information stored in a foveated image is
the same across different scales.

The next two theorems show the decays in the matrix {θj,m,k,n}. These results are derived
by exploiting the number of vanishing moments ψ has and by using the fact that both ψ and
g have compact support. We state the theorems and explain their implications on the decay.
Their proofs are rather technical and we describe them in the Appendix.

Theorem 3 Suppose the support of both ψ and g is compact and contained in [−α−1, α−1], ψ
is Cp, and ψ has p vanishing moments; then we have the following.
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(a) There is a constant J such that for any j, k, n and m,

|θj,m,k,n| ≤ J2−|k−j|/2.

(b) For |n| > 2α−1 and |m| > 2α−1, if θj,m,k,n 6= 0, then

C|m| > 2k−j |n| > C−1|m|,
where C is a constant.

(c) There is a constant E such that for any j, m, k, n, when either |n| > 2α−1 or |m| > 2α−1,
we have

|θj,m,k,n| ≤ E 2−|k−j|(p+1/2).

Using the fact that both ψ and g have compact support, we have part (a) and (b) in Theorem
3. Part (a) tells us that θj,m,k,n is small if |k − j| is large while part (b) states that for θj,m,k,n

to be non-zero, m is on the order of 2k−jn. Together, they imply a decay off the diagonal. The
third part (c) gives a sharper bound than part (a); however it is only applicable for large |m| or
large |n|. Note that the decay in (c) depends on the regularity and the vanishing moments of
the wavelet.

Theorem 4 Suppose the support of both ψ and g is compact and contained in [−α−1, α−1],
and ψ is Cp and has p vanishing moments; if g is uniformly Lipschitz ρ < p, then for any
|n| > 2α−1, |m| > 2α−1 and any j, k, there is a constant F such that

|θj,m,k,n| ≤ F 2(j−k)(ρ+1/2)|n|−(ρ+1), and

|θj,m,k,n| ≤ F 2−(j−k)/2|m|−(ρ+1).

Theorem 4 suggests a relatively slower decay away from the fovea. It gives a bound that
decays as |m| or |n| increase and relates the rate of decay to the regularity of the smoothing
function g.

In sum, the matrix {θj,m,k,n} decays in two directions: off the diagonal, {θj,m,k,n} decays as
|k − j| and |m− n| increases; while along the diagonal, {θj,m,j,m} decays as |m| increases.

3.3 Numerical Results

Let us compute, numerically, the matrix {θj,m,k,n}. Figure 5 illustrates such a matrix computed
using the Daubechies wavelet with four vanishing moments [10]. The smoothing function is the
Gaussian and the weight function is w(x) = |x|/30. A quick visual inspection suggests that the
matrix is dominated by the diagonal entries θj,m,j,m where j,m ∈ Z. In addition, the diagonal
entries decay relatively slower away from the fovea. This decay along the diagonal is easily
observed in the cross-section plot shown in Figure 6. Another observation from Figure 6 is the
self similarity across the scales, that is, θj,n,j,n = θk,n,k,n for any n, j, and k.

3.4 Approximating the Diagonal

Although the analytic bounds are sufficient to show the decays in the transformed kernel, the
predicted decays are still far from the numerical results observed. Here, we give an approxi-
mation of the diagonal {θj,n,j,n} which, besides being a good approximation, also gives more
insights on the roles of ψ and g.

By the compact support of ψ,

θ0,n,0,n =
∫ n+A

n−A

∫ ∞

−∞
ψ0,n(x)ψ0,n(t)gx(t) dt dx,

where gx(t) :=(α|x|)−1g
(
(α|x|)−1(t− x)

)
, and A is a constant. For large positive n, hn(· − x)

is a good approximation of gx, where

hn(t) :=
1

αn
g

(
t

αn

)
.
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n = 0

k = 3

k = 4

k = 5

m = 32

j = 3
m = 0m = −32

j = 4j = 5

n = 0

n = 0

Figure 5: Computed numerical value of the matrix {θj,m,k,n}. The entries are grouped into blocks
where each block consists of entries with the same first and third index. For example, the block in
the top-right corner consists of entries of the form θ3,m,6,n where −32 ≤ m ≤ 32 and −4 ≤ n ≤ 4.
The intensity of each pixel corresponds to the value of the corresponding entry; a darker pixel has
a larger value.

