
Improving TCP/IP Performance over
Third-Generation Wireless Networks

Mun Choon Chan, Member, IEEE, and Ram Ramjee, Fellow, IEEE

Abstract—As third-generation (3G) wireless networks with high data rate get widely deployed, optimizing the Transmission Control

Protocol (TCP) performance over these networks would have a broad and significant impact on data application performance. In this

paper, we make two main contributions. First, one of the biggest challenges in optimizing the TCP performance over the 3G wireless

networks is adapting to the significant delay and rate variations over the wireless channel. We present Window Regulator algorithms

that use the receiver window field in the acknowledgment (ACK) packets to convey the instantaneous wireless channel conditions to

the TCP source and an ACK buffer to absorb the channel variations, thereby maximizing long-lived TCP performance. It improves the

performance of TCP selective ACK (SACK) by up to 100 percent over a simple drop-tail policy, with small buffer sizes at the congested

router. Second, we present a wireless channel and TCP-aware scheduling and buffer sharing algorithm that reduces the latency of

short flows while still exploiting user diversity for a wide range of user and traffic mix.

Index Terms—TCP, 3G network, long and short flows, delay and rate variation.

Ç

1 INTRODUCTION

THIRD-GENERATION wide-area networks (WWANs), which
are based on the code division multiple access (CDMA)

technology [1], are increasingly being deployed throughout
the world. Although voice and, to some extent, short
messaging service have been the predominant applications
on the low-bandwidth wireless networks to date, the
support for high-speed data in 3G networks with band-
widths up to 2.4 megabits per second (Mbps) should enable
the widespread growth of wireless data applications. Since
the vast majority of data applications use the TCP/IP
protocols, optimizing the TCP performance over these
networks would have a broad and significant impact on
the user-perceived data application performance.

TCP performance over wireless networks has been
studied over the last several years. Early research [2]
showed that wireless link losses have a dramatic adverse
impact on TCP performance due to the difficulty in
distinguishing congestion losses from wireless link losses.
These results have been one of the main motivations
behind the use of extensive local retransmission mechan-
isms in 3G wireless networks [3], [4]. Although these local
retransmission mechanisms solve the impact of wireless
link losses on TCP performance, they also result in
unavoidable variations in packet transmission delay (due
to local retransmissions), as observed by TCP.

In addition to these delay variations, 3G wireless links
use channel-state-based scheduling mechanisms [5] that

result in significant rate variations. The basic idea behind
channel-state scheduling is to exploit user diversity. As
wireless channel quality of different users varies indepen-
dently due to fading, the total cell throughput can be
optimized if the scheduling priority is given to the user with
higher channel quality. For example, Qualcomm’s propor-
tional fair (PF) scheduler [6] exploits this idea while
providing for long-term fairness among different users.
Thus, although these scheduling mechanisms maximize the
overall link-layer throughput, they can also result in
significant variations in instantaneous individual user
throughput, as observed by TCP.

Furthermore, Internet traffic consists of a small number
of long-lived flows that make up a large part (in bytes) of
the total traffic and a large number of the flows (in count)
that are short lived. This is especially true with the
popularity of applications such as Web browsing. As a
result, optimizing the 3G wireless data system for short-
lived TCP flows is also important. For short flows, the goal
is to maximize the throughput and, for long flows, the goal
is to minimize the average transfer latency.

In this paper, we make two contributions for improving
the performance of applications in which the servers are
attached to the wired network and the clients are attached
to the 3G wireless network. First, we design a network-
based solution called the Window Regulator, which max-
imizes the throughput of long-lived TCP for any given
buffer size at the congested router in the presence of large
variations in rate and delay. Second, we present a
scheduling and buffer sharing algorithm that reduces the
latency for short flows. The algorithm is able to provide
short-flow differentiation and exploit user diversity, allow-
ing the wireless channel to be utilized efficiently.

Variations in delay and bandwidth cause throughput
degradation of long-lived TCP flows due to the difficulty in
estimating the appropriate throughput (that is, congestion
window size and round-trip time (RTT)) of the end-to-end

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 7, NO. 4, APRIL 2008 1

. M.C. Chan is with the Department of Computer Science, School of
Computing, 3 Science Drive 2, Singapore 117543, Republic of Singapore.
E-mail: chanmc@comp.nus.edu.sg.

. R. Ramjee is with Microsoft Research, "Scientia," 196/36 2nd Main,
Sadashivnagar, Bangalore—560080, India. E-mail: ramjee@microsoft.com.

Manuscript received 14 July 2005; revised 30 Nov. 2006; accepted 24 Apr.
2007; published online 23 July 2007.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-0198-0705.
Digital Object Identifier no. 10.1109/TMC.2007.70737.

1536-1233/08/$25.00 � 2008 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

path at the TCP source. When the source overestimates the
available throughput, it causes multiple and frequent
packet drops at the congested router buffer, resulting in
poor TCP throughput. The Window Regulator algorithm
uses the receiver window field in the acknowledgment
(ACK) packets to convey the instantaneous wireless channel
conditions to the TCP source and an ACK buffer to absorb
the channel variations, thereby maximizing long-lived TCP
performance. Window Regulator ensures that the source
TCP operates in the window-limited region, resulting in a
congestion-loss-free operation. Although the receiver win-
dow field of the ACK packets have been used for ensuring
fairness and regulating flows in wired networks [7], we
show that this scheme does not perform as well over
wireless links with variations. Window Regulator can
achieve high goodput and maximum long-lived TCP
performance for even small values of the buffer size,
reasonably large wired latencies, and small amounts of
packet loss in the wired or wireless links. For example, it
improves the performance of TCP Selective ACK (SACK)
by up to 100 percent over a simple drop-tail (DT) policy.

Although maximizing the throughput is important for
long-lived TCP flows, applications like HTTP transfer and
text messaging consist of many short-lived TCP flows. For
these short-lived flows, minimizing the flow completion
time requires giving preferential treatment to short flows
and involves a different mechanism from maximizing the
throughput. In addition, in a 3G environment, any short
flow differentiation scheme has to take into account the
wireless channel condition in order to take advantage of
user diversity. We show that a scheduling algorithm that
provides differentiation but does not fully exploit user
diversity can have the adverse effect of increasing short-
flow latencies and decreasing long-flow throughput at the
same time. We present a TCP-aware scheduling and buffer
sharing algorithm that reduces the latency of short TCP
flows while still exploiting user diversity for a wide range
of user and traffic mix.

The rest of this paper is organized as follows: In Section 2,
we review related work. In Section 3, we present the
architecture. In Section 4, we present a model for the
receiver-window-based algorithms. This model serves as
our motivation for the design of the Window Regulator
algorithms. We compare its performance to several algo-
rithms, including the ACK Regulator (AR), through ex-
tensive simulations in Section 5. In Section 6, we present the
buffer sharing and scheduling algorithm for differentiation
of short flows and discuss its performance. We finally
present the conclusions in Section 7.

2 RELATED WORK

The vast majority of related work on TCP performance over
wireless networks [2], [8], [9], [10] has concentrated on
reducing the impact of TCP misreacting to wireless losses
as congestion losses that result in poor throughput. As
mentioned earlier, link-layer retransmission in 3G wireless
links [3], [4] have effectively reduced the loss rate of
wireless links to well under 1 percent, thereby minimizing
the impact of wireless link loss on the TCP performance.

Wireless connections also suffer from short and long
pauses due to handoffs and disconnection. Network-based
and end-to-end solutions like M-TCP [11] and Freeze-TCP
[12], respectively, address this problem by sending an ACK
with the receiver window size set to 0. This freezes the
connection and timers at the TCP source until the
connection is reestablished, thereby avoiding time-outs
and improving the TCP performance. However, these
solutions require advance warning before link breakage
occurs. In addition, they are designed for a complete break
in link transmission and are not appropriate for large
variations in rate and delay.

