
Competitive Online Scheduling with Level of Service

Ee-Chien Chang ∗

Department of Computational Science
National University of Singapore

Chee Yap ∗

Department of Computer Science
Courant Institute, New York University

July 7, 1998 (Revised: Oct 13, 2000)

Abstract

Motivated by an application in thinwire visualization, we study an abstract
on-line scheduling problem where the size of each requested service can be
scaled down by the scheduler. Thus our problem embodies a notion of “Level of
Service” that is increasingly important in multimedia applications. We give two
schedulers FirstFit and EndFit based on two simple heuristics, and generalize
them into a class of greedy schedulers. We show that both FirstFit and
EndFit are 2-competitive, and any greedy scheduler is 3-competitive. These
bounds are shown to be tight.

1 Introduction

We study an abstract on-line scheduling problem motivated by visualization across a
“thinwire” network [4, 3]. An example of such a visualization problem is a server-client
model where the server and client are connected by a thinwire (that is, a bandwidth-
limited connection such as the Internet), with the the server holding a very large
image that the client wishes to visualize. The viewer on the client side can control the
transmission process by moving a mouse cursor over a low-resolution copy of the image
to be visualized. This mouse motion generates, in real-time, a sequence of sampled
positions along the mouse cursor trajectory. Each sampled position (x, y) corresponds
to a request for higher resolution data at the position. As the bandwidth is limited, we

∗Partially funded by NSF grant CCR-9619846

1

could only partially serve each request. This is where an on-line scheduler is needed
to optimize the decisions. In most scheduling problems, a partially served request
does not contribute to the performance of the scheduler. However, in this problem,
a partially sent data can still provide useful information to the user. Thus, instead
of sending all the requested data, the server has the option of lowering the “level”
of the requested service in order to gain an overall better response time. This paper
focuses on this level of service property. Note that there is considerable interest in
similar Quality of Service (QoS) issues in multimedia research.

We use the standard notion of “competitiveness” in the sense of Sleator and Tarjan
[9] to judge the quality of our online schedulers. A scheduler S produces a feasible
schedule S(I) for each instance I of our scheduling problem. Each S(I) has an
associated merit, where merit(S(I)) ≥ 0. Let opt(I) denote any feasible schedule for
I that maximizes the merit. We say S is c-competitive (c ≥ 1) if for all I,

merit(opt(I)) ≤ c ·merit(S(I)) + b,

where b is a fixed constant. The competitive ratio of S is defined by

C(S) := sup
I

merit(opt(I))

merit(S(I))
.

Thus, we want schedulers S with C(S) ≥ 1 as small as possible. The original paging
problem studied by Sleator and Tarjan is a special case of the k-server problem [7].
There is a fairly large literature on competitive algorithms (e.g., [1, 2, 8]). The class
of problems most closely related to ours is the online interval packing problem for a
single server, where a schedule is a subset of non-overlapping intervals. Lipton and
Tomkins [6] study a variant where the input intervals are sorted by their left endpoints.
They give a randomized scheduler that is 2-competitive. As we will see, our problem
is different from theirs in several ways. Woeginger [10] studied a problem that has
several of the features of our problem. Other online interval packing problems can be
found in [11, 5].

Outline. In the next section, we formulate our on-line scheduling problem and give
two schedulers, FirstFit and EndFit. FirstFit is based on a heuristic which al-
ways serves the most important residual request, whereas EndFit is based on another
heuristic which always serves according to the optimal schedule of the residual re-
quests. The 2-competitiveness of FirstFit is shown in Section 3. A considerably
harder result is the 2-competitiveness of EndFit, shown in Sections 4. We generalize
both schedulers to a class of Greedy schedulers in Section 5. A lower bound of 1.17 on
the competitive ratio of any deterministic scheduler is shown in Section 6. In section
7, we give a variant of the scheduling problem under a multi-tasking environment,
and discuss its relationship with the original scheduling problem.

2

2 Problem Formulation

We formalize our problem as an on-line scheduling problem. Each request q has four
parameters

q = (s, t, v, w),

where s the start time, t the termination time (or deadline), v is the volume (or size),
and w is the weight. We require

v ≥ 0 and w ≥ 0.

Write st(q), dl(q), sz(q), wt(q) for the above parameters of q, respectively. Call the
half-open interval (s, t] the span of q, written span(q). A request q can only be served
within its span (s, t], and at any time moment t0, at most one request can be served.

An instance I is a sequence (q1, q2 . . . qn) of requests where the start times of
the qi’s are in increasing order: note that we allow st(qi) = st(qi+1) even though
we nominally say qi starts before qi+1. How requests are served is described by the
schedule. Formally, A schedule for I is a piece-wise constant function

H : R→ {q1, q2, . . . , qn} ∪ {∅}

where |H−1(qk)| ≤ sz(qk) and H−1(qk) ⊆ span(qk) for k = 1, . . . , n. Intuitively,
H(t0) = qk means the kth request is served at time t0 and H(t0) = ∅ means no
request is being served. A time moment t0 is called a breakpoint if H is discontinuous
at t0. (More precisely, for every ε > 0, there exists δi (0 < δi < ε, i = 1, 2) such
that H(t0) = H(t0 − δ1) 6= H(t0 + δ2)). We further require a schedule H to have
finitely many breakpoints. A half-open interval of the form (t0, t1] is called a time-
slot. Without loss of generality, we may assume H−1(q) is a finite union of time slots.
The merit merit(H) of a schedule is

n∑

j=1

wt(qj)|H−1(qj)|.

