
1

Cache-based Compaction:
A New Technique for Optimizing Web

Transfer
Mun Choon Chan Thomas Y.C. Woo
Networking Software Research Department

Bell Laboratories
fmunchoon,woog@research.bell-labs.com

Abstract—In this paper, we propose and study a new technique,
which we call cache-based compactionfor reducing the latency of
Web browsing over aslow link. Our compaction technique trades
computation for bandwidth. The key observation is that an object
can be coded in a highly compact form for transfer ifsimilar objects
that have been transferred earlier can be used asreferences.

The contributions of this paper are: (1) an efficientselectional-
gorithm for selecting similar objects as references, and (2) anen-
coding/decodingalgorithm that reduces the size of a Web object by
exploiting its similarities with the reference objects. We verify the
efficacy of our proposal through detailed experimental evaluations.
Our compaction technique significantly generalizes previous work
on optimizing Web transfer using compression or differencing, and
provides a systematic foundation that ties together caching, com-
pression and prefetching.

I. I NTRODUCTION

Despite the phenomenal growth of the Internet, the ad-
vance in the speed of access to the Internet has not caught
up. In particular, the majority oflast hopsare still using
traditional modem, with bandwidth up to only 56kbps.
Separately, the use of wireless channel as the last hop
is gaining popularity. Again, the raw bandwidth avail-
able on most wireless channels is low (e.g., 19.2kbps
for CDPD). The bandwidth can be further reduced by
multiple-access contention and protocol overhead. For
example, the effective application layer throughput of
CDPD is about 8kbps without contention. In a nutshell,
Web browsing behind slow (wireline or wireless) access
links will persist for years to come.

From an end user’s perspective, her primary measure
of browsing performance is response time or latency.
Strictly speaking, latency is an end-to-end quantity, which
consists of two main components, namely,processing de-
lay andtransport delay. The former refers to the process-
ing time incurred in the origin server and all the interme-
diate proxy cache servers (see Figure 1), while the latter
refers to the time spent in traversing all the interconnect-
ing links.

In this paper, we consider the case where the transport
delay is dominated by the delay incurred in the last hop.
Our objective is to reduce the overall latency by reducing

the transport delay, or specifically the last hop delay.

The key innovation behind our cache-based com-
paction technique is as follows. Instead of “coding” the
requested object on its own, a more compact encoding
is performed by leveraging other objects that are already
available in the client’s possession. In particular, if a
client already possess “similar” objects in its cache, then
those objects (calledreferenceobjects) is used as an ex-
tended “dictionary” based on which the newly requested
object may be coded. The more “similar” the reference
objects are to the requested object and the more such
“similar” reference objects are available in the client’s
possession, the smaller is the resulting transfer.

Our approach is a compression technique in that it uses
a dictionary-based compression technique. However, un-
like standard compression techniques such asgzip, a set
of “similar” objects, not just the requested object itself, is
used as the compression dictionary.

Our approach can also be viewed as a differential trans-
fer technique in that it compares objects, and transfers
mainly the differences. However, unlike existing differ-
ential transfer techniques, comparison is not restricted to
just objects from earlier versions. Our approach can po-
tentially leverage multiple objects (with completely dif-
ferent URLs) in the client’s cache.

To be accurate, our cache-based compaction idea repre-
sents a general approach rather than a specific algorithm.
At a high-level, it consists of two key components: (1)
a selectionalgorithm for choosing reference objects, and
(2) anencoding/decodingalgorithm that encode and de-
code a new object using a collection of reference objects.
A specific compaction technique is obtained by provid-
ing concrete implementations of the selection and encod-
ing/decoding algorithms.

In this paper, we examine an instantiation of the cache-
based compaction idea. It uses: (1) an efficient selection
heuristic based on the structure of URL as the selection al-
gorithm, and (2) agzip-like dictionary-based compression
scheme as the encoding/decoding algorithm. We demon-

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

2

origin
server level-n proxy

cache server

cache
level-1 proxy
cache server

cache

browser

cache.

proxy cache hierarchy

last
hop

Fig. 1. System Model

strate that this instantiation provides significant improve-
ment over existing techniques. We validate our ideas us-
ing both random sampling on different Web sites, as well
as actual user traces.