There have been several studies that examine the impact
of wireless link variations on the TCP performance (for
example, [13], [14], [15], [16], and [17]). Large delay
variations resulting in delay spikes can cause spurious
time-outs in TCP where the TCP source incorrectly assumes
that a packet is lost while the packet is only delayed. This
unnecessarily forces the TCP into slow start, adversely
impacting the TCP performance. In [17], the authors
propose enhancements to the TCP timer calculations to
better track the RTT of the connection, thereby avoiding
spurious time-outs. Another approach to dealing with
spurious time-outs, based on a TCP sender algorithm
(forward retransmission timeout (F-RTO)), is presented in
[18]. The authors in [14] and [15] present several recom-
mendations for TCP hosts such as enabling the time stamp
option and using large windows for improving perfor-
mance over wireless networks. A measurement study of
TCP performance over a commercial WWAN testbed can be
found in [19].

In [13], the authors present the AR solution for avoiding
multiple packet drops at the congested router for long-lived
flows. Since we compare our proposal with the AR solution
in our simulations, we now briefly present an overview of
AR. AR is a network-based solution, implemented at the
Radio Network Controller (RNC), that aims at achieving the
classic sawtooth congestion window behavior of the TCP
source, even in the presence of varying rates and delays. It
achieves this by controlling the buffer overflow process at
the bottleneck link through the regulation of the transmis-
sion of TCP ACKs back to the source. It accommodates
packets from the TCP source without buffer overflows until
a predetermined threshold (based on an estimated TCP
source congestion window size) is reached and then causes
a single-packet loss to notify the TCP source to halve its
congestion window. This process repeats and thus ensures
that the TCP source operates in the congestion-avoidance
phase (sawtooth behavior) with high probability. Details of
the AR algorithm can be found in [13].

Although AR was shown to increase the throughput of
long-lived TCP flows, it has a few drawbacks. First, AR
needs to estimate the number of data packets in transit from
the source: Errors in this estimation, for example, due to
variations on the wired network, could lead to multiple-
packet drops, resulting in lowered throughput. Second,
since it intentionally causes single-packet drops to force
the TCP source to go into the congestion-avoidance phase,
it inherently cannot achieve the maximum goodput. The

2 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 7, NO. 4, APRIL 2008

Window Regulator presented here can be seen as an
improvement to the AR solution.

The use of the receiver window field in the ACK packets
to throttle the TCP source is not new. In [7], the authors
implement a receiver-window-based technique with ACK
pacing at the bottleneck router to reduce burstiness and
ensure fairness among different flows. In [20], the authors
use the receiver window field to better manage the TCP
throughput over a connection that spans both IP and
asynchronous transfer mode (ATM) networks. However, as
we shall see later, since these solutions do not explicitly
cater to significant rate and delay variations, they do not
perform well over wireless networks.

Differentiation for short flows over long flows in wired
networks has been studied in [21] and [22]. The basic idea is
to identify short flows heuristically through the use of a
simple threshold for the bytes transmitted and another
threshold for an idle period and then give priority to short
flows. The authors in [21] and [22] use random early drop
(RED) with different weights for short and long flows to
provide differentiation. However, tuning RED for wireless
links that exhibit significant variation is hard. Furthermore,
wireless networks already employ per-user buffering in
order to implement reliable link layers with local retrans-
missions; thus, the utility of an algorithm like RED is
reduced since we already have per-user state information
available.

Differentiation for short flows in wireless networks has
also been studied in [23] and [24]. In [24], Foreground-
Background (FB) scheduling [25] is used for scheduling
between multiple flows of a single user, and PF scheduling
is used for scheduling packets across users. No new
algorithm is proposed for interuser scheduling in place of
PF. In this paper, we propose both new intrauser and
interuser scheduling algorithms. In [23], the goal is to
minimize the average stretch (the ratio of the actual job
completion time over the minimum job completion time)
over all jobs. This approach requires advance knowledge of
all job sizes, which may not be available.

3 ARCHITECTURE

A simplified view of the 3G wireless access network
architecture is shown in Fig. 1. The base stations are
managed by an RNC. The RNC performs handoffs and
terminates the Radio-Link Protocol (RLP), which is respon-
sible for improving the reliability of the wireless link
through link-layer retransmissions. The Packet Data Service
Node (PDSN) terminates the Point-to-Point Protocol (PPP),

performs the function of a Mobile IP Foreign Agent, and
interfaces to the public Internet. In this architecture, the
RNC receives IP packets that are encapsulated in the PPP
from the PDSN. These IP packets, whose sizes depend on
the maximum transmission unit (MTU) being supported,
are fragmented into smaller radio frames by using the RLP
protocol and transmitted to the base station. The sizes of the
RLP packets vary from 128 to 512 bytes [3]. The size of the
packet being transmitted depends on the current channel
condition. Better channel condition (or higher bit rate)
allows larger packets to be transmitted in a single time slot.
The base station then schedules the transmission of the
packet over the air. In the case of a wireless frame loss, the
RLP performs retransmission of the radio frames. In this
architecture, the RNC maintains a per-user packet buffer
and drops packets during congestion when the per-user
buffer is full.

We consider only applications where the server
resides in the wired network and the client resides in the
3G networks. For the algorithms discussed in this paper, we
assume that the RNC can be extended to provide additional
classification capability. First, in order to implement the
Window Regulator schemes presented in Section 4, the
RNC needs to differentiate among flows going to different
users. This is already being done in the current RNC.
Next, in order to implement the short-flow differentiation
scheme presented in Section 6, the RNC needs the
additional capability to distinguish between different TCP
flows based on the IP addresses and port numbers inside
the packet headers.

In general, the RNC must carefully choose how much
buffer is to be allocated to a single user. Placing a strict
upper limit on the maximum buffer allocated to a single
user is necessary because of several reasons: 1) during
handoffs, the per-user buffers have to be either quickly
moved from one RNC/base station to another or flushed,
and large buffers can result in long handoff latencies and/
or wasted bandwidth on the access network, 2) scalability
and cost considerations also place a limit on the buffer size,
as the RNC must scale to the order of 100,000 users or more,
and 3) stale data (for example, a user clicking “reload” on a
browser or terminating an FTP flow) will still be sent over
the wireless link, and large buffers imply a larger amount of
stale data, wasting limited wireless bandwidth.

4 WINDOW REGULATOR

Variations in delay and bandwidth cause throughput
degradation of long-lived TCP flows due to the difficulty
in estimating the appropriate throughput. When the source
overestimates the available throughput, it causes multiple
and frequent packet drops at the congested router buffer,
resulting in poor TCP throughput. One approach to avoid
buffer overflow at the congestion (RNC) buffer is to control
the amount of data packet that can arrive at the RNC
data buffer.

In AR, this control is performed by releasing ACKs only
if there are vacancies in the data buffer. However, AR needs
to estimate the number of data packets in transit from the
source, and it intentionally causes single-packet drops to
force the TCP source to go into the congestion-avoidance

CHAN AND RAMJEE: IMPROVING TCP/IP PERFORMANCE OVER THIRD-GENERATION WIRELESS NETWORKS 3

Fig. 1. Wireless network architecture.

phase. A different approach is taken by the Window
Regulator algorithms. In Window Regulator, the maximum
number of packets that can be accommodated is estimated,
and this value is written onto the receiver window field in
the ACK packets. If the estimated window is less than or
equal to the actual bandwidth-delay product (BDP), the
Window Regulator ensures that the source TCP operates in
the window-limited region, resulting in a congestion-loss-free
operation. However, if the estimate is too small, the channel
will be underutilized. In the following paragraphs, we
present three Window Regulator algorithms with strictly
increasing estimates of window size.

First, we describe the Window Regulator algorithms by
using a simple model of a single flow in a wireless network,
as shown in Fig. 2. The base stations and the RNC are
collapsed into a single bottleneck link, with the per-flow
buffer size at the bottleneck node set to B. For simplicity of
elucidation, let us further assume that there are no losses or
reordering on the wired or the wireless links and let the
latency on the wired network be insignificant compared to
wireless delays. Note that the analysis of the performance of
TCP has an extensive literature (for example, [26], [27], [28],
and [29]). The aim of our analysis is not to propose a new
analytical technique but to simply motivate and explain the
heuristics behind the Window Regulator algorithms. When
we evaluate the performance of the Window Regulator
algorithms in Section 5, we will relax the assumptions on
delay and packet losses.