Relative to a schedule H at any time t0, we call

v′ := sz(q)− |H−1(q) ∩ (−∞, t0]|

the residual size of q. A request q is completely served if v′ = 0. If v′ > 0 and
st(q) ≤ t0 ≤ dl(q), then we say q is pending. The residue of a pending q at time t0
is the modified request q′ = (t0, dl(q), v

′, wt(q)).
So for each completely served request, the scheduler gains sz(q)wt(q) merit points

(so weights are multiplicative). Moreover, partially served requests gains a propor-
tional fraction of this merit. This is unlike usual scheduling problems in which par-
tially served requests receive no merit.

3

Preemption. It is implicit in the above definitions that the servicing of any request
can be preempted as often as we like with no penalty. Hence we may imagine the
scheduler to “plan” a schedule based on all the currently residual requests. It services
the requests according to this plan until the arrival of a new request. Then it suspends
the current plan, recomputes a new plan based on the new set of residual requests,
and repeats the process.

2.1 Optimal Schedules

We say H is optimal for I if merit(H) is maximum among all schedules for I. The
existence of optimal schedules is not immediate. In this section, we first establish the
existence of optimal schedules (Theorem 2), and then give a canonical representation.

Let I be a sequence of n requests. The 2n endpoints of intervals in I are called
natural breakpoints of I. The time-slot (s, t] defined by two distinct consecutive natu-
ral breakpoints s and t is called a natural slot of I. There are at most 2n− 1 natural
slots.

Lemma 1 For every schedule H for I, there is another schedule H ′ for I with at
most 2n2 + n breakpoints such that:

• merit(H) = merit(H ′);

• Within each natural slot, if a request is serviced, it is served in a single time
interval.

Proof. We transform H to H ′ by modifying its service within each natural slot of
I. Within a natural slot, H ′ can always serve each request in a single (continuous)
time interval. It follows that there are at most n breakpoints within a natural slot.
Some of the natural breakpoints may now become breakpoints of H ′. Since there
are at most 2n natural breakpoints and at most 2n− 1 natural slots, H ′ has at most
2n+(2n−1)n = 2n2+n breakpoints. Finally, note that the merit of H is not changed
by this transformation. Q.E.D.

Theorem 2 For all sequences I of n requests, there exists an optimal schedule H∗

with at most 2n2 + n breakpoints.

Proof. In the following, let slot(i) denote the i-th natural slot where slot(1) is the
earliest natural slot.

Let µ∗ = supH{merit(H)} where H range over all schedules for H. Then there
is an infinite sequence {Hk : k ≥ 0} of schedules for I such that merit(Hk) is non-
decreasing in k and achieves µ∗ in the limit. We now construct a schedule H∗ with
merit(H∗) = µ∗. For any schedule H for I, define the function

τH : {1, . . . , 2n− 1} × {1, . . . , n} → R

4

where τH(i, j) = |slot(i) ∩ H−1(qj)| where qj is the j-th request in I. Also, write
τk instead of τHk

. By going to a subsequence if necessary, we can assume that for
all i, j, τk(i, j) is monotone (increasing or decreasing) as k → ∞; we let τ ∗(i, j)
denote the limiting value. Choose H ′

k to be the schedule obtained from Hk using the
transformation of the preceding lemma. Write τ ′k instead of τH′

k
. Finally, define H∗

so that H∗ has the form given by the previous lemma, and τH∗(i, j) = τ ∗(i, j) for all
i, j. Clearly merit(H∗) = µ∗. It remains to show that H∗ is a schedule for I. Fix an
arbitrary qj in I. It suffices to check that |(H∗)−1(qj)| ≤ sz(qj). For all k, we have
|(H ′

k)
−1(qj)| = ∑2n−1

i=1 τ ′k(i, j) ≤ sz(qj). Hence |(H∗)−1(qj)| = ∑2n−1
i=1 τ ∗(i, j) ≤ sz(qj).

Q.E.D.

Ordering of Requests. The schedulers in this paper make decisions by giving
priority to heavier weighted requests. In case wt(p) = wt(q), we resolve the tie by
treating p as “heavier” than q if and only if p starts before q.

Canonical Schedule. A schedule H is canonical if, the following hold:

P1. Serve lighter requests before heavier ones if possible. If t0 < t1 and H(t0) is
heavier than H(t1), then dl(H(t0)) < t1 or st(H(t1)) > t0.

P2. Local Optimality. For all t0 and q1, if q0 = H(t0) is lighter than q1, and t0 ∈
span(q1), then |H−1(q1)| = sz(q).

In the above definition, if H(t) = ∅, we interpret ∅ to be the request (−∞, +∞,∞, 0).
By definition, ∅ is lightest among all requests.

Lemma 3 Every schedule H can be transformed into a canonical schedule H ′ where
merit(H) ≤ merit(H ′).

Proof. First, we can modify H so that it satisfies Lemma 1 and there are no violations
of P2. After this, we keep performing “swaps” to remove violation of P1. Our swaps
can be specified by two slots T0 = (s0, t0] and slot T1 = (s1, t1] where s0 < t0 ≤ s1 < t1.
H is constant each Ti, and they represent a violation of P2. We modify H by serving
H(t1) in T0 and vice-versa. Such a swap does not create any new violations of Lemma
1 after suitable rearrangement within each natural slot. There is also no new violation
of P2, and the merit does not change. We choose each swap so that t1 is maximized,
and subject to this, we also maximize t1 − s1. So in successive swaps, t1 will strictly
decrease. If this process stops after finitely many steps, then H ′ can be chosen to
be the final schedule. Otherwise, by a limiting type argument similar to the proof
of Lemma 1, we can construct a canonical schedule H ′ from this infinite sequence of
schedules. Q.E.D.

In particular, if H is optimal, H ′ will be a canonical optimal schedule. Let opt(I)
denote any canonical optimal schedule for I.

