Public Watermark Detection Using Multiple
Proxies and Secret Sharing

Qiming Li Ee-Chien Chang
Temasek Laboratories Department of Computer Science
National University of Singapore National University of Singapore
tslligm@nus.edu.sg changec@comp.nus.edu.sg

Abstract. A central issue in public watermarking schemes is the design
of a detector that will not reveal sufficient information that leads to the
erasure of embedded watermark, even if an adversary knows the detec-
tion algorithm and the public detection key (if any). Insofar, there is no
such detector in “stand-alone” setting that achieves satisfactory security
requirements. Recently, [1] gives a zero-knowledge detector that achieves
security by introducing a server. We propose an alternative setting of
public watermarking that involves multiple servers. In this setting, the
owner keeps a secret watermark W. A verifier, given an image J (or any
digital media), wants to detect whether J is watermarked. The detection
is to be carried out by a group of independent prozies. The owner does
not trust the verifier nor any individual proxy, thus wants to keep W hid-
den from them. On the other hand, the verifier does not trust the owner
and any individual proxy either, and wants to protect himself against
cheating. The proxies, as a group, are tasked to maintain the secrecy
of the watermark, and protect the interest of the verifier. We propose a
scheme based on secret sharing schemes which support arithmetic oper-
ations. The security is maintained if not too many individuals (including
the proxies, the owner and the verifier) collude. The proposed scheme
is efficient in terms of computation cost, and the number of rounds and
bandwidth required in the communications. The scheme is arguably easy
to implement.

1 Introduction

A central issue in public watermarking schemes [4] is the design of a detector
that will not reveal the secret watermarks embedded into the media, even if an
adversary knows the detection algorithm and the public detection key (if any).

A possible approach uses asymmetric watermarking schemes [10, 8, 7], where
the key to embed watermarks is different from the key required during detection.
However, the detection keys of known methods do reveal some crucial informa-
tion, which leads to a number of successful attacks (for e.g., [7] listed a few
attacks on specific schemes).

A simple approach achieves secrecy by introducing a trusted third party P.
In which case the owner of the watermark gives his watermark W to P, and

distributes images! with W embedded to the public. To check if an image is
watermarked, a user sends it to P via the Internet, and the result is sent back
from P. In this case both the secrecy of W and the interest of the users are
protected assuming that P is honest.

It seems that the trusted third party is crucial to maintain security in the
above simple approach. Recently, [1, 6] gave interesting methods to remove the
assumption of a trusted third party. The methods employ a prover (the owner)
who proves the existence of the watermark in given images to verifiers (the users).
The prover is prevented from cheating by the means of commitment schemes, and
the secrecy of the watermark is maintained through zero-knowledge interactive
proofs. Although these schemes are cryptographically secure, a main drawback
is the large number of rounds and bandwidth required in the communications,
and they are not easy to implement in practice. Furthermore, if the owner wishes
to designate another party to perform the checking and proving, he has to reveal
the secret key to this trusted party.

In this paper, we propose an alternative setting that can be viewed as a
modification of the above approach. In this setting, we remove the expensive
zero-knowledge interactive proofs without assuming the existence of a trusted
third party. Instead, we replace the trusted third party P with a group of prozies.
Security is maintained if the majority of the proxies are honest.

The individuals in our setting are an owner, a few proxies, and a verifier.
At the beginning, the owner generates a secret watermark W and performs a
registration with the proxies. During registration, the owner distributes some
information about the watermark W to the proxies, so that they can carry out
watermark detections on their own. After that, the owner embeds the watermark
W into his images, which are then released to the public. (The owner could also
request the proxies to perform the embedding, without revealing the watermark.
We will not describe this operation in this paper.) On the other hand, when a
verifier wants to determine if a given image is watermarked by W, he requests the
proxies to perform a detection. During detection, the verifier sends information
about the image to the proxies, who then perform some computations and return
the results back to the verifier. Based on these results, the verifier would be able
to decide whether the image is watermarked. The registration and detection
processes are illustrated in Fig. 1 below.