In general, the Window Regulator algorithm attempts to
maximize the TCP throughput by ensuring that there is
always at least one packet available in the bottleneck node
to be transmitted (no underflow) and there is no packet
loss due to buffer overflow (this leads to retransmission,
which is wasted bandwidth, and reduction in congestion
window size or time-out, which could then lead to an
underflow). In order to understand the performance of
Window Regulator, we focus on the arrival events on the
data queue.

Consider the arrival of the ith packet. Let Yi represent the
number of packets in the “wireless pipe” when packet i
arrives. Yi is a function of the varying rates and delays on
the forward and reverse directions on the wireless link.1

Finally, let Nið� BÞ be the number of packets in the
bottleneck link when packet i arrives. Since we assume
that the wired network latency is insignificant, all data
packets are buffered in the bottleneck link and all ACKs are
acknowledged immediately with no outstanding packets in
the wired network. The sum of data packets in the buffer
and in the “wireless pipe” equals the TCP window size Wi:

Wi ¼ Ni þ Yi þ 1: ð1Þ

Equation (1) is always true since the wired network latency
is assumed to be insignificant. In Section 5, we study the
impact of varying the wired network latency on the
throughput of the different algorithms.

Note that, for ease of explanation, the variables that are
used in this section are in units of (MTU) packets. In the
actual implementation, since TCP is a stream-oriented
protocol, these variables have to be converted into units of
bytes by using the sequence numbers available in TCP
headers. This is a straightforward translation and the
equations derived in this section remain valid even after
this translation.

Now, for TCP to operate without any buffer underflow,
the window size Wi must obey

8i Yi þ 1 < Wi ðno underflowÞ: ð2Þ

Equation (2) states that, for there to be no underflow, the
window size at the arrival of the ith packet must be greater
than the instantaneous number of packets in the wireless
pipe and at least one packet already waiting in the buffer. In
general, this is a necessary but not sufficient condition.
However, since we assume that (1) is true, Ni � 1 when
there is no underflow, and thus, (2) is also a sufficient
condition for no underflow. For there to be no overflow
(packet drop), from (1), B �Wi � Yi. In other words,

8i Yi þB �Wi ðno overflowÞ: ð3Þ

Similarly, (3) is necessary and sufficient to prevent over-
flow. The difficulty in choosing an appropriate TCP
window size is in adapting to the variations in Yi while
ensuring that (2) and (3) are not violated.

Next, we consider three Window Regulator algorithms
that set the receiver window size Wr in the ACK packets in
order to manage the window size at the TCP source. For the
purpose of this discussion, we assume that each packet is
acknowledged. However, the algorithms can be generalized
to handle ACKs that represent more than one packet as well
and a brief discussion is given in Section 4.4. Furthermore,
we assume that the original value of the receiver window
size in the ACK is larger than the value set by the algorithm
(that is, the actual receiver window is not a bottleneck). If
this assumption does not hold, we can simply send back the
ACK with the receiver window size unchanged.

4.1 Window Regulator-Static (WRS)

The first algorithm, called WRS, is described in Fig. 3. The
receiver window size Wr is set statically to the buffer
allocated for that flow. WRS is an existing and well-known
algorithm that is used in wired routers for guaranteeing
bandwidth and ensuring fairness (for example, see Packe-
teer [7]). It is not a contribution of our work and is used only
as a baseline for comparison purposes.

Note that this algorithm is very conservative as it easily
satisfies (3) (no overflow) since Wi ¼ B and 8iYi � 0 as the
number of packets in the wireless pipe cannot be negative.
However, depending on the size of the buffer in relation to

4 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 7, NO. 4, APRIL 2008

1. Later, in the Window Regulator algorithms, we use the variable Y to
estimate Yi.

Fig. 2. Simple model of the wireless network.

Fig. 3. Window Regulator-Static.

the variation of the wireless pipe, the queue can be idle,
resulting in a loss of throughput. In other words, the
utilization of the queue QWRS of this algorithm is
approximated by

QWRS ¼
1

k
�k
i¼11fB > Yi þ 1g; ð4Þ

where k is the total number of packets arrived and 1fB >

Yi þ 1g is the delta function:

1fB > Yi þ 1g ¼ 1; B > Yi þ 1
0; otherwise:

�

The approximation is exact if the arrival process is Poisson
(Poisson arrivals see time averages (PASTA)). For the case
of bursty arrivals, which is the expected case here, (4) is an
upper bound.

4.2 Window Regulator-Dynamic (WRD)

One simple way to extend the WRS algorithm is to track the
changes in Yi and convey this in each ACK packet flowing
back to the sender. We call this the WRD algorithm, and it
operates as shown in Fig. 4, where Y is the current estimate
of the size of the wireless pipe.

Assuming that the wired latency is insignificant, if a data
packet i arrives due to this ACK departure, then Wi ¼Wr

and Yi ¼ Y . Note that this algorithm might end up reducing
the receiver window size Wi compared to Wi�1, as Y is a
varying quantity. However, this algorithm never reduces
the receiver window size between consecutive ACKs by
more than one (the reception of an ACK reduces the packets
in the wireless pipe by one since we assume that every
packet is acknowledged). Thus, transmitting an ACK with a
reduced window size does not shrink the window but just
freezes the window from advancing (no new packets will be
transmitted in response to an ACK with the window
reduced by one).

This algorithm is also conservative, as it satisfies (3) (no
overflow), but it uses a higher window size compared to
WRS. Since both algorithms operate in the window-limited
region of TCP (where the throughput is given by W/RTT,
where W is the window size), the throughput of WRD is as
good or is better than the throughput of WRS since

If
W

RTT
� R then

W

RTT
� W þ k
RTT þ k=R 8k � 0;

where R is the average rate of the connection. The window
size of WRS is B, and the window size of WRD is Bþ Y . Y
is the difference in window size between WRD and WRS
and is always nonnegative.

However, this algorithm can also result in underflow
when the whole buffer is drained before the reception of an
ACK (causing a sudden large increase in the number of
packets in the wireless pipe). Thus, although Y still tracks

the increase in the size of the wireless pipe, there are no
ACKs available to convey this information to the TCP
source. The utilization of the queue QWRD of this algorithm
is given by

QWRD ¼
1

k
�k
i¼11fYi þB > Yiþ1g: ð5Þ

The equation can be rewritten as

QWRD ¼
1

k
�k
i¼11fB > Yiþ1 � Yig: ð6Þ

In other words, the number of packets in the buffer must be
larger than the number of packets transmitted between two
packet arrivals for there to be no underflow in this
algorithm. Comparing (6) to (4), we can again see that the
utilization of WRD is always greater than or equal to the
utilization of WRS since Yi � 0, 8i.

4.3 Window Regulator with ACK Buffer (WRB)

One of the problems with the WRD algorithm is that,
when Yiþ1 � Yi increases beyond B and the buffer drains
completely, the congested node may not have any ACKs to
provide feedback to the TCP source. One way to overcome
this is to maintain an ACK buffer in the reverse direction.
As mentioned earlier, when the window size is reduced by
one in the WRD algorithm, the TCP source does not
transmit any packet. Thus, this feedback is not used by the
TCP source (other than when resetting its timers for this
packet). If, instead, this ACK is stored in an ACK buffer,
we can use it to indicate any increase in size of the wireless
pipe as soon as it occurs and thereby allow the transmis-
sion of a data packet from the source. We call this the WRB
algorithm and it operates as shown in Fig. 5. Ba is the size
of the ACK buffer and is set to 0 initially.