1.0

0.5

0.0

m = 0m = 0m = 0m = −31

j = 3 j = 4

Figure 6: The cross-section of Figure 5 along the diagonal θj,m,j,m. Note the decays and the
self-similarity across different scales.
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Figure 7: The absolute error in approximation {θj0,n,j0,n} using (5). This graph is computed by
evaluating the numerical difference between approximation (5) and the results in Figure 6.

Using this approximation, we have a much simpler form:

cn :=
∫ ∞

−∞

∫ ∞

−∞
ψ0,n(x)hn(t− x)ψ0,n(t) dt dx. (5)

Figure 7 shows that the absolute error is below 0.02.
Equation (5) can be further simplified. By interchanging the integrals (which is possible by

Fubini’s theorem) and treating the first two terms as a convolution, it can be rewritten as:

cn =
∫ ∞

−∞
(ψ0,n ? hn) (t)ψ0,n(t) dt.

By applying Parseval’s formula and the convolution theorem, we have

|cn| =
∫ ∞

−∞
ĝ ((αn)w)

∣∣∣ψ̂(w)
∣∣∣
2

dw.

Since ψ has compact support, ψ̂ is at least p times continuously differentiable. Together with
the fact that ψ has p vanishing moments, we have ψ̂(k)(0) = 0 for k < p. Thus, |ψ̂(w)| ≤ Cwp

for some constant C, and

|cn| ≤ C2

∫ ∞

−∞
|ĝ ((αn)w)|w2p dw

= C2(αn)−2p−1

∫ ∞

−∞
|ĝ(w)|w2p dw.

Furthermore, as g is at least 2p times continuously differentiable, we have
∫ ∞

−∞
|ĝ(w)| |w|2p < ∞,
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and this gives |cn| = O((αn)−2p−1). This bound is tighter than the bounds given by Theorem
4.

Similarly, the following is a good approximation of 〈Tφ, φ〉.

en :=
∫ ∞

−∞
ĥn(w)

∣∣∣φ̂(w)
∣∣∣
2

dw.

Since |φ̂(0)| = 1, we expect a slower decay:

en ≤ E

∫ ∞

−∞
|ĥn(w)| dw

=
E

αn

∫ ∞

−∞
|ĝ(w)| dw = E1(αn)−1,

where E and E1 are some constants.

The effect of this slower decay appears in two dimensional foveation, and we will revisit this in
Section 3.5.

3.5 Approximation of Foveation

Given the N = 2`0 uniform samples of a function f , we want to compute Tf . Since the kernel
(with respect to a wavelet ψ) is dominated by the diagonal, suppressing all entries off the
diagonal, we have the following approximation of Tf .

Tf ≈ 〈f, φ`0,0〉φ`0,0 +
`0∑

j=1

2j−1∑
n=0

θj,n,j,ndj [n]ψj,n, (6)

where each dj [n] :=〈f, ψj,n〉. In the above approximation, we ignore the boundary effect and
approximate 〈Tφ`0,0, φ`0,0〉 by 1. The wavelet coefficient {dj [n]}j,n can be computed from
the uniform sample of f using the linear time fast wavelet transform. Conversely, the double
summation can be computed in linear time using the fast inverse wavelet transform. Thus,
given a function represented by its uniform sample points, we can compute its foveated image in
linear time, provided that the diagonal {θj,n,j,n} is precomputed. Let us call the precomputed
diagonal {θj,n,j,n} the mask.