The balance of the paper is organized as follows. In the
next section, we review related work addressing similar
problems. In Section III, we provide a detailed descrip-
tion of the various algorithms in our compaction tech-
nique. In Section IV, we evaluate our proposal by pre-
senting extensive experimental results. Apart from its use
for optimizing Web transfer, the cache-based compaction
idea can also be viewed as a systematic foundation that
ties together the three most-used, yet completely decou-
pled, techniques — caching, compression, and prefetch-
ing — for improving Web browsing. Finally, we conclude
in Section V.

II. RELATED WORK

The major techniques used for optimizing Web transfer
are compression, caching, differencing and prefetching.

Compressioncan be divided into lossy and lossless.
Lossy compression is usually applied to graphical and au-
dio objects, and lossless compression is applied to text
and binary objects. The benefits of using lossless data
compression algorithms such as gzip (which is based on
LZ77 [15]) and vdelta [10] to compress non-video and
non-audio objects is studied in [12].

The use of data-specific technique for reducing object
size is described in [6]. Reduction was achieved by lossy
compression, for example by reducing resolution and/or
color of a graphics object. TheMowgli architecture [1]
uses compression and prefetching for reducing Web ac-
cess latency. The idea of content-type specific compres-
sion is similar to [6].

Caching is frequently used to improve the performance
of distributed systems. Caching algorithms search for
identical object. This topic has been studied extensively
in the literature, see for example [4], [5], [8] and [14].

Differencing compares an earlier version of an object
to the current version. Usually, only two objects of the
same URL or output of CGI script with different parame-
ters are considered. Some of the differencing algorithm
used are UNIXdiff and vdelta [10]. In [2], the issue
of what objects should be used in differencing was men-
tioned as an open question. This is a question which we
provide an answer to in this paper.

client
select

apply

decode encode

server
select

Client Side Server Side

data
control

existing
objects

requested
object

Fig. 2. System Overview

The benefits of delta coding is also studied in [12].
The authors found that differencing worked for 10% of all
“status 200” response at the proxy level. TheWebExpress
system described in [9] included a number of techniques,
the relevant ones being file caching and forms differenc-
ing. Object comparison was based on the object’s URL as
well as a digital signature of the object. Differencing was
applied mainly to output of CGI scripts.

In Prefetching, an object that might be needed in the
future is fetched in advance. The utility of prefetching is
studied in [13] using a statistical algorithm described in
[7]. The bounds of latency reduction from caching and
prefetching, based on search for objects with the same
URL, is studied in [11]. The authors found that caching
and prefetching could reduce latency by at best 26% and
57% respectively.

III. O UR CACHE-BASED COMPACTION TECHNIQUE

In the following, we first give an overview of our pro-
posed technique. Then in Sections III-B and III-C, we
present the specific algorithms we have used in this study.

A. Overview

We first provide a generic description of our technique.
Let C be a client andS a server.1 Let C contains a set
of objects denoted byC:cache, and thatC would like to
obtain a new objecto from S. Let S contains a set of
objects denoted byS:cache, whereo 2 S:cache.2

Instead of sendingo to C, S computes a new ob-
ject o0 using o and o1; : : : ; on wherefo1; : : : ; ong �

C:cache\S:cache, and sendso0 toC. We callo1; : : : ; on
thereferenceobjects. On receivingo0, C recoverso from
o0 ando1; : : : ; on. The computation ofo0 by S is the en-
coding step, while the reconstruction ofo by C is the de-
coding step. The algorithms used in the encoding and
decoding steps satisfy the following relationship:

o = decode(encode(o; o1; : : : ; on); o1; : : : ; on)

1
C andS can be any of the entities in the process chain shown in

Figure 1.C andS need not even be adjacent if some form of “tunneling”
is available. The most interesting case would be whenC is the browser
andS the first level proxy cache server.
2The requirement thato 2 S:cache is a simplification.S can fetcho

on demand if necessary.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

3

function encode (o; o1; o2; : : : ; on, threshold) f
i = 1;
o
0 = empty string;

while (o[i::] is non-empty)f
o0 = o[::i� 1];