Note that, in the WRB algorithm, Ba will always increase
until it converges to some value Ymax and Wiþ1 �Wi, 8i. In
practice, there is an upper bound for Ymax because the
number of packets in the wireless channel is limited by the
flow-control mechanism implemented in RLP. Equation (2)
is obviously true, since 8i, Ymax � Yi, and (3) is true because
the wired delay is insignificant. The queue utilization QWRB

of this algorithm is given by

QWRB ¼
1

k
�k
i¼11fYi þBþBa > Yiþ1g: ð7Þ

If we do not limit the size of the ACK buffer (since ACKs
consume very little memory and do not impact the latency
of new flows), then Ba will grow large enough to absorb the

CHAN AND RAMJEE: IMPROVING TCP/IP PERFORMANCE OVER THIRD-GENERATION WIRELESS NETWORKS 5

Fig. 4. Window Regulator-Dynamic.

Fig. 5. Window Regulator with ACK Buffer.

maximum variation on the wireless link. Therefore, PrðYi þ
BþBa > Yiþ1Þ approaches 1. Thus, if the flow lasts long
enough, and assuming that the wired latency is insignif-
icant, the WRB algorithm achieves the maximum utilization of 1.
The queue utilization QWRB is

QWRB ¼
1

k
�k
i¼11 ¼ 1: ð8Þ

4.4 Discussion

Although we strongly believe that the bottleneck is most
likely to be in the 3G wireless link, our solutions should be
able to handle the low-probability cases where the wired
network becomes the bottleneck. By holding ACKs in the
ACK buffer, WRB can run into a deadlock in the presence of
loss in the wired network. Fortunately, this situation can be
easily identified since there will be little queuing on the
RNC when the wireless link is no longer a bottleneck. Thus,
in WRB, an ACK is released whenever the data queue is
empty. The ACK release mechanism works in the following
way: On the double-ended queue (deque) of a data packet
or enque of an ACK packet, if the data queue is detected to
be empty the first time, two ACKs are sent. On the
subsequent enque or deque, if the data queue remains
empty, the number of ACKs released is double until all
ACKs are released. This process resets when the data queue
becomes nonempty. A similar reset mechanism is also
found in the AR [13] to handle packet loss. The ACKs are
not released all at once because, by releasing too many at
the same time, ACK compression occurs. When too many
data packets are transmitted by the sender in a short time,
congestion can occur.

The next issue concerns the assumption that every data
packet is acknowledged by the receiver, that is, a delayed
ACK in TCP is disabled. If the mobile host uses delayed
ACKs, the responsiveness of the algorithms will be affected,
and the performance will degrade, depending on the
intensity of delay or rate variation and how long the ACKs
are delayed. Typically, the TCP delayed-ACK timer is set to
200 ms, which is not large as compared to the wireless link
delays, and thus should not have a significant impact on the
performance of the Window Regulator algorithms.

Finally, Window Regulator has no impact on the end-
to-end congestion control behavior or fairness and does
not change the additive-increase, multiplicative-decrease
(AIMD) behavior of the TCP sender. Changing the receiver
window size at the RNC in all these algorithms will not
result in unfairness to other TCP flows sharing the wired
bottleneck link. This is because all TCP senders use the
minimum of the congestion window and the receiver
(advertised) window values for computing the number of
packets to be transmitted. As Window Regulator can only
reduce the receiver window, its use will not result in
larger bandwidth consumption.

5 PERFORMANCE OF LONG-LIVED TCP FLOWS

In this section, we study the performance of the Window
Regulator algorithms through extensive simulation and
compare their performance with those of AR [13] and a

simple DT policy. All simulations are performed using ns-2
with modifications that implement high data rate (HDR)
scheduling and variable link delays.

The simulation topology used is shown in Fig. 6. Si,
i ¼ 1 . . .n, corresponds to the set of TCP source nodes
sending packets to a set of the mobile TCP sink nodes Mi,
i ¼ 1 . . .n. Each set of Si, Mi nodes forms a TCP pair. The
RNC is connected to the Mi nodes through a V (virtual)
node for simulation purposes. L, the bandwidth between Si
and the router N1, is set to 100 Mbps, and D is set to 1 ms,
except in cases where D is explicitly varied (in Section 5.4).
The forward wireless channel is simulated with a model for
3G1X-EVDO (HDR) system, and the reverse wireless
channel has rate RR ¼ 64 kilobits per second (Kbps) and
delay RD. HDR uses PF scheduling (which exhibits both
variable rate and variable delay), and the buffer manage-
ment scheme used is tail drop. The model for the wireless
link used is based on a Rayleigh fading channel model. FD
is modeled as having a uniform distribution with a mean of
75 ms and a variance of 30, and RD is modeled as having a
uniform distribution with a mean of 125 ms and a variance
of 15. These are conservative values and were used in [13].
Even in the presence of variable delays, we ensure that
packets are delivered in order. The packet arrival time is
computed as the maximum of the scheduled time and the
arrival time of the previous packet. Fig. 6 also shows a set of
nodes used for generating cross traffic and is used in
Section 5.5, where the impact of loss is investigated. The
bottleneck link in this case is set to be 2 Mbps, which is
double the maximum throughput achievable in the
3G network simulated. Hence, it is only relevant for the
simulation in Section 5.5. The links between the cross traffic
sinks and the router N2 have a bandwidth of 100 Mbps and
a delay of 100 ms. Unless mentioned otherwise, we use TCP
SACK with the time stamp option for long-lived flows that
last at least 1,000 seconds in each simulation run. All
simulations use a packet size of 1,000 bytes. Assuming that
the maximum bandwidth available to each user is 600 Kbps
and the average delay is 200 ms, the BDP is 120 Kbits or
15 packets. The default per-user queue size is set to
20 packets, which is about 1.3 times BDP of bottleneck link.
The TCP maximum window size is set to 500 Kbytes. Using
such a large window size ensures that TCP is never window
limited by the TCP source in all experiments.

We next evaluate the performance of the five algorithms,
that is, the three Window Regulator algorithms (WRS,
WRD, and WRB), AR, and DT. Throughput is measured at

6 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 7, NO. 4, APRIL 2008

Fig. 6. Simulation topology.

the TCP receiver and is the rate of useful bytes/packets
transmitted by the sender. Hence, the throughput measured
is the goodput. The effect of buffer size is studied in
Sections 5.1 and 5.2, the trade-off between throughout and
RTT in Section 5.3, the longer wired network latency in
Section 5.4, and the wired network loss in Section 5.5.

5.1 Throughput versus Buffer Size (Single User)

In this section, the effect of RNC buffer size on throughput
is presented for the case of a single user with a long-lived
TCP flow. As a baseline, we compare the performance of
TCP Reno, TCP SACK, and TCP Westwood-NR [30] using
the simulation topology for a single user. Fig. 7a plots the
throughput performance of these three different TCP
variants. TCP SACK performs the best among the three
variants. In particular, note that, even though TCP West-
wood uses a bandwidth estimation technique for rate
control, it does not work well in the presence of substantial
bandwidth and delay variation that is typical over a wide-
area wireless link.

We will focus on the performance of TCP SACK in the
rest of the paper since it exhibits the best performance
among the different TCP variants. Fig. 7b plots the
throughput performance of the TCP flow by using the five
algorithms for hosts using TCP SACK. As shown in the
figure, DT performs poorly, as the variations over the
wireless link cause significant throughput degradation.
Interestingly, the WRS algorithm also has very low
throughput for a given buffer size and even underperforms
DT in some cases. The improvement of WRS over DT ranges
from �28 percent (for small buffer sizes) to 10 percent.

AR performs better than WRS and DT, but since it can
only use the technique of holding back ACKs to signal the

source to slow down during buffer buildup, it does not
achieve the maximum throughput gains. The improvement
of AR over DT ranges from 1 percent to 120 percent. The
WRD algorithm delivers close to the maximum throughput
for reasonable buffer sizes (> 15), but for small buffer sizes,
it can lead to underutilization of the link, as the node may
not have any ACKs to provide feedback during sudden
increases in the number of packets in the wireless channel.
The improvement of WRD over DT ranges from 2 percent to
138 percent with the biggest improvement occurring
between buffer sizes of 5 to 15.