The mask could be precomputed directly from its definition or from the approximation (5).
Figure 8 shows the computed mask which is plotted as functions of n for different j. Note that it
contradicts self-similarity (Property 2). This is due to the error induced in sampling the kernel
and f . (In Figure 6, the values are computed in high resolution; thus the self-similarity property
is retained). In coarser scale, the kernel for j > 3 are well approximated by j = 3. In Figure 8,
the diagonal {θj,n,j,n} for j > 3 is not shown as it overlaps with the entries at j = 3.

Figure 9(a) is an approximation of a foveated function using (6). The error of this approxi-
mation is shown in Figure 10(c).

Look-up table. The above approximation assumes that the weight function takes the form
w(x) = α|x|. For weight functions with non-zero fovea γ and foveal resolution β, we can similarly
show the decays in the corresponding transformed kernel. Thus, similar approximation can be
extended to this class of weight functions.

In most applications, the parameters α, γ, and β change rapidly. Thus, it is important to
compute the corresponding diagonal {θj,n,j,n} efficiently. A fast and simple approximation can
be achieved by a “look-up” procedure which uses a table L of size Lsize. The entries in L are
the diagonal with respect to a weight function

w0(x) := α0|x|,

where α0 is some small constant. Typically, a good choice of α0 is (Lsize)−1. The mask cor-
responding to different weight functions are looked up from this table. Let us define {θα,β

j,n } to

10
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Figure 8: The entries θj,n,j,n computed numerically. The samples are taken uniformly at a unit
spacing.

be the diagonal corresponding to the foveation whose weight function is w(x) = α|x| + β. To
approximate θα,β

j,n , the look-up procedure returns L[k] where

k :=
⌊

α

α0
(|n|+ 2−jβ)

⌋
.

If (k > Lsize), then the value zero is returned.
In particular, if β = 0 but α 6= α0, then the look-up amounts to a dilation of the table by a

factor of α. If α = α0 but β 6= 0, then the look-up amounts to a translation. When γ is non-zero,
we could approximate the diagonal by shifting the look-up table. This look-up procedure can
be justified by using a similar trick in deriving (5).

A simplified approximation. An interesting simplification is by further approximating
each diagonal entry θj,n,j,n by it’s rounded value ROUNDD(θj,n,j,n), where

ROUNDD(x) =
{

1 if x > D, and
0 otherwise, (7)

for some constant D. Call this simplified mask the 0-1 mask.
This method of using a 0-1 mask to produce a foveated image is essentially the technique of

Burt [5]. In a certain sense, we give a justification of this technique by arguing that it is indeed
an approximation of the foveation operator. Figure 9(b) shows the approximation of a foveated
function using a 0-1 mask and Figure 10 compares the error in using the diagonal and a 0-1
mask.

The advantages of the 0-1 mask are simplicity and computational speedup in the reconstruc-
tion process. An example is volume rendering [6], where the projection of the volume data onto
a plane is computed by performing a texture mapping operation for each non-zero coefficient.

4 Generalization to two dimension

Most applications of foveation are for two dimensional images. Given a two dimensional image
I, its foveation is determined by a smoothing function g and a weight function w.

(TI) (x, y) :=〈I, gx,y〉. (8)
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Figure 9: (a) The darker line is the foveated f as in Figure 2. The lighter line is an approximation
computed using only the diagonal in the operation matrix. (b) Same as (a) except that each
diagonal entry is rounded to 0 or 1.
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Figure 10: The solid and dotted line is the error in Figure 9(a) and 9(b) respectively. The error in
(b) is clearly larger than that in (a).

Each gx,y is the translated and dilated version of the smoothing g. Its center is translated to
(x, y) and its width is dilated by a factor of w(x, y). In addition, each gx,y is normalized under
1-norm. Specifically,

gx,y(s, t) :=
1

w(x, y)2
g

(
s− x

w(x, y)
,

t− y

w(x, y)

)
.

In two dimensions, the weight function takes the form w(x, y) = α‖(x, y)− (γ1, γ2)‖2 +β, where
α, γ = (γ1, γ2) and β are the rate, fovea, and foveal resolution respectively. Figure 12(b) is the
foveated image of Figure 12(a).