5

2.2 FirstFit

The online scheduler that always serve the heaviest residual request at each moment is
called the FirstFit scheduler. Figure 1 shows the schedule produced by FirstFit on
an instance of two requests q1 and q2. Although this example may appear contrived,
we can modify q2 to q̃2 where q̃2 = (0, 2, 1, 1 + ε). As ε tends to zero, the FirstFit

schedule will be the one shown in Figure 1.

opt(I)

FirstFit(I)

q1

q2

I

210

Figure 1: The top figure illustrates the instance I of two requests: q1 = (0, 2, 1, 1)
and q2 = (0, 1, 1, 1). Each horizontal “dashed” line represents the span of the request.
Although wt(q1) = wt(q2), q1 is “heavier” than q2 by our tie-breaking rule. In opt(I),
q1 and q2 are served in the time-slots (1, 2] and (0, 1], respectively. However, in
FirstFit(I), only q1 is served.

2.3 EndFit

The Off-line EndFit Scheduler. Consider an online scheduler which always serves
according to the optimal schedule for the current set of residual requests. This was
first suggested by Estie Arkin.1 To implement such a scheduler, we can invoke a
general off-line algorithm for computing optimal schedules upon each new arrival of
a request. But it turns out that a very simple scheduler can be used. This scheduler,
on an arbitrary instance I, operates as follows:

Starting from the heaviest request down to the lightest, allocates each request
q ∈ I to the latest available time-slot(s) within span(q).

Call this the OffEndFit scheduler. It is an off-line algorithm because it must see the
entire set of requests to make its decisions. The next lemma shows that this scheduler
is optimal for a special class of inputs.

Lemma 4 If I is an instance in which all requests have a common starting time,
then OffEndFit(I) is an optimal schedule for I that is both canonical and unique.

1Private communication (1997).

6

Proof. Let H := OffEndFit(I) and H∗ := opt(I) be any canonical optimal schedule.
First, observe that H has canonical form and, of course, H is uniquely determined by
I. Hence it remains to show that H∗ is equal to H. By way of contradiction, let (s1, t1]
be a time slot such that H and H∗ are constant on this slot but q = H(t1) 6= H∗(t1) =
q∗. We may assume that t1 is maximized, so that for all t > t1, H(t) = H∗(t). By
symmetry, we may assume that q is heavier than q∗. By property P2 for H∗, we infer
that that q was served at some time before t1. But this contradicts property P1.
Hence H = H∗. Q.E.D.

The online EndFit scheduler. Let EndFit be the online scheduler which always
serves according to the OffEndFit schedule for the residual requests. More precisely,
on arrival of a new request q, EndFit preempts the current service. It computes
a new schedule P for the current residual requests using OffEndFit, and continues
by servicing P . Since all residual requests have a common starting time, P is the
canonical optimal schedule. We call P the plan of EndFit upon the arrival of request
q, and let Plan+(EndFit, I, q) denote the plan upon the arrival of q. In addition, let
Plan−(EndFit, I, q) denote the plan just before the arrival of q. It is helpful to visual-
ize the relationship between Plan−(EndFit, I, q) and Plan+(EndFit, I, q). To obtain
Plan+(EndFit, I, q) from Plan−(EndFit, I, q), the scheduler first finds the location to
“insert” the newly started request q; it then “squeezes” q in by “pushing” the original
allocated requests leftward (to earlier time-slots). In so doing, some requests may be
“pushed out” from the plan.

Figure 2 shows the EndFit schedule for an instance I = (q1, q2). The EndFit

schedule for this example may appear contrived. To see that it is “correct in the
limit”, let Iε = (q0, q1, q2) where q0 = (0, 1, 1, ε). For any 0 < ε < 1, the off-line
optimal schedule for the current residual requests is unique. As ε → 0, EndFit(Iε)
approaches the one schedule shown in Figure 2.

In the special cases where each request q in I satisfies span(q) = dl(q), we have
EndFit(I) = FirstFit(I) = opt(I).

opt(I)

EndFit(I).

q1

q2

I

10 2

Figure 2: The top figure illustrates the instance I of two requests: q1 = (0, 2, 1, 1)
and q2 = (1, 2, 1, 1). In the opt(I), q1 and q2 are served. However, in EndFit(I), only
q1 is served.

7

3 Competitive Ratio of FirstFit

Example 1 (Figure 1) shows that the competitive ratio of FirstFit is at least 2. We
will show that FirstFit is 2-competitive. Before presenting the proof, let us give
two definitions.

Charging Scheme. Let H, H1 and H2 be schedules for an instance I. We often
need to argue that the merit of H is no larger than the sum of the merits of H1 and H2.
Our approach is to charge a portion of H to H1 and the remaining to H2. Intuitively,
the charging process can be viewed as first cutting H1 and H2 into pieces and then
piecing them together again to form another piecewise-constant function Hchg. Each
piece, after cutting, may be translated before being placed in their slot in Hchg. As
it may turn out that |H−1

chg(q)| > sz(q) for some request q, Hchg is not necessarily a
schedule. The cut-and-paste is done in a way that for all t, wt(Hchg(t)) ≥ wt(H(t)).
Therefore,

merit(H) ≤ merit(Hchg) ≤ merit(H1) + merit(H2). (1)

In particular, if H1 = H2, then we have

merit(H) ≤ 2 ·merit(H1).

When we use the phrase: “charge (s′, e′] from H to H1 at (s, e]”, we mean that a
piece (s, e] is cut from H1 and placed into the slot (s′, e′] in Hchg. Equivalently, if
H−1(q) is the interval (s′, e′], we may say that the request q is charged from H to H1

at (s, e] (see Figure 3). Thus, to show (1), we need to charge each time slot of H to
either H1 or H2, and ensure that no part of H1 or H2 is charged more than one.