As expected, WRB outperforms all the other algorithms
and delivers the highest throughput with improvement
over DT ranging up to 360 percent for very small buffer
sizes and close to 100 percent of improvement when one
BDP worth of buffer (15) is used. In addition, with the use of
ACK buffers, as long as packets continue to be transmitted
over the wireless channel and ACKs continue to be sent
uplink back to the sender, spurious time-outs caused by
ACK storage are not observed to have occurred.

5.2 Throughput versus Buffer (Multiple Users)

Fig. 8 shows the effect of buffer size on throughput for four
and eight users. The results are similar to the single-user
case in terms of relative performance of the various
algorithms, except for the cases of AR and WRD, where
AR now outperforms WRD. When the number of users
(flows) increases, the gain decreases (but is still substantial)
since the likelihood of the buffer being empty is reduced,
even under the DT policy.

The result for eight users is similar to that of four users,
except that the gap between AR and WRD widens. One of
the reasons is that, as the number of users increases, the

CHAN AND RAMJEE: IMPROVING TCP/IP PERFORMANCE OVER THIRD-GENERATION WIRELESS NETWORKS 7

Fig. 7. Throughput versus queue length for a single user/flow.

(a) Different TCP variants. (b) TCP sack.

Fig. 8. Aggregate throughput versus queue length for TCP SACK with

multiple users/flows. (a) Four users. (b) Eight users.

variation in Y , which is the size of the wireless pipe,
increases. As a result, the likelihood of an underflow
increases, resulting in a decrease in throughput. This clearly
illustrates the need for an ACK buffer so that a prompt
feedback of the variation can be provided to the TCP source.

5.3 Throughput versus RTT

In this section, we investigate the trade-off between
throughput and RTT. This trade-off is of interest because
two of the algorithms (AR and WRB) hold back ACK
packets to achieve higher throughput, resulting in poten-
tially higher average RTT, whereas the other three do not.

For each buffer size (3 to 50), we measure the average
packet RTT seen by the TCP sender across all users. Fig. 9a
shows how RTT increases with the throughput (for four
active users). The leftmost point of each line in Fig. 9a
indicates the average RTT and throughput for a buffer size
of three packets, which is the smallest buffer size simulated.
As the buffer size increases, RTT increases correspondingly.

It can be seen that, in order to achieve the same
throughput, AR incurs the largest average RTT value due
to ACK buffering. Therefore, in terms of throughput-RTT
trade-off, AR performs the worst. On the other hand, WRD
performs the best, as the average RTT value achieved is the
lowest for a given throughput for all the buffer sizes
simulated. Finally, although WRB provides the highest
throughput, it results in high-average RTT values, even
with very small buffers. However, note that, for a long-lived
TCP flow, large (per-packet) RTT values are acceptable as
long as the throughout is high since high throughput will
result in lower file transfer latency.

5.4 Throughput versus Wired Latency

In all previous measurements, the latency on the wired
network is assumed to be small. In this section, we study

the effect of a larger wired latency on the throughput by
varying D. In order to obtain ranges of Internet RTTs, we
look at recent Internet measurements done by the
Internet End-to-end Performance Measurement (IEPM)
project to monitor the end-to-end performance of Internet
links (http://www-iepm.slac.stanford.edu/monitoring/
general.html). A snapshot of the measurement results
obtained by using ping is shown in Table 1 for a host
residing in the US in February 2006. The 95th percentile of
the measured round-trip delay is 93.4 ms when servers
are located within the US. Partly due to much larger
physical distance, for servers around the world, the
95th percentile of the measured round-trip delay is up
to 330.6 ms. In this section, D, which is the constant
wireline delay shown in Fig. 6, is varied from 1 to 500 ms,
which is equivalent to varying the wired RTT from 2 ms
to 1 second (the wireless link delay is independent). Thus,
this range should easily cover the entire spectrum of
wired latencies observed today. Note that the average
wireless link latency is 200 ms (forward link with a mean
of 125 ms and reverse link with a mean of 75 ms).

Fig. 9 shows how the throughput of the different
algorithms vary with increasing wired latency for one
user/flow. The performance of all algorithms are expected
to drop as the wired latency increases since the TCP
throughput is inversely proportional to RTT. For round-trip
wireline latency less than 70 ms, WRS is better than DT.
Beyond that point, since WRS is operating at the window-
limited region and the TCP window remains fixed at
20 packets, the throughput of WRS degrades inversely with
RTT and performs worse than DT, which can utilize a large
window. AR performs very well for latency below 40 ms.
For larger wired latencies, the estimation algorithm in AR
becomes less accurate and buffer loss begins to occur more
frequently. Beyond latency of 120 ms, the improvement of
AR over DT is less than 10 percent, and beyond 200 ms, the
throughput is very close to DT. WRD is fairly robust with
respect to the increase in wired latency of up to 200 ms. One
impact of larger latency on WRD and WRB is that more
packets are being buffered in the wired network, increasing
the chance of buffer underflow and lower throughput. With
a round-trip latency of 200 ms, WRD is still 27 percent better
than DT. However, the throughput degrades rapidly
beyond latency of 200 ms. With latency larger than
400 ms, WRD has lower throughput than AR and DT.
Again, this is due to the fact that WRD is operating at the
window-limited region. The performance of WRB is similar
to WRD.

To summarize, the performance of AR degrades rapidly
at round-trip latency larger than 40 ms, but its performance

8 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 7, NO. 4, APRIL 2008

Fig. 9. Throughput versus RTT and wired latency. (a) Throughput versus
average RTT. (b) Throughput versus wired latency.

TABLE 1
RTT (in ms) Distribution from Hosts in
the US to the World in February 2006

is never worse than DT. On the other hand, both WRD and
WRB perform well, with round-trip latency below 200 ms,
but their performance degrades rapidly at larger latencies
since they operate in the window-limited region. Beyond
400 ms RTT on the wired network, they perform worse than
DT. Since the window sizes of all the three algorithms (AR,
WRD, and WRB) are a function of the buffer size available
in the RNC, increasing the RLP buffer size will allow these
algorithms to maintain their high throughput for even
larger wired latencies.

5.5 Impact of Random and Congestion Losses

In all the simulations so far, we have assumed zero loss in
the rest of the network. In this section, we study the impact
of loss in two different ways. First, we simulate the effect of
random loss over the wireless link, and second, we simulate
the effect of congestion loss in the wired network. In these
experiments, we consider the case of a single mobile user
M1 performing a download from source S1. Each simula-
tion runs for 10,000 seconds.

The amount of random loss is varied in the link between
the virtual node V and the mobile device M1 by using the
random loss error module available in ns-2. The packet loss
rate is varied from 10�5 to 10�2. Fig. 10a shows how the
throughput varies with packet loss. AR, WRB, and WRD
continue to perform well for a very small amount of loss,
but the throughput starts to decrease at loss rate of 10�3.
With loss rate 10�2 or greater, all algorithms have the same
low performance since random loss is now the dominant
factor determining the TCP throughput. Note that random
loss can occur in the wireline network as well if RED is
enabled.

In order to generate congestion loss, four FTP sessions
using TCP SACK are generated from the cross traffic

sources in Fig. 6 to the cross traffic sinks. The bottleneck link
is the link going from routers N1 to N2 and has a link
bandwidth of 2 Mbps with delay of 1 ms. The packet buffer
on router N1 is set to 100. Since the minimum RTT is 200 ms
with a link speed of 2 Mbps and a 1,000-byte packet,
100 packet buffering is about two times the BDP. Different
congestion conditions are simulated by varying the link
bandwidth between the cross traffic sources and the
router N1 from 300 to 500 Kbps. The impact of congestion
loss on performance is shown in Fig. 10b. The loss rate
plotted in the figure is the loss rate experienced only by the
traffic going from S1 to M1.

A number of observations can be made. Both WRB and
AR perform better than DT, with congestion loss rate below
10�3, though the difference in performance decreases fairly
rapidly from 10�5 to 10�3. On the other hand, WRD
performs poorly with respect to congestion loss and
performs worse than DT for even a very small amount of
loss. A similar result is true for WRS. The results for
congestion loss, which is different from random loss, can be
explained as follows.