(1) CS = f(`; j) j ` is a prefix ofo[i::] and
` occurs inoj ; 0 � j � ng;
if (CS = ;)

L = o[i];
else

(2) pick (L; k) 2 CS such that8(`; j) 2 CS : jLj � j`j;
if (jLj � threshold)

append too0 the character tokenL;
else

append too0 the triplet token
(k, starting position ofL in ok , jLj);

i = i+ jLj;
g

return o’;
g

Fig. 3. Encoding Algorithm

Whenn = 0, it reduces to essentially a compression
technique. Whenn = 1 ando1 is an earlier version ofo,
it reduces to previously studied delta encoding technique.
In other words, our compaction technique subsumes most
existing proposals and is most interesting whenn > 1
ando1; : : : ; on are not simply variations ofo.

In this paper, we use a dictionary-based compression
scheme as our encoding and decoding algorithms. Specif-
ically, we useso1; : : : ; on as “extended” dictionaries for
compression ofo. The objectso1; : : : ; on are determined
via a selectionalgorithm which tries to identify objects
that are “similar” too. The measure of similarity is the
number and length of common substrings.

Obviously, saving is possible with our compaction
technique if and only if

tselect+ tencode+ tdecode+
jo

0
j

s
<

joj

s

wherejoj denotes the size of an objecto ands is the bit
transfer rate on the link betweenC andS. A necessary
condition for this isjo0j < joj, and the absolute reduction
in latency is proportional to the size ofo and inversely
proportional tos. Hence, our compaction scheme will
make most sense when transferring Web responses in the
last hop, whereo is of reasonable size ands is typically
small.

The underlying observation is that dictionary-based
compression scheme (the most well known being the
LZ77 [15] and LZ78 [16] family) works because of the re-
currence of common sub-strings within a document. The
basic idea in our proposal is to exploit this notion ofsimi-
larity among multiple documents for reducing transfer. If
a number of similar documents have already been trans-
ferred from the web server to the client, transfer of the
next similar document can be done in an efficient manner.

function decode (o0
; o1; o2; : : : ; on) f

o = empty string;
while (o0 is non-empty)f

remove first tokent from o
0;

if (t is a character token)
appendt to o;

elsef
/* t must be a triplet token */
let t = (k; pos; l);
append too the substring inok starting at

positionpos of lengthl;
g

g

return o;
g

Fig. 4. Decoding Algorithm

B. Encoding and Decoding Algorithms

The encoding and decoding algorithms are based on the
universal compression algorithm described in [15].

The encoding algorithm is shown in Figure 3. An ob-
ject o is essentially viewed as a byte array, witho[i] de-
noting thei-th byte ofo (we start counting from 1),o[::i]
denoting the part ofo from the beginning up to and in-
cluding thei-th byte, ando[i::] denoting the part ofo be-
ginning ati-th byte ofo to the end.

The parameterthreshold should be set to at least
the encoded size of a triplet (whose size is at least 1) to
ensure that the size of the compressed result is smaller
than the original.

The steps (1) and (2) represent the searching of the
longest common substring between the part ofo currently
being processed and the part ofo that has been processed
(o0 specifically) together with then reference objectso1,
: : : , on. The more similar the reference objects are too,
the more common substrings there are, and the better is
the compression. This is the most time consuming part of
the encoding algorithm, and is implemented using hash
tables in our case.

In general, compression gets better with largern,
though the marginal improvement diminishes. The case
whenn = 0 is basically theLZ77algorithm. In that case,
an ordered pair token, instead of a triplet, is sufficient.

Decoding is straightforward and is comparatively much
faster. Its detail is shown in Figure 4, and should be self-
explanatory.