Similar to the one-dimensional case, in two dimensions, we transform the kernel using a
wavelet. By choosing a compactly supported smoothing function and a wavelet, it is easy (but
tedious) to show an off-diagonal decay in the transformed kernel. Along the diagonal, for a
separable smoothing function and suitable wavelet, we can show a decay away from the fovea.
We omit the details.

To see the different roles of the three mother wavelets Ψk where k ∈ {h, v, d}, let us consider
an approximation. Let {ck

j [m,n]} be the diagonal entries:

ck
j [m,n] =

〈
TΨk

0,m,n, Ψk
0,m,n

〉

=
∫ ∞

−∞
dy

∫ ∞

−∞
dx Ψk

0,m,n(x, y)
∫ ∞

−∞
dt

∫ ∞

−∞
ds Ψk

0,m,n(s, t)gw(x,y)(s, t).

Note that the support of Ψk is in the domain [m − A,m + A] × [n − A,n + A], where A is
some constant. For large m or n, we can approximate w(x, y) by the constant w(m,n). Thus,
if g is separable, the function gw(x,n)(s)gw(m,y)(t) is a good approximation of gw(x,y)(s, t). This
simpler form gives the following approximation.

ck
j [m,n] ≈





cj [w(m,n)] · bj [w(m, n)], if k = v,
bj [w(m,n)] · cj [w(m, n)], if k = h,
cj [w(m,n)] · cj [w(m,n)], otherwise,

where

cj [r] = 〈ψj,r, T (ψj,r)〉,
bj [r] = 〈φj,r, T (φj,r)〉, and r = ‖(m,n)‖2.

Recall that in Section 3.4, 〈φj,m, T (φj,m)〉 decays much slower than 〈ψj,m, T (ψj,m)〉. Thus the
vertical component has a slower decay compared to the diagonal component.
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(a) (b)

Figure 11: (a)The contour plot {ck
j [m,n]}. Note that the vertical component and diagonal compo-

nent are different. (b) The simplified 0-1 Mask. The dark regions contain coefficients of value 1.
The constant for the rounding function ROUNDD is D = 0.4.

Figure 11(a) shows the contour plot of {ck
j [m,n]}. This two-dimensional contour plot is the

diagonal entries of the four-dimensional transformed kernel. Figure 11(b) is the rounded version
of Figure 11(a) using equation (7). A faster decay is observed in the diagonal component.

For an image I, its foveation can be approximated by

〈I, Φ`0,0,0〉+
∑

k,m,n,j

ck
j [m,n]〈I,Ψk

j,m,n〉Ψk
j,m,n. (9)

The wavelet coefficient {〈I, Ψk
j,m,n〉} can be obtained from the uniform sample of I using the

linear time fast wavelet transform. Conversely, the summation in (9) can be computed in linear
time using the fast inverse wavelet transform.

Figure 12(c) is an approximation of Figure 12(b) obtained using (9) whereas Figure 12(d) is
the approximation using the rounded 0-1 mask. The visual effect of using the 0-1 mask is an
enhancement of the Gibbs phenomena along edges. This can be observed in Figure 12, especially
along the edge of the “mirror.”

5 Applications

Image Compression. Suppose we have prior knowledge of the viewer’s point of interest
in an image, we could achieve a higher compression rate by compressing the foveated image
instead of the uniform image. The compressed foveated image is obtained by applying the
existing compression scheme on the coefficients obtained by our approximation method.

To illustrate the compression rate, both Figure 12 (c) and (d) are reconstructed after the
wavelet coefficients are quantized (that is rounded). After quantization, the number of non-zero
coefficients required for (c) and (d) reduces to 7471 and 7460 respectively, which are both about
2.8 percent of the total number of coefficients required for the original image. Note that the
performance of a compression scheme at high bit rate is essentially proportional to the number
of non-zero coefficients [18].

Image Visualization. A number of previous works [15, 32] have indicated the potential
of foveation in image visualization across the computer network. This idea could be enhanced
by including progressive transmissions of a multi-foveated image (an image with more than one
fovea) and allowing the viewer to interactively select the foveae [8, 13].