H1

s e

s′ e′q

Hchg

H

Figure 3: Charging the request q in H to H1 at (s, e].

Intactness. A request q is intact in a schedule H if H−1(q) is connected, and either
|H−1(q)| = 0 or sz(q). An instance I is intact in a schedule H if each request q in I
is intact. Most of our proofs will be simplified if we assume intactness. Fortunately,
since our scheduling problem is preemptive, we could break a request into pieces so as

8

to achieve intactness. For example, consider an instance I consisting of one request
q = [0, 5, 4, 1], and a schedule H whereby q is served in time slots (0, 2] and (3, 4].
Thus, q is not intact in H. Now, construct a new instance I ′ = 〈q1, q2, q3〉 by breaking
q into the following pieces:

q1 = [0, 5, 2, 1],

q2 = [0, 5, 1, 1], and

q3 = [0, 5, 1, 1].

Consider a scheduler H ′ in which q1 and q2 are served in time slot (0, 2] and (3, 4]
respectively. The new schedule H ′ is essentially H, and the instance I ′ is intact in H ′.
Note that a scheduler S might behaves differently on I and I ′. However, FirstFitand
EndFitare well-behaved in the sense that FirstFit(I) and EndFit(I) are essentially
the same as FirstFit(I ′) and EndFit(I ′).

Theorem 5 For any instance I,

merit(opt(I)) ≤ 2 ·merit(FirstFit(I)).

Proof.
Given an instance I, let Hff := FirstFit(I) and Hopt := opt(I). We can assume

that I is intact in both Hff and Hopt.
Let H0 be an identical copy of Hff. We want to charge requests served in Hopt to

H0 and Hff. Let {t1, t2, . . . , tm} be the distinct breakpoints in Hopt, where ti < tj if
and only if i < j.

For each ti, starting from i := 1 to m − 1, consider the time-slot (ti, ti+1]. Let
qopt := Hopt(ti+1). If qopt = ∅, then let qopt :=[ti, ti+1, (ti+1 − ti), 0]. Let qff be the
lightest request served during (ti, tt+1] by FirstFit. If the lightest request does not
exist, let qff :=[ti, ti+1, (ti+1 − ti), 0].

There are two cases:

1. If the request qff is not lighter than qopt, charge qopt from Hopt to Hff at (ti, ti+1].

2. Otherwise, charge qopt from Hopt to H0 at H−1
0 (qopt).

We have to show that in the second case, |H−1
0 (qopt)| ≥ |(ti, ti+1]|. In the first

place, why is the weight of qff lighter? The request qff is chosen by FirstFit because
it is the heaviest request among the pending requests. This implies that qopt is not
a pending request, even though ti is in the span of qopt. So qopt must have been
completely served by FirstFit. This implies that |H−1

0 (qopt)| ≥ |(ti, ti+1]|.
Q.E.D.

9

4 Competitive Ratio of EndFit

Example 2 (Figure 2) shows that the competitive ratio of EndFit is at least 2. We
now show that this constant is the best possible.

The upper bound proof is considerably more subtle than the proof for FirstFit in
the last section. The key result is Theorem 11 below which formalizes this observation
about EndFit: it never hurts the performance of EndFit to have a request started at
an earlier time. For example, in Figure 2, the performance of EndFit will improve
if the request q2 starts at an earlier time. The analogous lemma fails for FirstFit.
For example, in Figure 1, the performance of FirstFit would improve if q1 starts at
a time later than 0.

4.1 Trimmed instances and level sets

A request q̃ is a trimmed version of q if st(q̃) ≥ st(q), dl(q̃) = dl(q), wt(q̃) = wt(q̃)
and sz(q̃) ≤ sz(q). Thus, a trimmed version of q may start later than the original q.
The main motivation for this definition comes from the fact that the residual request
of any request q is a trimmed version of q.

An instance Ĩ is a trimmed instance of I if there is a one-one (not necessarily onto)
mapping from Ĩ to I such that any q̃ in Ĩ is a trimmed version of its corresponding
request in I. Clearly, merit(opt(Ĩ)) ≤ merit(opt(I)). We want to show that a similar
relationship also holds for EndFit(Ĩ) and EndFit(I).

To analyze EndFit, we introduce the notion of “level sets”. Let H be a schedule
for I and q be any request. We do not require q to belong to I but it must be totally
ordered with respect to the requests in I. Define the q-level set of H to be

LevelH(q) :={t ∈ R : wt(H(t)) ≥ wt(q)}.

Also define the related sets,

Level+
H(q) :={t ∈ R : wt(H(t)) > wt(q)}

and
Level0

H(q) :={t ∈ R : wt(H(t)) = wt(q)}.
In these three notions of level sets, the comparison of weights are not really comparison
of real numbers, but uses our tie-breaking conventions for weights of requests. E.g.
“wt(H(t)) > wt(q)” should really read “request H(t) is heavier than request q”. For
this reason, we do not define “LevelH(w)” where w is a real number because the real
number w does not carry any tie-breaking information.

Clearly, LevelH(q) = Level+
F (q)∪Level0

F (q). In case H is equal to OffEndFit(I),
we will write LevelI(q), Level

+
I (q), Level0

I(q) instead of LevelH(q), Level+
H(q), Level0

H(q),
respectively. It is important that note that we use OffEndFit, not EndFit in this
definition.

10

We break up the operations of OffEndFit using the following device: by a level
set L we mean a finite union of time slots. If q is a request, define EF(q, L) ⊆ R to be
the time slots that are scheduled for q by the OffEndFit scheduler, assuming that L
have already been scheduled. Thus EF(q, L) ∩ L is empty.