It should be clear that the above encoding algorithm is
lossless. Though it works for any objects, it is most appli-
cable to text (e.g., plain ascii, HTML) objects. For graphi-
cal objects that are already in compressed form (e.g., GIF,
JPEG), the amount of non-trivial similarity among objects
is minimal. Lossy compression techniques can drastically
reduce the size of a graphical object while retaining most
of its “visible” quality. Thus in the sequel, we consider
the use of compaction on text objects only.

We defer to Section IV to provide the performance

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

4

numbers for the above encoding and decoding proce-
dures.

C. Selection Algorithm

In order to obtain good compression result, the selec-
tion algorithm needs to be able to pick a set of reference
objects that are similar to the requested object. While ex-
amining the content of the objects is the only sure way
of deciding if they are similar, this process is too com-
putationally expensive, especially when the collection of
objects is large (e.g., all the objects in a cache). Therefore,
we are left with using heuristics based on other attributes
of the objects.

A natural choice for selection parameter is the name
or the Uniform Resource Locator (URL) of the object.
Generally, the URL does not tell much about an object’s
content. We argue though that the structure of a URL may
provide good enough hints.

By treating URL as path name, a collection of objects
can be viewed as leaves in a forest, with all objects from
the same site represented in a distinct tree. We observe
that a large majority of sites tend to follow a consistent
design style, which translates into the use of similar struc-
ture and formating instructions. Additionally, the hierar-
chy is often structured in terms of related topics, and ob-
jects pertaining to similar topics tend to share common
content.

In summary, we conjecture that Web documents that
are “close” together in the hierarchy formed by their
URLs tend to be more similar than those that are “far
apart.” A degenerate case of this is used in the differenc-
ing scheme described in [2], [9], [12], where an older ver-
sion of a document with the same URL is used to compute
the delta for transferring a newer version of the document.

To precisely specify our heuristics, we first introduce
some notations.

Notations. Let u andu0 be two URLs.3 They are writ-
ten respectively ash=p1=p2= : : : =pn andh0=q1=q2= : : : =qm.
Each of theh; h0; pi andqi is called asegment. Thelength
of an URL is defined as the number of segments in the
URL. Thus,juj = n+ 1. We define anenumeratorfunc-
tion [�] for URL as follows:u[0] = h, and for1 � i � n,
u[i] = pi. Additionally,u[i::j] is the pathu[i]= : : : =u[j]
p is aprefixof u if for all 0 � i � jpj, p[i] = u[i]. p is
a common prefixof u andu0 if p is a prefix of bothu and
u0. 2

We define thepath similaritybetween two URLsu and
u0 as path-sim(u; u0) be the length of the longest com-
mon prefix ofu andu0 and theirpath differenceaspath-
diff (u; u0) = juj + ju0j - 2 * path-sim(u; u0)

3Since we consider only HTTP URLs, for ease of our disposition, we
assume the protocol part has been omitted.

path-sim(u,u’)

path-diff(u,u’)

u

u’

Fig. 5. Path Similarity and Path Difference

These definitions are graphically illustrated in Figure 5.
As an example, the URLshttp://www.cnn.com/US/news/abc

and http://www.cnn.com/US/def have a path similarity of 2
and a path difference of 3.

When the path similarity is 0, it means that the two
URLs refer to objects from different Web sites. When
path similarity is at least 1, the path difference indicates
the number of “hops” it takes to go from one URL to the
other in the tree hierarchy. In particular, if the path differ-
ence is 2, it means that the two URLs belong to the same
directory.

With the above, we are now ready define a similarity
relationship. Given a URLu, thesimilarity orderingrel-
ative tou, denoted bywu, is defined as follows:

path-sim(u; u1) � path-sim(u; u2)

u1 wu u2 iff and

path-diff(u; u1) � path-diff(u; u2)

This essentially says that a URLu1 is considered more
similar to URL u than another URLu2 if u andu1 share
a longer common prefix and it takes fewer hops to go from
u to u1 than fromu to u2. In other words,u andu1 share
more common path and fewer disjoint hops. It is easy to
see thatwu is a partial ordering.

A precise selection policy requires a total ordering.
Thus, we extendwu to a total orderingwt

u
as follows.