During congestion buildup, the buffer in router N1,
which can buffer up to 100 packets, increases the RTT by up
to 400 ms in the worst case. With the increase in RTT, the
throughput of WRD, as shown in Section 5.4, decreases
rapidly. In fact, the throughput of WRD decreases to below
400 Kbps before any packet loss happens and is caused
solely by the increase in wired latency due to congestion.
The same is true for WRS, which performs even worse, as it
operates with a smaller window. Interestingly, the perfor-
mance of AR and WRD does not degrade as significantly.
This is due to the fact that these schemes have an ACK
buffer that can provide fast feedback. Recall that, for both
AR and WRD, whenever the data queue (going toward the
mobile device) is empty, the reset mechanism is enabled
and more ACKs are released (see Section 4.4). This provides
quick feedback to the TCP source, and high throughput is
maintained even in the presence of congestion losses in the
wired network.

5.6 Discussion

Similar to the AR presented in [13], the Window Regulator
schemes cannot be used if the flow uses end-to-end IP
Security (IPSEC). This is also true for all performance-
enhancing proxies. However, we believe that proxies for
performance improvement are critical in current wireless
networks. In order to allow for these proxies without
compromising security, a split security model can be
adopted, where the RNC, under the control of the network
provider, becomes a trusted element. In this model, a
virtual private network (VPN) approach to security (say,
using IPSEC) is used on the wireline network between the
RNC and the correspondent host, and 3G authentication
and link-layer encryption mechanisms are used between the
RNC and the mobile host. This allows the RNC to support
proxies such as the window or AR to improve performance
without compromising security. Additional discussions on
such issues can be found at the Internet Engineering Task
Force (IETF) Performance Implications of Link Character-
istics (PILC) Working Group Web site.

CHAN AND RAMJEE: IMPROVING TCP/IP PERFORMANCE OVER THIRD-GENERATION WIRELESS NETWORKS 9

Fig. 10. Throughput versus loss. (a) Random loss. (b) Congestion loss.

6 SHORT-FLOW DIFFERENTIATION

In the previous section, the problem of improving the
performance of long-lived TCP flows is addressed. How-
ever, it is well known that Internet traffic consists of a small
number of long-lived flows that make up a large part (in
bytes) of the total traffic and a large number of the flows (in
counts) that are short lived. This is especially true with the
popularity of applications such as Web browsing. As a
result, optimizing the 3G wireless data system for short-
lived TCP flows is also important. The main difference
between the performance goals between long and short
flows is that, in the former case, the goal is to maximize the
throughput, and in the latter case, the performance goal is
to minimize the average transfer latency.

In order to improve the performance of short flows, one
needs to be able to identify them. Although it is possible to
use the Type-of-Service (TOS) bits in the IP header to
indicate the type of flows (for example, short or long), these
bits are typically not used. Therefore, we assume that it is
possible to classify flows at the TCP level by the four tuples
in the TCP/IP header, namely, source IP address, destina-
tion IP address, source TCP port, and destination TCP port.

In this paper, we consider a two-level hierarchical
queuing system, as shown in Fig. 11, where the first level
consists of per-flow queue for a given user and the second
level consists of a per-user queue. Within each first-level
queue, an intrauser scheduler selects a packet to be sent first
among all the flows of that respective user. At the second-
level queue, a 3G scheduler selects a packet among different
users to be sent over the wireless channel. For example, in
HDR, the first-level scheduler is a First-in, First-out (FIFO)
scheduler, and the second level scheduler is a PF queuing
scheduler [6].

The rest of the section is organized as follows: First, we
show that a significant improvement in short-flow latency is
possible when a simple intrauser scheduler called Short-
Flow Priority (SFP) is used instead of FIFO. Next, we study
the behavior of three different interuser schedulers and
explore the trade-off between fairness, throughput, and
short-flow latency. We show that the proposed PF-RP
scheduling algorithm is able to introduce elements of flow
differentiation into the PF algorithm such that the short-
flow latency can be reduced without sacrificing the system
throughput.

6.1 Intrauser Scheduling

In this section, we first briefly describe the intrauser
scheduler called SFP. SFP is conceptually similar to the
schedulers proposed in [21] and [22], and the FB scheduler

in [25], with extensions for flow reclassification (to handle
proxies or persistent connections) and the use of a strict-
priority-based eviction policy (instead of RED). In SFP, only
two classes are defined and strict priority is implemented
between the classes. Therefore, if packets from the higher
priority class are present, they will always be scheduled
first. A flow is identified by the information in the packet
header and a flow is classified as either a short or long flow
by the amount of bytes sent so far by the scheduler. Initially,
all flows are classified as short flows and a counter keeps
track of the total number of bytes sent so far for each flow.
When that counter increases beyond a predefined thresh-
old, the flow is reclassified as a long flow. This simple
reclassification scheme reduces the likelihood of starving
long flows of the same user because SFP would eventually
promote short flows to long flows. A flow is also
reclassified from a long flow to a short flow if the flow is
idle (no packet arrival) for a certain amount of time, called
the Reset Duration. This reclassification has two advantages.
First, for interactive applications like telnet, such resets will
allow a telnet session to be classified as a short flow, even
though the total amount in bytes of a telnet session is large.
Second, for the case where Web traffic from a mobile
terminates on a proxy or uses persistent connections
(HTTP 1.1), it is important to reclassify the flow as short
since the idle period likely indicates that the data belongs to
a new Web download. A strict-priority buffer eviction is
used where high-priority packets always evict lower
priority packets if the buffer is full (except for the packet
being served). We found that the use of RED/RED with in/
out (RIO) schemes, as in [21] and [22], requires careful
tuning of parameters, which can be difficult in a wireless
environment. The use of a strict-priority eviction policy is
simple and provides sufficient differentiation.

6.2 Interuser Schedulers

There are three parameters that can be taken into account by
an interuser scheduler, namely, exploiting user diversity in
order to improve the overall throughput, maintaining long-
term fairness, and minimizing the short-flow latency. Flows
to a given user are classified as being a long or short flow
based on the first packet in the queue. We consider three
different schedulers that take into account different aspects
of the above three parameters.

6.2.1 PF Scheduler

PF is the scheduler used in the 3G EV-DO or HDR system
[6]. As a standard algorithm used in data-optimized
WWAN, PF is used as a baseline for comparison. In order
to understand how PF works, we first need to understand
the concept of user diversity, which is central to how PF
improves the channel throughput. Consider the model
where there are N active users sharing a wireless channel.
The channel condition seen by each user varies indepen-
dently. Better channel conditions translate into higher data
rate, and vice versa. Each user continuously sends its
measured channel condition back to the centralized
PF scheduler, which resides at the base station. If the
channel measurement feedback delay is relatively small
compared to the channel rate variation, the scheduler has a
good-enough estimate of all the users’ channel condition

10 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 7, NO. 4, APRIL 2008

Fig. 11. Queuing structure of a scheduler.

when it schedules a packet to be transmitted to the user.
Since channel condition varies independently among
different users, user diversity can be exploited by selecting
the user with the best condition to transmit in different
time slots. This approach can increase the system through-
put substantially compared to a round-robin scheduler.
However, such a rate-maximizing scheme can be very
unfair, and users with relatively bad channel conditions
can be starved. Hence, the mechanism used in PF is to
weight the current rate achievable by a user by the average
rate received by a user.

At each time slot (every 1.67 ms in HDR), the decision of
the PF scheduler is to schedule the user with the largest
maxi

Ri

Ai
, where Ri is the rate achievable by user i and Ai is

the average rate of user i. The average rate is computed over
a time window as a moving average:

Aiðtþ 1Þ ¼ ð1� �ÞAiðtÞ þ �Ri if scheduled;
Aiðtþ 1Þ ¼ ð1� �ÞAiðtÞ if not scheduled:

PF does not differentiate between short and long flows
among users.

6.2.2 PF-SP Scheduler

One possible way to improve the short-flow latency over
the PF scheduler is to include a notion of priority in the PF
scheduler so that users with short flows are given higher
priority than users with long flows. We call this the PF-SP
scheduler. PF-SP always prefers short flows to long flows.
In PF-SP, we select the user with the highest instantaneous
rate among users with short flows. When there are only
long flows in the system, the default PF is run. The PF-SP is
summarized in Table 2.