First, let us give a generalization of weight function to more than one fovea. We can obtain
new weight function by combining several weight functions. Given two weight functions, their

14



(a) (b)

(c) (d)

Figure 12: (a) Original image. (b) Foveation with foveal at her right eye and with rate α =
1/(80 pixels). (c) Computed using the mask as shown in Figure 11(a). (d) Computed using the
0-1 mask as shown in Figure 11(b).
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blended weight function w is defined as

w(x, y) = min{w1(x, y), w2(x, y)}.

We call a weight function blended from several single-fovea weight functions a multi-fovea weight
function. The foveated images with these weight functions may contain more than one fovea.

In our application of image visualization, a very large image is stored in the server and the
viewer is connected to the server through the computer network. Both the server and viewer
keep a multi-fovea weight function wt, which changes as the time t increases. The task of the
server is to provide the viewer the multi-foveated image with weight function wt. The viewer
could interactively modify wt by blending wt with another multi-fovea weight function w′. Note
that this application is directed to images of very large size (possibly 5000 by 5000 pixels), and
the viewer is only interested in a small and highly selective region of interests.

To send a multi-foveated image, the server computes its approximation using methods de-
scribed in Section 3.5. Recall that this amounts to the pairwise multiplications between entries
in the mask and the wavelet coefficients (of the original image). The coefficients of the approx-
imated multi-foveated image are then quantized to some fixed precision. Next, these quantized
coefficients are treated as bytes and sent across the network. The server keeps a history of what
had been sent; thus it is not necessary to send all the bytes. Instead, the server could just send
the additional bytes required for the multi-foveated image. This process iterates until the viewer
stops the transmission.

A simplified version of this scheme is implemented in [7].

6 Conclusion

The idea of using wavelets in foveation has been investigated in many previous works. Non-
wavelet method based on log-polar transformations and superpixel geometry have also been
studied. Our novel approach amounts to first defining a mathematical foveation operator, and
then giving a practical wavelet-based approximation to this operator. Our method is simple and
flexible for multiple foveae, and is provably accurate (relative to the mathematical operator).
It also permits progressive transmission of multi-foveated image. We have demonstrated the
utility of our approach in two applications, namely visualization and image compression.
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A Boundedness of T

Proof.(of Theorem 1)
This proof is based on the intuition that foveation is equivalent to a convolution after a

change of domain. Let

f+(t) := f(t) 1[0,∞)(t), and
f−(t) := f(−t) 1[0,∞)(t),

where

1[0,∞)(t) :=
{

1 if t ≥ 0
0 otherwise.

Let Ki : L2(R+) → L2(R), for i = 1, 2, 3, and 4 be the operators

Kif(x) =
{ ∫∞

0
f(t) 1

xki

(
t
x

)
dt if x > 0.

0, otherwise, (10)

where

k1(u) := g(u− 1) 1[0,∞)(u),
k2(u) := g(−u− 1) 1[0,∞)(u),
k3(u) := g(u + 1) 1[0,∞)(u), and
k4(u) := g(−u + 1) 1[0,∞)(u).

Observe that

Tf(x) =
∫ ∞

0

f(t)
1
|x|g

(
t

|x| −
x

|x|
)

dt +
∫ ∞

0

f(−t)
1
|x|g

(−t

|x| −
x

|x|
)

dt

If x > 0, then

Tf(x) =
∫ ∞

0

f(t)
1
x

g

(
t

x
− 1

)
dt +

∫ ∞

0

f(−t)
1
x

g

(
− t

x
− 1

)
dt

= K1f+(x) + K2f−(x);

otherwise,

Tf(x) =
∫ ∞

0

f(t)
1
−x

g

(
t

−x
+ 1

)
dt +

∫ ∞

0

f(−t)
1
−x

g

(
− t

−x
+ 1

)
dt

= K3f+(−x) + K4f−(−x).