Since we do not assume the existence of a trusted third party, no individual
can be trusted. Therefore, during registration, the owner does not trust any indi-
vidual proxy, so he cannot simply send W to each of them. Instead, he needs to
distribute the watermark in such a way that it is information-theoretically im-
possible to compute W even if some of the proxies collude. During detection, the
verifier does not trust all proxies because some of them might give wrong results,
either intentionally or accidentally. Therefore, there has to be some mechanisms
to allow the verifier to detect errors, or even correct them. Furthermore, the
verifier does not trust the owner either. A dishonest owner might distribute a
watermark that correlates with many images (for instance, in the well-known

! The “images” here can in fact be any digital contents in any media.

spread spectrum method [5], a watermark with very high energy would likely
give a high correlation value with a randomly chosen image). The dishonest
owner might also collude with a few proxies to mislead the verifier.

Note that in this setting, the role of the proxies (as a group) is similar to
that of a trusted third party, who will not leak any information of the secret
W, and will not cheat the verifier. The main difference is that, in this setting,
we only require the integrity of the proxies as a group, which is a much weaker
requirement than having a trusted third party. It is also noted that our setting
relieves the owner from performing the detections. This is a secondary advantage
of using proxies for detection.

The proposed setting naturally suggests the use of secret sharing schemes
[15] as a basic building block. A secret sharing scheme breaks a secret z into
shares and distributes each to a server. No individual server will know the secret
unless a number of dishonest servers collude. There are many secret sharing
schemes, satisfying various useful properties. For example, Shamir’s scheme is
also a threshold scheme, and with further modifications it can be verifiable [3, 9]
and proactive [11]. An important property required in our setting is that, both
multiplications and additions can be supported on the shares. That is, if secrets
21, 22 and z3 are integers and are shared among n severs, the shares of 2129 + z3
can be generated without revealing the values of 21, 29, 23, and z;22 + 23.

We give a scheme based on secret sharing. This scheme achieves public wa-
termarking as long as not too many individuals collude. This scheme is arguably
easy to implement and is efficient in terms of computation and communication
cost.

Outline. In Section 2.1, we describe the basic watermarking method (spread-
spectrum method) used for discussion. Section 2.2 gives our proposed multiple
proxies setting, and the security requirements. Section 3 gives a brief description
of secret sharing schemes. Our scheme is described in Section 4, followed by the
security analysis in Section 5. Some discussions on the error-correcting capability
of the scheme will be given in Section 6.

2 Notations & Model

2.1 Watermarking Model

We employ a variant of the well-known spread spectrum method [5] to embed
and detect watermarks. Other watermarking schemes can also be employed as
long as the detection involves only multiplication and addition.

Our images and watermarks are “discretized”. An image I is a vector I =
(z1,z2,...,Zm) where each z; € {0,1,2,...,d — 1} and d is some integer deter-
mined by the media/image representation. For example, d could be 256 if each
z; represents a pixel. The watermark W is also a vector W = (wy, w2, ..., Wn)
where each w; € Z is an integer. In addition, the energy of the watermark W
is fixed, that is W - W = E where FE is some predefined threshold, and - is the
vector inner product. The constant F is made known to the public.

Owner

Verifier

Fig. 1. The proposed setting.

During embedding, given an image I and the watermark W, the watermarked

image I is _

I = trunc(I + W),
where the function trunc() truncates/rounds the coefficients where values are
not in the range {0,1,2,...,d — 1}.

During detection, given an image J, the correlation value (J - W) is com-
puted. If the correlation value exceeds certain threshold, then J is declared to
be watermarked.

Note that we omit the normalization of images in the embedding and detec-
tion. Normalization is not required in our discussion, but still can be incorporated
if required. Thus, it is omitted for simplicity.

2.2 Owner, Proxies & Verifier

The individuals in the proposed setting are an owner, n proxies Py, Ps,..., P, ,
and verifiers. The number of verifiers is not important, so we assume that there
is only one verifier.

During the registration, the owner generates a secret watermark W which
satisfies (W - W) = E, where F is a constant that every individual knows.
The owner sends information of W to the n proxies. Let Sl@) (W) be the data
the owner sends to the proxy P;. Let S;(W) be the data that P; keeps and

uses in subsequent computations. Note that it is not necessary that SZ-(O)(W) =
Si;(W). To guard against dishonest owner, the proxies might wish to transform
the original SZ-(O)(W)’S distributed by the owner.

