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ABSTRACT

Motivated by applications of foveated images in visualiza-
tion, we introduce the foveation transform of an image.
We study the basic properties of these transforms using the
multiresolution framework of Mallat. We also consider prac-
tical methods of realizing such transforms. In particular,
we introduce a new method for foveating images based on
wavelets. Preliminary experimental results are shown.

1 INTRODUCTION

Conventional images have uniform resolution. Foveated
images which have non-uniform resolution arise in biolog-
ical vision. In figure 1 we show a foveated version of an
uniform image. The process of going from an uniform image
to figure 1 is called “foveation”.

One of the most interesting forms of foveated images is
based on the complex logarithm function. Such logmap im-
ages were studied by Rojer and Schwartz [10] and others.
The complex logmap is a model consistent with empirical
data on the mapping from primate retina to the visual cor-
tex [11, 12]. This neuro-physiological model goes back to the
pioneering (and the Nobel prize) work of Hubel and Wiesel
[5, 6]. Rojer [9] demonstrated many favorable properties of
such images. Perhaps the most striking fact is that the data
density in such images grows logarithmically with the diam-
eter of the visual field (as opposed to quadratically in the
case of uniform images). Such low density images have been
exploited in applications such as video phones [14]. In this
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paper, we use the term “foveated” to refer to any variable
resolution image, not just those with the geometry of the
logmap or having a definite “foveal region”.

Visualization Applications. Foveated images have been
exploited in computer vision, (e.g., [4, 13]), especially in the
context of active vision[1, 2]. But they are also useful in
visualization, although this aspect is less explored. For vi-
sualization, we must compensate for the loss of peripheral
resolution in foveated images by rapidly presenting images
that are foveated at points of user interest. We could use eye-
tracking technology [7] to follow the eye and to present the
corresponding foveated images. In principal, if the foveation
uses the correct parameters and eye-tracking is good, a user
should not be able to detect any difference from viewing a
uniform image. A system with such properties has been re-
ported by [8]. But in our visualization applications, we can
dispense with eye-tracking — the visualizer may be counted
upon to cooperate with the image server. For instance, the
visualizer can indicate moving areas of interest in an image
via a standard mouse input. Because of the rapid eye ac-
tivity in normal visualization, we call this approach active
visualization.

Thinwire Visualization. We describe one application,
viz., in “thin-wire” models of computation. Here, we have a
server who acts as an image-server and a client who wishes
visualize images from the server. The images may be very
large (e.g., a terrain or map) and have high resolution. The
server has large computational resources but there is only a
thin wire (such as the Internet) connecting the server and
client. A basic problem in this scenario is the construction
foveated images from uniform images. Our paper focuses on
this problem.

2 FOVEATION THEORY

There are various practical methods to foveate an image.
We would like to provide the mathematical formulation of
this process. This would allow us to evaluate the various
methods.

As usual, one can begin with one-dimensional images or
functions. Given an image I(x), we would like to define
a foveated image I0(x) A foveation is determined by a
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Figure 1: Blended image with 2 gaze points (on the ex-
treme left and extreme right faces with rates 1

20
and 1

30
re-

spectively). The image is obtained using the definition of
foveation and blending of two standard weight functions.

weight function and a scaling function,

w : R→ R≥0, s : R→ R.

We require the weight function to be positive except at
finitely many values (so w(x)−1 < ∞ at all but finitely many
x). The scaling function is analogous to the “father wavelet”
usually denoted φ(x) in wavelet theory. We define

I0(x) :=

∫
I(t)C−1(x)s

(
t− x

w(x)

)
dt,

where C(x) := ‖s
(
·−x
w(x)

)
‖. The weighted translation (or,

w-translation) of s by x is defined to be

sx(t) := C−1(x)s

(
t− x

w(x)

)
. (1)

Now the foveated image could be rewritten as

I0(x) = 〈I, sx〉.
A standard weight function is one of the form

wstd(t) = wα,β,γ(t) := α|t− γ|+ β,

where α, β, γ are fixed constants and α, β ≥ 0. We call α
the rate, β the foveal resolution and γ the gaze point.
Intuitively, this weight function defines the point t = γ as the
fovea with maximum resolution β. The resolution decreases
linearly with the distance from the gaze point, at the rate
α.

We can obtain new weight functions by combining sev-
eral given weight functions. The following definition corre-
sponds to an effective method for blending images: given
weight functions w1 and w2, their blended weight func-
tion w is the pointwise minimum of the two functions:
w(x) = min{w1(x), w2(x)}.