If u1 is related tou2 underwu, then they are related in
the same way underwt

u
. Otherwise,u1 wt

u
u2 iff path-

diff (u; u1) is at mostpath-diff(u; u2). Clearly, there are
multiple ways to extend a partial ordering to a total or-
dering. This particular definition gives priority to the path
difference, and is the one studied in this paper.

Oncewt

u
is defined, the selection algorithm is straight-

forward. It basically will select the topn most similar
URLs from all the URLs available for selection. The
pseudo code for the selection algorithm is given in Fig-
ure 6. We note thatC is the set of URLs that are avail-
able for selection,4 andn is the maximum number of most
similar URLs needed. In summary, the selection heuristic

4This is typically a subset of the cache.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

5

function select (u;C; n) f
/* filter out objects from different sites */

(1) C = C � fu
0
2 C j path-sim(u; u0) = 0g;

S = ;;
while (jSj < min(n; jCj)) f

T = subset ofC � S with minimum path
difference withu;
S = S + subset ofT with maximum path
similarity with u;

g

return S;
g

Fig. 6. Selection Algorithm

tries to minimize the path difference, while maximizing
the path similarity. The filtering step (step (1)) removes
all the URLs that do not belong to the same site asu.

IV. EXPERIMENTAL RESULTS

In this section, we present the results of our experimen-
tal evaluation of our proposed compaction technique. Our
experiments are broken down into 3 sets, each of which is
intended to establish a distinct claim.

Set 1.In the first set of experiments (Section IV-A), we
examine if the similarity orderingwt

u
introduced in Sec-

tion III-C (or equivalently the selection algorithm shown
in Figure 6) does actually pick out “good” reference ob-
jects that are useful in the encoding procedure (Figure 3).
In other words, we would like to verify our conjecture that
similarity in URL implies certain degree of similarity in
their content.

For comparison purposes, we perform the same experi-
ments with a standard compression scheme, namely,gzip
[12], and a standard differencing scheme, namely,diff -e
j gzip(abbreviated asdiff in the sequel) [2], [9], [12].5

Set 2.From experiments in Set 1, we demonstrate that
objects high in the similarity ordering serves better as ref-
erence objects than those low in the similarity ordering.
The remaining question to ask is, in a real-life browsing
session, how “high” in the similarity ordering can the se-
lection algorithm typically find objects at. In order words,
we study the actual distribution of path difference and
path similarity in a typical browsing session.

We perform this set of experiments (Section IV-B) us-
ing actual client-side access log. Our objective is to
demonstrate that typical browsing patterns of actual users
contain sufficient locality such that reference objects with
high content similarity (as defined by the similarity order-
ing) are frequently available in the client cache, and hence
can be selected.

5gzip is like compaction withn = 0, but with a number of additional
optimizations.diff is like compaction withn = 1. Strictly speaking, the
differencing schemes that have been proposed and studied apply only to
objects with the same URL. We relax this for our comparison.

Section mean� mean� Selected subset of

IV-A.1 0 � 1 traces from periodic downloading
IV-A.2 2 � 1 traces from CGI output
IV-A.3 2 � 1 random selection from Web sites
IV-A.4 > 2 � 1 random selection from Web sites
IV-A.5 � 0 � 0 random selection from Web sites

Fig. 7. Summary of Experiments Performed

Set 3. Finally, in the last set of experiments (Sec-
tion IV-C), we “follow” real user access trace to perform
actual downloading of Web objects using compaction. We
compute the actual savings and compare that with the re-
sults of identical downloading undergzip and diff. We
also compute and compare the average latency incurred
by compaction,gzip and diff under various link band-
width.

In the following, we refer to our compaction scheme
asnpact(n), wheren is the number of reference objects
used. While we have experimented with many differ-
ent values ofn, all experiments presented below usedn
= 3. This value is selected because the performance of
npact(3) is noticeably better thannpact(1), whilenpact(7)
is only slightly better thannpact(3). Furthermore, be-
cause of the length limitation, we can only present results
from selected sites and Web traces.