PF-SP gives strict priority to short flows across all users
and, in a channel with no variation, can be expected to
provide the lowest latency for short flows. In PF-SP, by
selecting the user with the highest rate among all users with
short flows, some user diversity is also exploited (limited to
users with short flows only, instead of over all flows), and
the short-flow latency is expected to be minimized at the

expense of fairness among users. The average rate for each
user is maintained over all short and long flows.

6.2.3 PF-RP Scheduler

One of the problems of the PF-SP scheduler is that it always
prefers a short flow to a long flow, independent of channel
conditions. Short flows, by definition, cannot always be
present in the queue, as long flows dominate in terms of
byte count. As a result, the amount of diversity available to
PF-SP could be reduced in comparison to PF.

We propose an algorithm called PF-RP, which attempts
to strike a better balance between minimizing the short flow
latency, exploiting user diversity, and providing fairness
among users. In PF-RP, in each time slot, both PF and PF-SP
are run logically. The selection from PF-SP is used if the
user selected has a higher Ri than the user selected from PF;
otherwise, the user selected from PF is used. This allows us
to exploit diversity across all users (with both long and
short flows) while retaining differentiation for short flows.
The algorithm is summarized in Table 2.

Since PF is used, except in cases where using PF-SP
improves the channel utilization, PF-RP has the property
that it decreases short-flow latencies while, at the same
time, increasing the overall throughput. However, the
PF-RP algorithm sacrifices fairness to users with only
long flows, but that is necessary, by definition, in any
mechanism that provides differentiation to short flows. As
in the case of PF-SP, the average rate for each user is
maintained over all short and long flows and provides
some measure of the overall fairness to users with little or
no short flows. Nevertheless, since the goal of minimizing
short-flow latency is taken over all users, it is possible
that, in an overloaded system, a single user with only long
flows can be starved. Hence, the minimum rate ðRminÞ is
defined such that, if the average rate allocated is below
Rmin, the user chosen by PF will be selected instead.

6.3 Evaluation

We used the same ns-2 simulation setup as before, and the
simulation time is 10,000 seconds. The parameters of the
Web traffic model used are shown in Table 3. Flows are
classified as short if the file size is below 15 Kbytes and the
reset duration is set to 1 second. The averaging parameter �
used in calculating Ai in the PF scheduler is set to 0.001.

In the first simulation, we compare the performance of
intrauser and interuser scheduling with eight users. Out of
these eight users, four users have only Web traffic, and the
other four users have only a single long-lived FTP session.
The results are shown in Fig. 12. In Fig. 12a, we see that the
biggest improvement is for SFP over the FIFO buffering
scheme. Due to selective dropping of packets with lower

CHAN AND RAMJEE: IMPROVING TCP/IP PERFORMANCE OVER THIRD-GENERATION WIRELESS NETWORKS 11

TABLE 2
PF-SP and PF with Rate Priority (PF-RP) Algorithms

TABLE 3
Traffic Model Parameters

priority (longer flows), the mean latency is reduced by

more than 50 times over all file sizes. Among PF, PF-SP, and

PF-RP, for the smallest files, PF-SP performs the best, and

PF the worst. For large files (> 100 Kbytes), PF-SP performs

the worst (see the crossover in Fig. 12a) because short files

are scheduled even when the channel condition is bad. PF

and PF-RP have very similar performance, showing that the

throughput gain for small files with PF-RP has a minimum

impact on the overall throughput. Fig. 12b shows the

result for small files, where the performance of PF, PF-SP,

and PF-RP are compared for files up to 15 Kbytes. Overall,

the result is as expected. Compared to PF, PF-SP improves

short-flow latency (up to 15 Kbytes) from 14 percent to

38 percent. For the largest completed flows, the latency

increased by 10 percent. For PF-RP, the short-flow latency

decreases by 10 percent to 33 percent, and for the large

transfer, the latency is the same as PF.
In the next simulation, we experiment with a different

traffic mix with eight users, and each user has both Web

traffic and a single long-lived FTP. In order to maintain

similar overall load with the previous experiment, the Web

traffic load used is reduced, as shown in Table 3. The result

is shown in Fig. 13. Due to the existence of Web traffic for all

eight users, the amount of user diversity available for short

flows is higher. As a result, even for small flows, the

performance of PF-RP is very close to PF-SP. Compared to

PF, PF-SP improves the short-flow latency from 0 percent to

23 percent and increases the latency of the largest files by

12 percent. For PF-RP, the short-flow latency decreases by

7 percent to 33 percent, and for large files, the latency is

decreased by 5 percent compared to PF.

Surprisingly, in some cases, PF-RP is better than PF-SP
for short flows and long flows. Fig. 14 shows such a case
with four users. Only one user has Web traffic, and the
other three users have a single FTP session each. In this
case, for short flows, PF-RP outperforms PF-SP by up to
22 percent. For long flows, PF-RP is comparable to PF (both

12 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 7, NO. 4, APRIL 2008

Fig. 12. Average transfer latency for eight users, with four users having

only Web traffic and four users having only FTP traffic. (a) All files.

(b) Small files below 20 Kbytes.

Fig. 13. Average transfer latency for eight users, each user with both

FTP and traffic. (a) All files. (b) Small files below 20 Kbytes.

Fig. 14. Average transfer latency for four users, with one user having
only Web Traffic and three users having only FTP traffic. (a) All files.
(b) Small files below 20 Kbytes.

of which are better than PF-SP). Note that, in Fig. 14, when

there were seven FTP users instead of three, PF-RP could

not outperform PF-SP for short flows. This can be explained

as follows: First, with only one user with short flows, PF-SP

cannot exploit user diversity. Second, with fewer (three)

FTP users, the likelihood of PF-RP choosing a short flow

with the best channel is higher compared to the case with

more (seven) users. The combination of these two factors

allows PF-RP to outperform PF-SP for short flows, and

since PF-RP is wireless channel aware, it always outper-

forms PF-SP for long flows.
The fairness of PF is such that the PF scheduler allocates

an equal amount of transmission time to all queues that are

always backlogged. Due to differences in traffic load and

TCP dynamics like slow start and congestion avoidance, the

user queues will not always be backlogged, and the

transmission times allocated will not be equal. However,

by comparing the transmission time allocated to different

users under PF, PF-SP, and PF-RP, we can obtain an

indication of how the various interuser scheduling algo-

rithms impact fairness by using PF as the benchmark. The

transmission time allocation for the simulations shown in

Figs. 12 and 13 are shown in Table 4. The results show that

PF-RP is almost as fair as PF, whereas PF-SP is unfair to

users with long flows.
In conclusion, we see that, across a wide range of traffic

mix, PF-RP is the most robust scheduling algorithm,

delivers high throughput and smaller flow completion

latency, and results in fair scheduling time allocation.

7 CONCLUSION

In this paper, we have made two contributions. First, we

proposed a network-based solution called the Window

Regulator that maximizes the TCP performance in the

presence of channel variations for any given buffer size at

the congested router. We analyzed the performance of

various versions of the Window Regulator schemes and

make the following observations: WRS, a common algorithm

used in wired routers, performs poorly. The WRB scheme,

which explicitly adapts to the wireless channel conditions

and also performs ACK regulation, improves the through-

put by up to 100 percent over a DT scheme. WRB also

delivers robust performance gains, even with reasonably

large wired latencies and a small number of packet losses.

Next, we presented a scheduling and buffer sharing
algorithm that reduces the latency for short flows while
exploiting user diversity, thus allowing the wireless channel
to be utilized efficiently. For intrauser scheduling, we found
that having short-flow differentiation for scheduling and
buffer management reduces the short-flow latency signifi-
cantly and reduces the average normalized latency over a
FIFO scheme by up to 50 times. For interuser scheduling,
we found that the proposed PF-RP scheme is the most
robust and provides good performance over a broad range
of user traffic mix.