During the detection, a verifier wishes to know the correlation value c = J-W
of a given image J with the secret watermark W. Firstly, the verifier splits J into
n pieces, S;(J), 1 < i < n, such that each of them contains partial information
about J. Then it sends S;(J) to proxy P; respectively. Next, each proxy P;
computes and sends the verifier partial information S;(c) of the correlation value

c. After receiving data from all proxies, the verifier reconstructs the correlation
value (J - W) (Fig. 1).

In our proposed scheme, the partial information communicated through the
network, namely SZ(O)(W), Si;(W), S;(J) and S;(c), corresponds to the “shares”
in secret sharing schemes (see Section 3). Therefore, we will refer to those pieces
of information as shares in the rest of this paper, even if some of them may be
fraud sent by dishonest individuals.

2.3 Security Requirements

A parameter for the security requirement is the security threshold t where t <
n. Vaguely, the scheme should tolerate at most (¢ — 1) dishonest individuals
(including the proxies, the verifier and the owner). The security requirements can
be roughly classified into (a) maintaining the secrecy of W, and (b) protecting
the interest of the the verifier. In the following, the first requirement S1 belongs
to the first class and the remaining belong to the second class.

S1. Secrecy of W. The owner generates and keeps the watermark W.
Recall that the energy (W - W) is a predefined constant E, which is known by
everyone. For any (¢t — 1) proxies, even if they collude, they should not know W.
Specifically, to any group of (¢—1) proxies, any vector W' satisfying (W'-W') = E
is a possible candidate for the secret watermark.

On the other hand, after detection, from the n sets of data S;(c)’s obtained,
the verifier should not know W. Specifically, to the verifier, any vector W' sat-
isfying (W' - W') = E and (J - W’) = c is a possible candidate for the secret
watermark.

In general, any (¢ — 1) individuals, including the proxies and verifier, should
not know W. That is, by combining all the data held by them, any vector W’
satisfying (W' - W’) = E and (J - W’) = ¢ is a possible candidate for the secret
watermark.

S2. Dishonest owner during registration. During registration, instead
of honestly sending S;(W) to the proxies, an owner may send other values so as
to mislead the proxies to give high correlation value during detection. Here is
an example of dishonest owner: the dishonest owner chooses a watermark w and
embeds it into images according to the scheme, but registers with the proxies
another watermark Aw where A is a very large constant. Thus, in the subsequent
detections, whatever correlation value determined will be based on Aw, instead
of w. Owe to the large value of A, the probability that a randomly chosen image
is wrongly declared as watermarked is higher. Therefore, we require that, after
registration, with at most (¢ — 1) dishonest proxies, any malicious behaviour
of the owner can be detected. Specifically, the proxies can check that, indeed,
(W-W)=E.

$3. Dishonest proxies during detection. During detection, some of the
proxies may collude so as to mislead the verifier. Thus, we require that, if at
most (¢ — 1) proxies are dishonest, the verifier can detect that.

S4. Collusion among proxies and the owner during detection. A
more interesting case is collusion among the owner and proxies. The owner may
collude with a few proxies and mislead the verifier. The main difference of this
case from the case in previous paragraph is that: here, the owner can reveal the
watermark to the proxies. With this extra information, it is easier for the proxies
to influence the detection. Thus, we require that, if the owner colludes with at
most (¢t — 2) proxies (so the total number of dishonest individuals is at most
t — 1), the verifier should be able to detect that.

S5. Collusion among the owner, proxies and a verifier. It is interesting
that we should consider collusion among dishonest owner and verifier. The owner
may collude with the verifier and a few proxies, so as to obtain the S;(W) held by
an honest proxy P;. After obtaining the information, they can use it to influence
subsequent detections. Thus we require that, by combining information from a
verifier, (¢ — 3) proxies, and the owner, no sufficient information on data held by
honest proxies can be derived.

Remarks. Note that currently we do not consider verifier/proxies who keep
the history of communications. For example, a verifier who probes the proxies
by sending in a series of images. This type of attacks is generally known as
sensitivity attacks. We will address this in Section 7.