We can combine the above as follow:

Tf(x) = K1f+(x) + K2f−(x) + K3f+(−x) + K4f−(−x). (11)

Lemma 5 shows that each Ki is bounded.

‖Ki‖ ≤
∫ ∞

0

|ki(u)| du√
u

.

Putting the above inequality into (11), we have

‖Tf‖ ≤ (‖K1‖+ ‖K2‖+ ‖K3‖+ ‖K4‖) ‖f‖
⇒ ‖T‖ ≤

∫ ∞

0

|g(u− 1)| du√
u

+
∫ ∞

0

|g(−u− 1)| du√
u

+
∫ ∞

0

|g(u + 1)| du√
u

+
∫ ∞

0

|g(−u + 1)| du√
u

=
∫ ∞

−∞
|g(u− 1)| du√

|u| +
∫ ∞

−∞
|g(u + 1)| du√

|u| .
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Q.E.D.

Lemma 5 Let L2(R+) :={f ∈ L2(R) : supp(f) ⊆ [0,∞)}. If k ∈ L1(R+) is bounded, then the
operator K, where

Kf(x):=
∫ ∞

0

f(t)
1
x

k

(
t

x

)
dt,

is bounded and
‖K‖ ≤

∫ ∞

0

|k(u)| du√
u

< ∞.

Proof. Rewrite K as a convolution after a change of variable (logmap transformation):

Kf(x) =
∫ ∞

0

f(t)k
(

t

x

)
dt

x

Kf(ey) =
∫ ∞

−∞
f(eu)k

(
eu−y

)
eydeu

(substituting t = eu and x = ey)

= e−y/2

∫ ∞

−∞
eu/2f (eu) e(u−y)/2k

(
eu−y

)
du.

Let us define the change of variable operator Γ : L2(R+) → L2(R),

Γf(u) := eu/2f (eu) .

Note that

Kf(ey) = e−y/2 (Γf ? [Γk]∨) (y),

where ∨ is the flip-operator, that is, h∨(x) = h(−x). Now, we have

ey/2Kf(ey) = (Γf ? [Γk]∨) (y)
⇒ ΓKf(y) = (Γf ? [Γk]∨) (y). (12)

Let k̃ :=[Γk]∨ and C be the convolution operator defined by:

Cg(x) :=
(
g ? k̃

)
(x).

Inserting into (12) gives

ΓKf(y) = CΓf(y)
⇒ K = Γ−1CΓ.

Note that Γ is a unitary operator, thus we have

‖K‖ = ‖C‖.
Since C is a convolution with k̃,

‖C‖ ≤
∫ ∞

−∞

∣∣∣k̃(u)
∣∣∣ du

=
∫ ∞

−∞
eu/2 |k(eu)| du

=
∫ ∞

0

|k(x)| dx√
x

.

Hence
‖K‖ ≤

∫ ∞

0

|k(x)| dx√
x
≤ 2‖K‖∞ + ‖K‖1 < ∞.

Q.E.D.
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B Decay in the kernel

To prove Theorems 3 and 4, we use the following lemma [19] which relates the magnitude of
|〈f, ψj,n〉| with the local regularity of f and the scale j. The local regularity of a function is
measured by its Lipschitz regularity.

Definition
1. A function f is pointwise Lipschitz δ ≥ 0 at v, if there exist Q > 0, and a polynomial pv

of degree m = bδc such that for all t ∈ R,

|f(t)− pv(t)| ≤ Q|t− v|δ. (13)

2. A function f is uniformly Lipschitz δ over [a, b] if it satisfies (13) at v ∈ [a, b], with a
constant Q that is independent of v.

Lemma 6 Suppose ψ has q vanishing moments, ψ is Cq and has compact support, and f is
uniformly Lipschitz δ < q over an interval [a, b], then there exist B > 0 such that for all ψj,n,

|〈f, ψj,n〉| ≤ B2(δ+1/2)j .