If q ∈ I, then
Level0

I(q) = EF(q, Level+
I (q)).

Hence,
LevelI(q) = EF(q, Level+

I (q)) ∪ Level+
I (q).

Writing s = inf Level0
I(q), we can further express this as

LevelI(q) = (s, dl(q)] ∪ Level+
I (q).

In general, for any level set L and any q, if s = inf EF(q, L) then

EF(q, L) ∪ L = (s, dl(q)] ∪ L. (2)

Lemma 6 Let L′ ⊆ L be level sets. If q̃ is a trimmed version of q then

EF(q̃, L′) ∪ L′ ⊆ EF(q, L) ∪ L.

Proof. Let C = span(q) \ L and C ′ = span(q̃) \ L′. For any s ∈ R, let Cs = {t ∈
C : t > s}. Similarly define C ′

s ⊆ C ′. Because q̃ is a trimmed version of q, for all
s ≥ st(q̃) (which is ≥ st(q)), we have

Cs ⊆ C ′
s.

But EF(q̃, L′) = C ′
s0

for some s0 ≥ st(q̃), and similarly EF(q, L) = Cs1 for some
s1 ≥ st(q). Here, we pick the largest possible value for s0 and s1. According to (2)

EF(q̃, L′) ∪ L′ = (s0, dl(q̃)] ∪ L′, EF(q, L) ∪ L = (s1, dl(q)] ∪ L. (3)

Hence the lemma would follow if (s0, dl(q̃)] ⊆ (s1, dl(q)]. Since dl(q) = dl(q̃), it is
enough to show

s1 ≤ s0.

To see this, note that
|Cs0| ≤ |C ′

s0
| ≤ sz(q̃) ≤ sz(q)

and
s0 ≥ st(q̃) ≥ st(q)

using the fact that q̃ is a trimmed version of q. If |Cs0| = sz(q) or s0 = st(q) then
we must have s1 = s0 Otherwise, suppose |Cs0| < sz(q) and s0 > st(q). Then it is
immediate that s1 < s0. Q.E.D.

11

4.2 Domination

In the following, let Ĩ be a trimmed version of I. Our goal is to prove that

merit(EndFit(Ĩ)) ≤ merit(EndFit(I))

where Ĩ is a trimmed version of I. The key idea is to study the domination relation:
for two schedules, we say that H dominates H ′ if for all t, wt(H(t)) ≥ wt(H ′(t)). For
two input instances, we say I dominates I ′ if OffEndFit(I) dominates OffEndFit(I ′).
Again, note that domination between instances is defined in terms of OffEndFit, not
EndFit. Domination can be reduced to inclusion relationship between level sets: thus,
I dominates I ′ if and only if for all q′ ∈ I ′,

LevelI′(q
′) ⊆ LevelI(q

′).

Lemma 7 If Ĩ is a trimmed version of I then I dominates Ĩ.

Proof. We use induction on the number of requests in I. Suppose q is the light-
est request in I and q̃ ∈ Ĩ is the corresponding trimmed version of q. Just before
OffEndFit schedules q, we have a partial schedule H for all the requests in I \ {q}.
Let H ′ be similarly defined with respect to Ĩ and q̃. Let L := Level+

I (q) = Level+
H(q)

and L′ := Level+

Ĩ
(q̃) = Level+

H′(q̃). By induction, H dominates H ′. To show that I

dominates Ĩ, it remains to show

Level
Ĩ
(q̃) ⊆ LevelI(q). (4)

But Level
Ĩ
(q̃) = EF(q̃, L′)∪L′ and LevelI(w) = EF(q, L)∪L. Since, L′ ⊆ L and q̃ is

a trimmed version of q, Lemma 6 implies (4). Q.E.D.

As corollary, if Ĩ is obtained by deleting a request from I, then I dominates Ĩ.
Note that the preceding lemma does not depend on the requests in I or Ĩ having a
common start time.

Next, for any time t ∈ R, let I|t denote the residual instance of I when the schedule
EndFit(I) has been serviced up to time t. More precisely, each q ∈ I with dl(q) ≤ t is
deleted. Otherwise, q is replaced by qt which is the residue of q at time t in EndFit(I).
If q has been completely served by time t, then its residue has zero size, sz(qt) = 0.
Such requests are called null requests. For technical reasons, we do not discard null
requests from I|t. Clearly all requests in I|t starts at or after time t.

To motivate the next definition, observe that if I dominates Ĩ, then for all t, I|t
dominates Ĩ|t. Unfortunately, Ĩ|t may no longer be a trimmed version of I|t, even if Ĩ
is a trimmed version of I. For example, let I = (q0, q1) = ((0, 3, 2, 1), (1, 2, 1, 2)) and
Ĩ = (q′0, q1) = ((1, 3, 2, 1), (1, 2, 1, 2)). If t = 1, I|t = (q2, q1) = ((1, 3, 1, 1), (1, 2, 1, 2))
while Ĩ|t = (q′0, q1) = ((1, 3, 2, 1), (1, 2, 1, 2)). Then Ĩ|t is not a trimmed version of I|t
because q′0 is not a trimmed version of q2. According to the definitions below, it turns
out that q2 “spans” q′0, and q2 is “saturated” in I|t.

12

A request q ∈ I is saturated in I if

|span(q) \ Level+
I (q)| ≤ sz(q).

Note that span(q)\Level+
I (q) comprise all the times available for scheduling q relative

to I. A request q spans another request q′ if span(q′) ⊆ span(q). For example, if q′ is
a trimmed version of q then q spans q′. We define a binary relation “º” on instances
as follows: if I and J are instances, we write

I º J

if I = (q1, . . . , qn) and J = (q′1, . . . , q
′
n) and for all i = 1, . . . , n, wt(qi) = wt(q′i) and

(a) either q′i is a trimmed version of qi, or

(b) qi spans q′i and qi is saturated in I.