A. Set 1: Usefulness of Similarity Ordering

We like to study the performance ofnpactwhen refer-
ence objects of different path differences and similarities
are used. Different groups of experiments are performed,
they are broken down by path differences and path simi-
larities (see Figure 7 for a summary). To precisely state
our results, we first introduce some notations.

Notations. Let
 be a set of objects available for se-
lection, andfu1; : : : ; ung �
. Let

path-sim(u; fu1; : : : ; ung) =
P

n

i=1
path-sim(u; ui)

path-diff(u; fu1; : : : ; ung) =
P

n

i=1
path-diff(u; ui)

Define the set�
(�; �) = f(u; u1; : : : ; un) �
 j path-
diff (u; fu1; : : : ; ung) = � and path-sim(u; fu1; : : :
; ung) = �g

20 Web sites were used in the experiments6. 6 of these
sites were ranked in the top 25 most visited sites, and 14
were ranked in the top 500 sites.7 The rest of the sites
were chosen to include various categories. The category

6www.abcnews.com (news) www.aol.com (information)
www.bofa.com (commercial) www.cisco.com (commer-
cial) www.cnet.com (techncial) www.columbia.edu (aca-
demic) www.edmund.com (commercial) sportszone.espn.com
(news) www.fcc.org (government) www.ibm.com (commercial)
www.javasoft.com (technical) www.lucent.com (commercial)
www.microsoft.com (commercial) www.netscape.com (commer-
cial) www.nycvisit.com (information) www.techweb.com (techni-
cal) www.tripod.com (information) www.umass.edu (academic)
www.usatoday.com (news) www.ustreas.gov (government)
7Source: MediaMetix (www.mediametix.com)

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60 70

C
om

pr
es

se
d

F
ile

 S
iz

e
R

at
io

HTML File

gzip
diff + gzip

npact(3)

Fig. 8. Different Versions ofhttp://www.abcnews.com/index.html

breakdown is 3 news sites, 3 information sites, 7 commer-
cial sites, 3 technical sites, 2 academic sites and 2 govern-
ment sites. For the files collected, all binary, graphics and
audio files were removed. Also, only files with size be-
tween 1K and 64K were considered.

The experiments in this set operate as follows: For each
site studied, we first pick a random object from the site.
Then we try to simulate the transfer of the chosen ob-
ject using compaction by selectingn other objects (from
same or different sites) to be used as reference objects.
We compute the size of the encoded object, and tally this
by path difference and path similarity values.

A.1 Objects with same URL (mean� = 0, mean� � 1)

For brevity, we present our results only for a rep-
resentative site,www.abcnews.com. In this experiment,
we collected objects from the Web sitewww.abcnews.com

every hour, over a period of 5 days (from the May
23 1998 to May 28 1998). Different versions of ob-
jects with the same URL were grouped together and
sorted in chronological order. For each sequence of ob-
jects, we applygzip, diff (between the current and the
last version), andnpact (the 3 most recent versions)
to determine the size of transfer. While comparisons
were performed for a number of URLs, only the URL
http://www.abcnews.com/index.html, which generated a total
of 69 different objects, will be described here. Other
URLs exhibit similar trends.

Figure 8 shows the ratio of the encoded and original
size for all 69 objects.

The results show that for objects with same URL,
which tend to have similar content,diff and npact per-
formed much better thangzip. In addition, Figure 8(b)
shows thatnpact is better in capturing similarity among
less similar objects. For the set of objects selected every
hour, the mean compression ratios are 0.2772 forgzip,
0.0358 fordiff and 0.02718 fornpact. When the set of
objects is selected every 4 hour, the mean compression
ratios are 0.2768 forgzip, 0.0703 fordiff and 0.0473 for
npact.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 2 4 6 8 10 12 14 16

C
om

pr
es

se
d

F
ile

 S
iz

e
R

at
io

HTML File

gzip
diff + gzip

npact(3)

Fig. 9. Response fromwww.altavista.digital.com

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

2 4 6 8 10 12 14 16 18 20

C
om

pr
es

se
d

F
ile

 S
iz

e
/ O

rig
in

al
 F

ile
 S

iz
e

Web Sites

gzip
diff

npact(3)

Fig. 10. Objects from the Same Directory

A.2 Objects from CGI scripts with different parameters
(mean� = 2, mean� � 1)

We submitted a number of queries to the search engine
www.altavista.digital.com with different query strings. Fig-
ure 9 shows the output for 16 pages, the first 8 pages are
for the query stringjavaand the next 8 pages for the query
stringnetwork.