2.4 Requirement on Error-Correcting

A secondary requirement is error-correcting capability. More specifically, even
if some proxies are dishonest or failed, detection can still be carried out. Note
the difference between security and error-correcting capability. A scheme that
immediately shuts down when malicious activities are detected is considered
to be secure, but it is not capable of correcting errors. We say that the error-
correcting threshold of a scheme is R, if all detection operations can be carried
out when there are at least R honest proxies.

3 Backgrounds on Secret Sharing Schemes

A (t,n) secret sharing scheme splits a secret (for example, a binary file) into
n pieces, which are referred to as shares. Then the shares are distributed to n
servers respectively. The knowledge of any ¢ — 1 shares will not reveal the secret
and the secret is reconstructible by putting together any ¢ shares. When t < n,
it is also known as a t out of n threshold scheme. Shamir gave such a scheme
in 1979 [15]. For a secret z € Z,, where p is a large enough prime known to
everyone, the share for the i-th server is f(¢) (mod p) where f(z) is a random
polynomial of degree (¢ — 1) whose free coefficient f(0) = z. No individual server
knows the coefficients of f(z), thus any ¢ — 1 servers can not derive z from their
shares. However, if ¢ servers put their shares together, they can solve for the
coefficients of f(z) and thus reconstruct the secret z.

Shamir’s scheme can be modified to achieve useful properties. For example,
the schemes can be verifiable [3, 9] and proactive [11]. It is also known that
certain arithmetic operations of the secrets can be performed on their shares,
such that the shares of the result can be obtained without revealing any of the
secrets [2, 12]. In our scheme, we mainly make use of arithmetic operations on
the shares. Proactive schemes can also be employed to enhance security.

3.1 Notations on Secret Sharing

A secret is an integer in Z, where p is a prime. In this paper, all arithmetic
operations (multiplications and additions) performed are followed by modulo p.
Thus, for simplicity, we omit the notation (mod) when writing an arithmetic
expression. For example, we simply write 21 + 2223 (mod p) as 21 + 2223.

With respect to a secret sharing scheme, let S;(z) be the i-th share of z, the
secret 2. Let S(V) be the i-th share of a vector V = (v1, vz, . . ., U,). Note that the
“secret” in the secret sharing scheme is an integer, whereas the watermark W and
image I are vectors. To compute S(V'), we treat each v; as an independent secret.
That is, S;(V) = (Si(v1), Si(v2),-..,Si(vm)). Since the shares are associated
with the proxies, we also call S;(V') the share of V for the proxy P;.

3.2 Arithmetic Operations on Shares

Consider two secrets o and (3, which are encoded by f(z) and g(z) respectively
as in Shamir’s scheme, and the shares are distributed to 2t — 1 servers. Now,
suppose the servers want to compute the shares of o + 8 without revealing the
values of a, 8 or a + . This can be easily done by instructing each server to
locally construct the new share by adding the two shares it holds.

The shares for o can be computed similarly by computing s; 15;2, which
is the share of a3 encoded by k(z) = f(z)g(x). However, the degree of k(z) is
raised to 2t — 2, thus 2¢ — 1 servers are required to reconstruct the secrets.

In our application, instead of general combinations of multiplications and ad-
ditions, we require only inner products. That is, given the shares of z1, 2, ..., Zm,
and v1,v2,...,Vm, we want to compute the shares of the inner product ¢ =
>t ®iv;, without revealing the secrets z1,Z2,...ZTm, V1,V2,...,Vn, and the
inner product c. For each server, its share of ¢ can be easily computed locally by
simply computing the summation of products on its shares of z;, v;’s.

4 Public Watermark Detection using Secret Sharing

The multiple proxies setting naturally suggests the use of secret sharing as a
basic construction block.

% Note that the shares are computed based on some randomly chosen numbers. Thus
to be more precise, we should write S;(R, z) for the share where R is the chosen
sequence of random numbers. For simplicity, we omit R in the notation.

Assume that there are n proxies. Suppose the security threshold we want to
achieve is t, that is, if not more than (¢ — 1) individuals collude, the security is
maintained. We also require that (2t — 1) < n.