If f : I → J such that f(qi) = q′i for all i, then we say “I º J via f”. Note that if J
is a trimmed version of I and |I| = |J |, then I º J . The following is immediate from
the definition of º:

Lemma 8 Let f : I → J be a bijection and f(q) = q̃ for some q ∈ I. Let I ′ = I \{q}
and J ′ = J \ {q̃} and f ′ : I ′ → J ′ be the restriction of f to I ′. If I ′ º J ′ via f ′ then
I º J via f .

The next lemma shows that the relation º is preserved by residual instances:

Lemma 9 If I º J then for all t, I|t º J |t.

Proof. Suppose I º J via f . Let q ∈ I and q̃ = f(q). There are two cases: (a)
Suppose q̃ is a trimmed version of q. Let q̃t and qt be the corresponding requests in
J |t and in I|t. Clearly, qt spans q̃t. If sz(qt) ≥ sz(q̃t) then q̃t is a trimmed version
of qt. Otherwise, it must be the case that qt became saturated in I|t. (b) Suppose
q spans q̃ and q is saturated in I. Then it is easy to see that qt spans q̃t and qt is
saturated in I|t. Q.E.D.

The next result connects the relation º to domination:

Lemma 10 If I º J then I dominates J .

Proof. Let I º J via f : I → J . We use induction on the number |I| = |J | of
requests in I or J . Suppose |I| = 1. In case condition (a) holds in the definition of
I º J , then clearly I dominates J . In case condition (b) holds, then q is saturated
in I implies dl(q) − st(q) = sz(q). Combined with the fact that q spans f(q), we
conclude that sz(f(q)) ≤ sz(q). So again, I dominates J . Next assume |I| > 1 and
let q be the lightest request in I. So f(q) is the lightest in J . Let J ′ = J \ {f(q)}

13

and I ′ = I \ {q}. It remains to prove that LevelJ(f(q)) ⊆ LevelI(q). By induction,
I ′ dominates J ′. We have

Level+
J (f(q)) = Level+

J ′(f(q)) ⊆ Level+
I′(q) = Level+

I (q). (5)

If f(q) is a trimmed version of q, then it follows from (5) and Lemma 6 that LevelJ(f(q)) ⊆
LevelI(q). Otherwise, q spans f(q) and q is saturated in I. This means

LevelI(q) = Level+
I (q) ∪ span(q) (since q is saturated in I)

⊇ Level+
J (f(q)) ∪ span(f(q)) (since q spans f(q)) and by (5)

⊇ LevelJ(f(q)).

Q.E.D.

We come to the main result.

Theorem 11 If Ĩ is a trimmed version of I then

merit(EndFit(Ĩ)) ≤ merit(EndFit(I)).

Proof. It sufficient to prove this result in the case where I and Ĩ are identical except
that some q ∈ I is replaced by a trimmed version q̃ in Ĩ. Let

s0 ≤ s1 ≤ · · · ≤ sm−1 ≤ sm, (m ≥ 0) (6)

be the sequence of start times of all m + 1 requests in I. There are schedules
H0, H1 . . . Hm such that in the time slot (si, si+1], the requests of I are serviced ac-
cording to Hi (assume sm+1 = ∞). Each Hi is an OffEndFit schedule for a suitable
instance Ii. (So Hi is just a “plan”.) Let mi be the merit obtained by servicing Hi

in the time slot (si, si+1]. Then

merit(EndFit(I)) =
m∑

i=0

mi. (7)

Now, there is a corresponding sequence of start times

t0 ≤ t1 ≤ · · · ≤ tm−1 ≤ tm (8)

of requests in Ĩ. Note that the si’s and tj’s are basically identical except that st(q)
in the list (6) is replaced by st(q̃) in the list (8). We will make the lists (6) and (8)
identical,

si = ti (i = 0, . . . , m), (9)

simply by adding a null request with start time st(q̃) into I, and by adding a null
request with start time st(q) into Ĩ. Again, let H̃i be the plan in the EndFit servicing
of Ĩ at time si; so H̃i is the OffEndFit schedule for a suitable instance Ĩi. Let

14

merit(EndFit(Ĩ)) =
∑m

j=0 nj be the equation for Ĩ corresponding to (7). Our theorem
follows if we show that mi ≥ ni for all i.

Let i0 and i1 be the indices such that si0 = st(q) and si1 = st(q̃). We may
assume that i0 < i1: this is clear in case st(q) < st(q̃). Even if st(q) = st(q̃), we
can arbitrarily assume q started “just before” q̃.

Now each Ii is a residual instance of Ii−1, plus a new request qi that starts at time
si. That is,

Ii = (Ii−1)|si
∪ {qi}.

We say that qi is “inserted” into Ii. In case i = i1, the request qi is a suitable null
request. Similarly,

Ĩi = (Ĩi−1)|si
∪ {q̃i}

where q̃i is null request in case i = i0.
Our goal of showing mi ≥ ni can be reduced to showing Ii dominates Ĩi. But for

the induction to carry through, we need to maintain stronger assertion (via Lemma
10), that for all i,

Ii º Ĩi. (10)

It is not hard to see that (10) holds for all i < i1. In fact, Ii = Ĩi for i < i0. More
generally, for all i except i = i1, the request q̃i inserted into Ĩi is a trimmed version
of the request qi inserted into Ii. By an application of Lemma 8 and Lemma 9, we
conclude from Ii º Ĩi that Ii+1 º Ĩi+1.