Proof. (of Theorem 3) Parts (a) and (b) can be easily verified using the fact that both
g and ψ have compact support. For (c), we will only show |θj,m,k,n| ≤ E2(k−j)(p+1/2). Since
either |n| > 2α−1 or |m| > 2α−1, if nm < 0 then θ0,m,k,n = 0. If n > 0 and m > 0, then

θ0,m,k,n =
∫ ∞

0

∫ ∞

0

ψk,n(x)ψ0,m(t)(αx)−1g

(
t− x

αx

)
dt dx.

Otherwise, if n < 0 and m < 0, then

θ0,m,k,n =
∫ 0

−∞

∫ 0

−∞
ψk,n(x)ψ0,m(t)(−αx)−1g

(
t− x

−αx

)
dt dx.

We only consider the first case (n > 0 and m > 0) since the second case is similar.

θ0,m,k,n =
∫ ∞

0

∫ ∞

0

ψk,n(x)ψ0,m(t)(αx)−1g

(
t− x

αx

)
dt dx,

=
∫ ∞

0

ψk,n(x)
∫ ∞

0

ψ0,m(t′x)α−1g

(
t′ − 1

α

)
dt′ dx. (14)

(by substituting t′ = tx−1)

If n > 2α−1, then ψk,n(x) = 0 for x < c, where c is some positive constant. Using this fact, (14)
can be rewritten as

∫ ∞

−∞
ψk,n(x)

∫ ∞

0

ψ0,m(t′x)α−1g

(
t′ − 1

α

)
dt′ dx.

Otherwise, we have m > 2α−1. Since ψ has compact support, ψ0,m(t′x) = 0 whenever t′ and x
have different sign. Therefore, (14) can again be rewritten as the above.

Since supp(g) ⊆ [−α−1, α−1], we have

supp(g(α−1(· − 1))) ⊆ [0, 2],

θ0,m,k,n =
∫ 2

0

α−1g

(
t− 1

α

) ∫ ∞

−∞
ψk,n(x)ψ0,m(tx) dx dt

=
∫ 2

0

α−1tpg

(
t− 1

α

) ∫ ∞

−∞
ψk,n(x)

(
t−pψ0,m(tx)

)
dx dt.
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Since ψ0,m is Cp, then so is the function t−pψ0,m( · t). Together with Lemma 6,
∣∣∣∣
∫ ∞

−∞
ψk,n(x)t−pψ0,m(tx)) dx

∣∣∣∣ ≤ E12k(p+1/2),

for some constant E1. Therefore

|θ0,m,k,n| ≤ max
0≤t≤2

{∣∣∣∣α−1tpg

(
t− 1

a

)∣∣∣∣
}
·
∫ 2

0

E12k(p+1/2) dt = E22k(p+1/2).

By self-similarity, we have the result.
Q.E.D.

Proof.(of Theorem 4)
We will only show |θj,m,k,n| ≤ F 2(j−k)(ρ+1/2)|n|−(ρ+1). The other case is similar.
Rewriting θj,m,0,n, we have

θj,m,0,n =
∫ ∞

−∞
ψ0,n(x)|αx|−(ρ+1)

∫ ∞

−∞
ψj,m(t)

(
|αx|ρg

(
t

αx
− 1

))
dt dx.

Since g is uniformly Lipschitz ρ, then so is (αx)ρg( · /(αx)− 1). Together with Lemma 6,

|θj,m,0,n| ≤
∫ ∞

−∞

∣∣∣ψ0,n(x)(αx)−(ρ+1)F12j(ρ+1/2)
∣∣∣ dx

= F12j(ρ+1/2)

∫ n+α−1

n−α−1
ψ0,n|αx|−(ρ+1) dx.

Since |n| > 2α−1,

|θj,m,0,n| ≤ F12j(ρ+1/2)(α|n− α−1|)−(ρ+1)

∫ ∞

−∞
|ψ0,n(x)| dx

≤ F22j(ρ+1/2)|n|−(ρ+1).

By self-similarity, we have

|θj,m,k,n| ≤ F
(j−k)(ρ+1/2)
2 |n|−(ρ+1).

Q.E.D.
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