We choose a (t,n) secret sharing scheme where (2t — 1) < n. Recall that n
is the number of proxies, and (¢ — 1) is the number of dishonest individuals the
system can tolerate.

The scheme consists of two parts: registration and detection.

REGISTRATION

81. Distributing watermark. The owner, using the secret sharing scheme
(with the notations defined in Section 2.2 and 3.1), computes SZ-(O)(W), the
share of W for each proxy P;, 1 < 7 < n. The owner then sends S§°) (W)
to P; secretly for all proxies.

82. Refreshing the shares. After receiving the shares from the owner, the
proxies refresh the shares of W using the mechanisms described in Section
3. At the end of this step, each proxy P; has S;(W) as a new share of W,
and old shares SZ(O) (W)’s are discarded.

§3. Checking W is genuine. Each proxy P; computes the value (S;(W) -
S;(W)), and broadcasts it to other proxies. Note that this value is also the
share of the inner product (W - W) for each proxy. After receiving all data
from other proxies, each proxy reconstructs (W - W) and confirms that
indeed (W - W) = E. If not, the registration fails.

The detection is initiated by a verifier. The verifier wants to know whether an
image J is embedded with the watermark claimed by the owner.

DETECTION

81. Distributing the image. The verifier computes the shares of J and
sends the shares to the respective proxies.

82. Computing the shares of the correlation value. Each proxy P;

computes the inner product (5;(J)-S;(W)) and sends it back to the verifier.

83. Reconstructing the correlation value. After receiving all the shares,
the verifier reconstructs the correlation value (J - W). Recall that (2t — 1)
shares are necessary and sufficient for reconstruction. Therefore, if (2t —
1) = n, there is only one possible way to reconstruct such value. Otherwise,
(2t — 1) < n, and there are more than one group of (2¢t — 1) shares. For
each group, the verifier reconstructs the value.

84. Checking for corrupted data. Since the error-correcting threshold is
(2t — 1), all proxies must be honest if (2¢ — 1) = n. In this case, the only
value the verifier reconstructed must be correct. Otherwise, the verifier
checks whether there is any inconsistency among the values reconstructed
from different groups of (2t — 1) shares. If so, it declares that some proxies
are cheating.

To enhance security, the proxies can refresh their shares regularly. For example,
after some number, say m — 1 of detections have been carried out, the proxies
can refresh the shares S;(W). This is to guard against sensitivity attacks. We
will revisit these issues later.

5 Security Analysis

We want to show that the proposed scheme satisfies the requirements stated
in Section 2.3. The requirements are generally in this form: if at most (¢ — 1)
individuals collude, then either no extra information on W is revealed, or no
sufficient information is revealed so that the colluders can manipulate the results.

In the following analysis, we treat each share as an equation, where the
unknowns are the random numbers used to generate the share. To illustrate,
consider a proxy P; who is holding the share SZ.(O)(W), and it wants to guess
the watermark W. This share is generated by the owner using (¢ — 1)m random
numbers (note that W is a vector of m coefficients). For example, let us con-
sider only the first coefficient w,, the proxy P; can expresses what it has as the
equation

SZ(O) (w1) = wy + 718+ 798> + .. rp_1dt Tt

where wy,71,...,74—1 are the unknowns. If a proxy manages to gather ¢ such
equations or more, he would be able to solve for w;. Otherwise, any value is a
possible candidate for wy.

Note that the security is achieved unconditionally. That is, even if the collud-
ers have infinite computing power, they can not compute the secret. This is in
contrast to schemes that are computationally secure, where the security is based
on the assumption that certain problem is computationally difficult to solve. We
will omit the details for security requirements S4 and S5.

S1. Secrecy of W. First, we investigate the case where all the (t — 1)
colluders are proxies. Without loss of generality, let the colluders be the proxies
Py, P,,...,P;,_;. Note that each P; has the shares S;(W) and Szgo)(W), and all
proxies know S;(E) for all j, and that (W - W) = E. Now, we want to know
whether combining the information from (¢ — 1) proxies will reveal additional
information on W.