It remains to show that (10) holds when when i = i1. Write J1 for (Ii1−1)|s1 and
J̃1 for (Ĩi1−1)|s1 . Since Ii1−1 º J̃i1−1, we conclude that

J1 º J̃1(via f1) (11)

where f1 is naturally defined. In Ji1 we have a request r that could be traced back to
q = qi0 at time si0 (so r is really q|s1). Also, f1(r) is traced back to the null request
that we inserted into Ĩ in order to ensure (9). We want to show that Ii1 º Ĩi1 via the
natural f which extends f1. Unfortunately, f maps a null request, qi1 , to q̃ = q̃i1 . But
we had noted that f1, and hence f , maps r to a null request f1(r). We will modify f
so that r is mapped to q̃ and null request qi1 is mapped to f1(r). This change amounts
to transposing r and qi1 in Ii1 , and is harmless. We now claim that Ii1 º Ĩi1 via f . In
view of (11), we only need to show that r and f(r) = q̃ are related as required by the
º relation. There are two cases: (a) If q has not been served by EndFit(I) up to time
s1 then q̃ is just a trimmed version of r. (b) If EndFit(I) had already started serving
q by time s1, then r is saturated in Ii1 . It is also obvious that r spans q̃. Q.E.D.

4.3 EndFit is 2-competitive

We now use Theorem 11 to show that EndFit is 2-competitive.

15

Theorem 12 For any instance I,

merit(opt(I)) ≤ 2 ·merit(EndFit(I)).

Proof. We can assume that I is intact in opt(I). Let Ĩ be the trimmed instance of
I such that for any request q ∈ I, if (opt(I))−1(q) = (t1, t2], then the corresponding
trimmed request q̃ satisfies st(q̃) := t1 and sz(q̃) := t2− t1; otherwise if opt(I)−1(q) =
∅, then q̃ satisfies sz(q̃) := 0. We can further assume that Ĩ is intact in all the plans
of EndFit with Ĩ. By definition, we have

merit(opt(I)) = merit(opt(Ĩ)). (12)

The instance Ĩ has the nice property that requests arrive at a “constant rate”, that
is, if a request q starts at time t, then no other request starts during (t, t + sz(q)).
Let H1 and H2 be two identical copies of EndFit(Ĩ). Our theorem is proved if we
show how to charge requests in opt(Ĩ) to H1 and H2.

Consider a request q in Ĩ. Upon arrival of q, there are two cases.

1. If q is allocated in the new plan Plan+(EndFit, Ĩ , q), then it is possible that
there are some requests which are originally allocated in Plan−(EndFit, Ĩ , q),
but not in the new plan. Call these requests the ousted requests.

2. Otherwise, call q the ousted request.

Let s be the total size of the ousted requests. Note that s ≤ sz(q) and the total merit
of the ousted requests is not more than the total merit of the requests allocated in
(st(q), st(q) + s] in Plan+(EndFit, Ĩ , q). Furthermore, the new plan will be carried
out without interruption at least until st(q) + sz(q). Charge the ousted requests to
H2 at (st(q), st(q) + sz(q)] and the served requests during (st(q), st(q) + sz(q)] to
H1 at (st(q), st(q) + sz(q)]. The above is a valid charging scheme. Thus, we have

2 ·merit(EndFit(Ĩ)) ≥ merit(opt(Ĩ)).

By Theorem 11 and (12), we have

2 ·merit(EndFit(I)) ≥ merit(opt(I)).

Q.E.D.

5 A Class of Greedy Schedulers

Looking at the behavior of EndFit and FirstFit on specific examples, it appears
that they are complementary in the sense that if EndFit performs poorly on an

16

instance, then FirstFit will perform well, and vice-versa. This suggests studying
some combination of these two heuristics and motivates the generalization to a class
of Greedy schedulers.

A scheduler S in this class behaves as follows.

(A) At the moment a new request q starts, it suspends the current service (that is,
it preempts the currently served request).

(B) Scheduler S computes a new plan H, which is a schedule for the set of residues
of currently pending requests. We call H a ‘plan’ because the scheduler may
not carry out the schedule as planned due to the subsequent new requests.
The plan H is computed by considering the residues one by one, starting from
the heaviest request down to the lightest request. Let p be the request being
considered and call |H−1(p)| the allocation to p. The allocation to p is subjected
to the following restriction:

(∗) The allocation to p must be maximized. For example, if it is possible to
completely allocate p, the whole of p must be allocated. However, there is
no restriction on where p is allocated. Time-slots, once allocated, are not
subsequently revised in creating this plan.

(C) It carries out the plan until a new request starts, whereupon we go back to step
(A).

Let the plan computed after step (B) be Plan+(S, I, q) and Plan−(S, I, q) be
the original plan just before step (B) is executed. Thus Plan−(S, I, q) is actually
Plan+(S, I, q′), where q′ is the request which starts just before q.

Different members of the Greedy class differ only in their strategies for (B) sub-
jected to the restriction(∗). Note that our first example FirstFit is a Greedy sched-
uler: the request p in (∗) is allocated in the earliest possible time-slots.

The second example EndFit is also a greedy scheduler. Its strategy for (B) is
rather counter-intuitive: the request p is allocated in the latest possible time slots.

By combining the counter examples for FirstFit and EndFit, we can find a
Greedy scheduler whose competitive ratio ≥ 3. We state, without proof, the following
result.

Theorem 13 Every Greedy scheduler is 3-competitive.