3 WEIGHTED DISTANCE

For a function I, we want to measure how far I is from the
foveation I0. It is not useful to use the usual ‖I − I0‖ norm

Figure 2: Same as figure 1 but is is obtained using wavelet
foveation.

as we want to place less emphasis on I(x)− I0(x) when x is
far away from the “foveal region”. Define for a function f ,

‖f‖w =

(∫
(w(t))−1 |f(t)|2 dt

)1/2

. (2)

Then the w-distance between f and g is defined to be
dw(f, g) := ‖f − g‖w. Let L(t) be a function such that
dL(t) = dt

w(t)
. If L−1(t) is well-defined then

∫
|f(t)|2(w(t))−1dt =

∫
|f(L−1(y))|2dy. (3)

L(t) and L−1(t) for the standard weight functions with β = 1
is are given by

L(t) = sg(t) · ln(α|t|+ 1), L−1(t) = sg(t)(eα|t| − 1).

4 MULTIRESOLUTION FOVEATION

For any weight function w and n ∈ Z, let wn(t) := 2−nw(t).
(An alternative definition is wn(t) := w(2−nt)). Define In

to be the foveation using the weight function wn. Then
{In} is now a sequence of increasingly better foveation as n
increases.

5 PRACTICAL FOVEATION METH-
ODS

Computing I0 from its definition is computationally ineffi-
cient. We consider practical methods to approximate I0.
There are two general approaches. The first approach is
based on sampling. Previous papers on foveation can be
put under this approach. This is computationally efficient
(usually implemented with lookup tables), but lack flexibility
when different weight functions are required. In this paper
we introduce a second approach. It exploits any multireso-
lution representation of an image of I: to create a foveated
image from I, we ‘cut’ the necessary pieces from each level of
the multiresolution representation and ‘glue’ them together.
There is considerable freedom in choosing the multiresolu-
tion representation (e.g., different kinds of wavelet trans-
forms) and in how we cut and paste.
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using original image

using Haar          

using DAUB4         

using DAUB6         
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Figure 3: The weighted distance dw(I, I0) and dw(Iwav, I0)
where Iwav is computed using different wavelets. The weight
function used is w(t) = 1

r
‖t‖∞.

5.1 Foveation via Wavelets

We give an approximation of foveation using wavelets. Let
ψ be the mother wavelet and φ be the corresponding father
wavelet. Let ψm,n be the translated and dilated version of
ψ. Specifically, ψm,n(t) = ψ(2−mt−n). Assume that {ψm,n}
form an orthonormal basis for L2(R). The approximation is
as follows.

Iwav =
∑

(m,n)∈B(w)

〈ψm,n, I〉ψm,n(x),

where B(w) is a discrete set depending on the weight func-
tion w,

B(w) = {(m, n)|2m ≥ w(n2m)} .

For the standard weight w = α|t| + β, the set B(w) is
{(m, n)|2m ≥ α|n|2m+β}, which is {(m, n)|2−mc1+|n| ≤ r}
where c1 = α−1β and r = α−1. This means that we just have
to take at most r coefficients from each level. If the foveal
resolution β is greater than 2m, then no coefficients from
level m is in B(w) (m could be a negative integer). This
simple structure is useful for fast reconstruction.

We use the weighted distance to measure the quality of
approximations using different wavelets. Figure 3(a) shows
experimental results of this comparison. The two dimen-
sional weighted distance is

dw(f, g) :=

∫ ∫
w(x, y)−2‖f(x, y)− g(x, y)‖2dx dy.

5.2 Bandwidth reduction

Our techniques show promise for thin-wire visualization.
Figure 4 illustrates experimental results on the reduction
in number of coefficients and number of bytes (note that a
coefficient may take more than one byte) needed to repre-
sent foveated images at various rates. The number of bytes
is computed after a lossless compression. The original image
used is the uniform version of figure 1.

6 FURTHER WORK

We are currently looking at the mathematical analysis
of multiresolution foveation and comparison of various
foveation approaches using our formulation. On the practi-
cal side, we are implementing active visualization of a large
(for example 4000 by 4000 pixels) image across a network.
We are also looking into generalization to 3-d, that is, vol-
ume data.
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Figure 4: Size of original image is 375× 469 pixels with 256
gray levels. When r = 20, on average, the image uses 0.43
bit per pixel. When r = 50, the image uses 1.28 bit per
pixel.
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