Let us consider only Sfo)(W) first. For each coefficient w; in vector W, ¢t — 1
random numbers are used to generate the shares. For w;, there are ¢ unkowns.
On the other hand, the corresponding entry in each SZ-(O)(W) proxy P; possesses
is equivalent to 1 equation. Therefore, for ¢ — 1 proxies, there are only ¢t — 1
equations, and any integer (in Z;) is a possible solution for w;, as shown in
[15]. This shows that these equations do not give the proxies any advantages in
computing W. Furthermore, the new shares S;(WW) are obtained after refreshing,
and no information about W or SZ-(O) (W) is exchanged among the proxies during
this process. Therefore these values do not give any advantages in computing W
either. Lastly, after computing S;(E) = S;(W) - S;(W), information about the

elements of S;(W) is hidden in the inner product, given that m is sufficiently
large (which is true for most practical applications).

Next, suppose (t—1) colluders are the verifier and (¢t—2) proxies Py, ..., P,_o.
The verifier knows the shares S;(c) for all 7, where S;(c) = S;(W)-S;(J). Similar
to the above argument, given sufficiently large m, the information contained in
the inner product is useless in attempts to obtain W.

S2. Dishonest owner during registration. The owner could be dishonest
and try to mislead the proxies so that they give false results in the detection. For
instance, he could give a false watermark with high energy, so that the correlation
value of the watermark and any randomly chosen image would be large with high
probability. This is prevented in the registration because the proxies compute
the energy of the watermark and compare it to a known constant E (Step §3
in registration). If the energy is not E, the watermark would be rejected by the
proxies, and the registration would fail.

S3. Dishonest proxies during detection. The proxies could also send false
results of their inner products S;(W)-S;(J) to mislead the verifier. However, since
we have more than 2¢ — 1 proxies in the system, we can perform reconstruction
of J - W multiple times from different set of shares (Step §4 in detection). It is
unlikely that the results are consistent if some proxies cheat. In this case, we can
employ the method mentioned in Section 6 to both detect and correct the error.

6 Analysis on Error-Correcting

Besides the security requirement that no more than ¢ — 1 proxies collude, we also
require that the verifier can detect errors from proxies and correct them if there
are at least (2t — 1) honest proxies 3.

Here are two methods of error correction. The first method is to let the verifier
compute a new image J' = kJ, where k is some integer chosen by the verifier.
If the proxies are honest, the resulting correlation value ¢’ = J' - W = k(J - W)
would have the integer k as its factor. If some proxies are dishonest, it is highly
unlikely that the reconstructed correlation will still have k as its factor.

The other method let the verifier repeat the detection using the same image
J, but using different random numbers to generate the shares of J. Thus, a group
of 2t — 1 proxies would be able to give consistent results only if all of them are
honest. By repeating the detections, the correct results can be obtained with
arbitarily high probability. It is noted that the above two methods can be used
together.

7 Sensitivity Attacks

A dishonest verifier might probe the proxies for the watermark. By designing
the probes carefully, it may be able to get a good approximation of, or erase, the

3 If an accidental error happens, say, during network transmission from a proxy to the
verifier, we consider it as a dishonest behaviour (of the proxy).

10

watermark, using small numbers of probes. This is generally known as sensitivity
attacks. Some general attacks are given in [4, 13]. Practical attacks usually target
at the image representation. For example, the well-know Stir-Mark provides a
list of attacks [14].

We classify these attacks into two types. The first type is specific to our
proposed scheme and not applicable to others schemes, for instance the zero-
knowledge detector [1]. The second type of attacks are designed for general
public watermarking schemes. For example, the attacks described in [4, 14, 13].
In this analysis, we focus on the first type. Further research is required to handle
the second type of attacks.

Let us consider a dishonest verifier. The verifier may collude with (¢ — 2)
proxies in attempt to get the secret watermark. Let S = (s1, s2,...,Sm) be the
shares of W kept by an honest server. In each detection, the verifier knows the
inner product of S -V where V is some vector chosen by the verifier. Although
knowing S - V' will not reveal any useful information of the watermark W, by
sending in many different vectors, the verifier can determine S. If the verifier
knows the inner product of S-V; for i = 1,...,m and the V;’s are independent,
then the verifier can solved for S. By knowing the shares in t proxies, the verifier
can solve for W. Note that this attack is specific to our scheme. To prevent this,
we can require the proxies to refresh their shares regularly, for example, after
every m — 1 detections.