REFERENCES

[1] TIA/EIA/cdma2000, “Mobile Station-Base Station Compatibility
Standard for Dual-Mode Wideband Spread Spectrum Cellular
Systems,” Telecomm. Industry Assoc., 1999.

[2] A. Bakre and B.R. Badrinath, “Handoff and System Support for
Indirect TCP/IP,” Proc. Second Usenix Symp. Mobile and Location-
Independent Computing, Apr. 1995.

[3] Third-Generation Partnership Project, “RLC Protocol Specification
(3G TS 25.322:),” 1999.

[4] TIA/EIA/IS-707-A-2.10, “Data Service Options for Spread Spec-
trum Systems: Radio Link Protocol Type 3,” Jan. 2000.

[5] P. Bhagwat, P. Bhattacharya, A. Krishna, and S. Tripathi,
“Enhancing Throughput over Wireless LANs Using Channel
State Dependent Packet Scheduling,” Proc. IEEE INFOCOM,
pp. 1133-1140, Mar. 1996.

[6] P. Bender et al., “A Bandwidth Efficient High Speed Wireless Data
Service for Nomadic Users,” IEEE Comm. Magazine, July 2000.

[7] S. Karandikar, S. Kalyanaraman, P. Bagal, and B. Packer, “TCP
Rate Control,” ACM Computer Comm. Rev., Jan. 2000.

[8] H. Balakrishnan, S. Seshan, E. Amir, and R.H. Katz, “Improving
TCP/IP Performance over Wireless Networks,” Proc. ACM
MobiCom, Nov. 1995.

[9] P. Sinha, N. Venkitaraman, R. Sivakumar, and V. Bharghavan,
“WTCP: A Reliable Transport Protocol for Wireless Wide-Area
Networks,” Proc. ACM MobiCom, 1999.

[10] R.K. Balan et al., “TCP HACK: TCP Header Checksum Option to
Improve Performance over Lossy Links,” Proc. IEEE INFOCOM,
2001.

[11] K. Brown and S. Singh, “M-TCP: TCP for Mobile Cellular
Networks,” ACM Computer Comm. Rev., vol. 27, no. 5, 1997.

[12] T. Go, J. Moronski, D.S. Phatak, and V. Gupta, “Freeze-TCP: A
True End-to-End Enhancement Mechanism for Mobile Environ-
ments,” Proc. IEEE INFOCOM, 2000.

[13] M.C. Chan and R. Ramjee, “TCP/IP Performance over 3G
Wireless Links with Rate and Delay Variation,” Proc. ACM
MobiCom, 2002.

[14] H. Inamura et al., TCP over 2.5G and 3G Wireless Networks, IETF
RFC 3481, Feb. 2003.

[15] F. Khafizov and M. Yavuz, “TCP over CDMA2000 Networks,”
Internet draft, work in progress, Jan. 2002.

[16] R. Ludwig, A. Konrad, and A.D. Joseph, “Optimizing the End-to-
End Performance of Reliable Flows over Wireless Links,” Proc.
ACM MobiCom, 1999.

CHAN AND RAMJEE: IMPROVING TCP/IP PERFORMANCE OVER THIRD-GENERATION WIRELESS NETWORKS 13

TABLE 4
Number of Time Slots Allocated Per User

[17] R. Ludwig and R.H. Katz, “The Eifel Algorithm: Making TCP
Robust against Spurious Retransmissions,” ACM Computer Comm.
Rev., vol. 30, no. 1, Jan. 2000.

[18] P. Sarolahti, M. Kojo, and K. Raatikainen, “F-RTO: An Enhanced
Recovery Algorithm for TCP Retransmission Timeouts,” ACM
SIGCOMM Computer Comm. Rev., vol. 33, no. 2, Apr. 2003.

[19] R. Chakravorty, S. Banerjee, P. Rodriguez, J. Chesterfield, and I.
Pratt, “Performance Optimizations for Wireless Wide-Area Net-
works: Comparative Study and Experimental Evaluation,” Proc.
ACM MobiCom, 2004.

[20] L. Kalampoukas, A. Varma, and K.K. Ramakrishnan, “Explicit
Window Adaptation: A Method to Enhance TCP Performance,”
IEEE/ACM Trans. Networking, June 2002.

[21] X. Chen and J. Heidemann, “Preferential Treatment for Short
Flows to Reduce Web Latency,” Computer Networks, vol. 41, no. 6,
pp. 779-794, Apr. 2003.

[22] L. Guo and I. Matta, “The War Between Mice and Elephants,”
Proc. Ninth Int’l Conf. Network Protocols (ICNP ’01), 2001.

[23] N.S. Joshi, S.R. Kadaba, S. Patel, and G.S. Sundaram, “Downlink
Scheduling in CDMA Data Networks,” Proc. ACM MobiCom, 2000.

[24] Z. Shao and U. Madhow, “Scheduling Heavy-Tailed Data Traffic
over the Wireless Internet,” Proc. 56th IEEE Vehicular Technology
Conf. (VTC ’02-Fall), 2002.

[25] L. Kleinrock, “Queuing Systems,” Vol. II: Computer Applications,
Wiley, 1976.

[26] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Throughput: A Simple Model and Its Empirical Validation,” Proc.
ACM Ann. Conf. Applications, Technologies, Architectures, and
Protocols for Computer Comm. (SIGCOMM ’98), 1998.

[27] V. Misra, W. Gong, and D. Towsley, “Stochastic Differential
Equation Modeling and Analysis of TCP-Windowsize Behavior,”
Proc. Performance, 1999.

[28] E. Altman, K. Avrachenkov, and C. Barakat, “A Stochastic Model
of TCP/IP with Stationary Random Loss,” Proc. ACM Ann. Conf.
Applications, Technologies, Architectures, and Protocols for Computer
Comm. (SIGCOMM ’00), 2000.

[29] F. Baccelli and D. Hong, “TCP Is Max-Plus Linear,” Proc. ACM
Ann. Conf. Applications, Technologies, Architectures, and Protocols for
Computer Comm. (SIGCOMM ’00), 2000.

[30] M. Gerla, B.K.F. Ng, M.Y. Sanadidi, M. Valla, and R. Wang, “TCP
Westwood with Adaptive Bandwidth Estimation to Improve
Efficiency/Friendliness Tradeoffs,” J. Computer Comm., vol. 27,
no. 1, Jan. 2004.

Mun Choon Chan received the BS degree in
electrical engineering from Purdue University,
West Lafayette, Indiana, in 1990 and the MS
and PhD degrees in electrical engineering from
Columbia University, New York, in 1993 and
1997, respectively. From 1991 to 1997, he was
a member of the coordinated multimedia
explanation testbed (COMET) Research Group,
working on asynchronous transfer mode (ATM)
control and management. From 1997 to 2003,

he was a member of the technical staff at the Networking Research
Laboratory, Bell Laboratories, Lucent Technologies, Holmdel, New
Jersey. He is currently an assistant professor in the Department of
Computer Science, National University of Singapore. He has published
more than 40 technical papers and is the holder of four patents. His
current research interests include heterogeneous wireless networks
and sensor networking. He is a member of the ACM and the IEEE.

Ram Ramjee received the BTech degree in
computer science and engineering from the
Indian Institute of Technology, Madras, and the
MS and PhD degrees in computer science from
the University of Massachusetts, Amherst. He is
currently a senior researcher at Microsoft Re-
search, India. Prior to that, he was with Bell
Laboratories, Lucent Technologies, for 10 years,
where he was a distinguished member of the
technical staff and the technical manager of the

Wireless Network Elements Research Department, leading a group of
researchers examining architecture, protocol, and performance issues in
next-generation networks. He has also served as an adjunct faculty in
the Electrical Engineering Department, Columbia University, teaching
two graduate courses in wireless networks. He served as the technical
program cochair of ACM MobiCom 2006 and was a general cochair of
the Second Annual International Wireless Internet Conference (WICON
2006). He is currently an associate editor for the IEEE Transactions on
Networking. He has published mroe than 50 papers and is the holder of
13 patents. He is a fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 7, NO. 4, APRIL 2008