By further imposing a constraint on the greedy schedulers, it is possible to show
that the restricted greedy schedulers have competitive ratio not better than 2. Specif-
ically, consider the grid-points at Nε where N is an integer and ε > 0 is any small
constant. The restricted greedy schedulers always allocate requests to time slots
starting and ending at the grid-points. To show that a schedulers S has competitive
ratio no better than 2, we construct a request q1 = (0, 2, 1, 1) and observe how S

17

schedulers q1. Let (s, t] be the earlies time slot where S plans for q1. If s = 0, we
introduce two requests q2 = (s, t, (t − s), 1) and q3 = (t, t, 0, 0). Thus, within time
slot (s, t], S is forced to serve q1 and it will be impossible to serve q2 in the future.
The request q3 forces S to preempt and compute a new plan at time t. If s > 0,
we introduce a request q′2 = (s, s, 0, 0). Thus at time s, the scheduler S is forced to
preempt and recompute a plan. By repeating the process, we can obtain a counter
example I where merit(opt(I)) = 2 whereas merit(S(I)) = 1.

6 General Lower Bound

From the previous section, we know that every greedy scheduler has competitive ratio
that lies between 2 and 3. Are there schedulers outside the Greedy class with compet-
itive ratio less than 2? We note a partial result in this direction: every deterministic
scheduler has competitive ratio at least 2(2−√2) > 1.17.

In proof, consider this adversary: at time 0, the adversary releases two requests
q0 :=(0, 2, 1, 1) and q1 :=(0, 1, 1,

√
2− 1). At time t = 1, let the residual size of q0 be

s0. If s0 is less than 1/2 then the request q2 :=(1, 2, 1, 1) is released. Otherwise, no
further requests will be released.

It may be verified that that any deterministic scheduler achieve a merit of at most
1

2(2−√2)
of the maximum possible.

Unfortunately, this lower bound of 1.17 leaves a wide gap from the current upper
bound of 2. On the other hand, no simple variation of this adversary seems to give a
better lower bound.

7 On the Number of Breakpoints and Multi-tasking

Both FirstFit and EndFit make O(n) breakpoints where n is the number of requests.
Does the number of breakpoints affect the performance of a scheduler? We give an
alternative formulation of the scheduling problem which could be viewed as allowing
an infinite number breakpoints. In this multi-tasking environment, several requests
can be served concurrently, but each at a (possibly) different rate. However, in any
time interval of size ∆t, the total size of requests served within this interval must not
exceed ∆t. Alternatively, we allow “fractional service” where the total service at any
moment sums to 1.

A concrete example of such a scheduler is FirstEndFit: It simulates FirstFit and
EndFit concurrently and serves half of what FirstFit and EndFit would serve. That
is, if FirstFit and EndFitwill serve q and p respectively in the time slot (s0, t0], then
FirstEndFit will serve p and q concurrently but each at half the rate. We suspect
that FirstEndFit is (3/2)-competitive.

Note that FirstEndFit can be also viewed as the following randomized scheduler
under the original single-tasking setting:

18

1. Before receiving any request, it tosses a fair coin.

2. If the outcome is head, then it simulates FirstFit, otherwise it simulates
EndFit.

Clearly, the expected merit gained by this randomized scheduler is same as the merit
gained by FirstEndFit. In general, we can show that any randomized single-tasking
scheduler is equivalent to a deterministic multi-tasking scheduler. We omit the details.

8 Conclusion

We have formulated a “level-of-service” scheduling problem that arises naturally in
our thinwire visualization applications. This formulation is also useful in real-time
systems where quality of jobs can be traded-off for time. We have derived several
competitive algorithms in this setting. We continue to investigate the many inter-
esting questions that are open. Besides sharpening the results in the paper, we pose
the following directions for further work: (1) Find optimal schedulers which are not
restricted to be on-line. (2) Study the problem with other measures of merit (in-
stead of multiplicative weights in this paper). (3) Introduce a model of penalty for
preemption. (4) Introduce randomization.

Acknowledgments

We thank Estie Arkin and Yi-Jen Chiang for discussions about the problem.

References

[1] S. Albers. Competitive online algorithms. BRICS Lecture Series LS-96-2, BRICS,
Department of Computer Science, University of Aarhus, September 1996.

[2] S. Albers and Jeffery Westbrook. A survey of self-organizing data structures. Re-
search Report MPI-I-96-1-026, Max-Planck-Institut für Informatik, Im Stadtwald,
D-66123 Saarbrücken, Germany, October 1996.

[3] E.-C. Chang, C. Yap, and T.-J. Yen. Realtime visualization of large images over
a thinwire. In IEEE Visualization ’97 (Late Breaking Hot Topics), pages 45–48,
1997. See CD proceedings of conference. Paper from
ftp://cs.nyu.edu/pub/local/yap/visual/thinwire.ps.gz.

[4] E.-C. Chang. Foveation Techniques and Scheduling Issues in Thinwire Visualiza-
tion. PhD thesis, Department of Computer Science, New York University, May
1998.

19

[5] J. A. Hoogeveen and A. P. A. Vestjens. Optimal on-line algorithms for single-
machine scheduling. Integer Programming and Combinatorial Opt., pages 404–
414, 1996.

[6] R. J. Lipton and A. Tomkins. Online interval scheduling. In Proc. 5th Annual
ACM-SIAM Symp. on Discrete Algorithms, pages 302–311, 1994.

[7] M. Manasse, L.A. McGeoch, and D. Sleator. Competitive algorithms for server
problems. In Proc. 20th Annual ACM Symposium on Theory of Computing, pages
322–333, 1988.

[8] L. A. McGeoch and D. D. Sleator, editors. On-Line Algorithms. DIMACS series
in Discrete Mathematics and Theoretical Computer Science, volume 7. American
Mathematical Society, 1992.

[9] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

[10] G. J. Woeginger. On-line scheduling of jobs with fixed start and end times.
Theoretical Computer Science, 130:5–16, 1994.

[11] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy.
Symposium on Foundations of Computer Science, pages 374–382, 1995.

20