8 Communication Cost

We measure the communication cost by the number of rounds of communication
and the amount of data transmitted. The size of a coefficient is not more than
[logp] bits, where p is the prime used in the secret sharing scheme. Note that
we only require p > n and p is larger than the range of the original image
coefficient. Thus, it is not required to be very large. In contrast, for the zero-
knowledge detector in [1], the size of one coefficient has to be large (for e.g., more
than 200 bits), so that it is computationally infeasible to break the commitment
scheme.

Let us assume that the size of each coefficient is 1 unit. Thus, the size of
W and J is m. The size of each share is also m. During detection, the verifier
sends the share S;(J) to each proxy P;, and P; returns the share S;(c) of the
correlation value. Thus, only 1 round of communication is required. Since the size
of each share S;(J) is m, and the size of each share S;(c) is 1, the total amount
of data transmitted is (mn + n). The zero-knowledge detector in [1] invokes an
interactive proof protocol during detection. Due to the “probabilistic” nature of
interactive proof, many rounds are required for high level of confidence.

Higher communication cost is required during registration. This is due to the
communication required in refreshing. Fortunately, registration is only performed
once for each watermark. During registration, refreshing without verification can
be done in 1 round with mn? units of data. If verification is required, then the

11

communication cost depends on the commitment schemes and the interactive
proof protocol employed.

9 Conclusion

We propose a setting of public watermark detection using multiple proxies. The
owner registers its watermark with a group of proxies, whereas the verifier con-
tacts the proxies to check whether an image is watermarked. We give such a
scheme based on secret sharing. As long as not too many individuals collude,
the secrecy of the watermark can be maintained, and the verifier can be protected
from cheating. In other words, public watermark detection is achieved by the in-
tegrity of the community. The scheme is efficient in terms of communication cost
and is arguably easy to implement.

References

[1] A. Adelsbach and A. Sadeghi. Zero-knowledge watermark detection and proof of
ownership. 4th Int. Workshop on Info. Hiding, LNCS 2137:273-288, 2000.
[2] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In STOC, pages 1-10, 1988.
[3] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and
achieving simultaneity in the presence of faults. In FOCS, pages 383-395, 1985.
[4] 1.J. Cox and J-.P. Linmartz. Public watermarks and resistance to tampering.
IEEE Int. Conf. on Image Processing, 3(0-3-0_6), 1997.
[5] 1.J. Cox, M.L. Miller, and J.A. Bloom. Digital Watermarking. Morgan Kaufmann,
2002.
[6] S. Craver and S. Katzenbeisser. Copyright protection protocols based on asym-
metric watermarking. In CMS’01, pages 159-170, 2001.
[7] J.J. Eggers, J.K Su, and B. Girod. Asymmetric watermarking schemes. Sicherheit
in Mediendaten, September 2000.
[8] J.J. Eggers, J.K Su, and B. Girod. Public key watermarking by eigenvectors of
linear transforms. European Signal Processing Conference, September 2000.
[9] P. Feldman. A practical scheme for non-interaive verifiable secret sharing. In
FOCS, pages 427-437, 1987.
[10] T. Furon and P. Duhamel. An asymmetric public detection watermarking tech-
nique. 3rd Intl. Workshop on Information Hiding, LNCS 1768:88-100, 2000.
[11] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or:
How to cope with perpetual leakage. CRYPTO’95, LNCS 963:339-352, 1995.
[12] Martin Hirt, Ueli Maurer, and Bartosz Przydatek. Efficient secure multi-party
computation. In ASIACRYPT’00, volume LNCS 1976, pages 143-161, 2000.
[13] Qiming Li and Ee-Chien Chang. Security of public watermarking schemes for
binary sequences. 5th Int. Workshop on Info. Hiding, pages 119-128, 2002.
[14] F.A.P. Petitcolas, R.J. Anderson, and M.G. Kuhn. Attacks on copyright marking
systems. 2nd Intl. Workshop on Information Hiding, LNCS 1525:219-239, 1998.
[15] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612-613,
1979.

12