The results show that bothdiff andnpactperform very
well (mean compression ratio of 15%), whilegzip per-
forms much poorer (mean compression ration of 30%).
An interesting observation was that there was no signif-
icant difference in result when responses from different
query strings were used for referencing. This implied that
most of the similarity came from formating. Similar re-
sults were also obtained from requests to the electronic
site likewww.amazon.com.

In general, HTML pages that are being updated contin-
uously (stock quote, sports scoreboard, newspaper head-
lines, weather, movie showtimes, etc.) can be transferred
very efficiently undernpact.

A.3 Objects from the same directory (mean� = 2, mean
� � 1)

For each of the 20 Web sites, the objects collected
were filtered such that only objects in directories with
4 or more objects were extracted. After this fil-
tering, the minimum number of objects left per site

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

7

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

2 4 6 8 10 12 14 16 18 20

C
om

pr
es

se
d

F
ile

 S
iz

e
/ O

rig
in

al
 F

ile
 S

iz
e

Web Sites

gzip
diff

npact(3)

Fig. 11. Objects from the Same Site

was 61 (www.columbia.edu), maximum was 3,964
(sportszone.espn.com) and the average was 1,110.

The mean compression ratio for each Web site is plot-
ted in Figure 11.

For all 20 Web sites,npactperforms better thangzip
on the average. Of the 20 sites,npactperforms more than
50% better for 6 sites,10% to 50% better for 13 sites, and
10% better or less for only 1 site. The performance ofdiff
tracked that ofnpact, though not in all cases. In 3 out of
20 sites,diff performed worse than evengzip. The mean
compression ratios over all 20 site were 0.2012 fornpact,
0.2419 fordiff, and 0.3242 forgzip.

A.4 Objects from the same Web site but different direc-
tories (mean� > 2, mean� � 1)

In our experiments, the minimum, maximum, and av-
erage number of files per site was 250 (www.nycvisit.com),
5,550 (sportszone.espn.com), and 1,594.

Figure 11 shows the mean compression ratio for each of
20 sites. As expected, the results show that objects chosen
randomly from the same Web site had a smaller amount
of similarity. Nevertheless, out of the 20 sites, relative to
gzip, npactperformed 50% better in 2 sites, 10% to 50%
better in 12 sites, less than 10% better in 6 sites.

In 3 sites though,npact performed worse thangzip.
Two of them were academic sites and the third was a
government site. Both academic sites contained a large
number of objects from different departments and (prob-
ably) prepared by different people, with little common
in style and formating. The government site contained
a large number of plain text file with very minimum for-
matting. Since the current implementation ofnpactper-
formed worse thangzip if used purely as a compression
scheme,npactthus performed worse in these cases.

Note that when objects are very different, the mean
compression ratios ofgzipanddiff will be very close be-
causediff will simply output the requested object plus
some overhead. Therefore, the observation that the mean
compression ratios ofgzip anddiff were approximately
the same for these 3 sites provides further evidence that

the reference objects share little similarity with the re-
quested object.

Over all 20 sites, the mean compression ratios were
0.2726 fornpact, 0.3013 fordiff and 0.3317 forgzip.

A.5 Objects from different Web sites (mean� > 0, mean
� > 0)

In this case,npactdid not perform as well as bothgzip
anddiff. The mean compression ratios were 0.3145 for
both gzip anddiff, and 0.3455 fornpact. This confirms
that similarity among randomly selected objects is low.

A.6 Compression Ratio with respect to� and�

The previous experiments showed thatnpact per-
formed well on the average for specific ranges of� and
� values. Due to space limitations, we cannot include the
measurement plots. Instead, we will highlight observa-
tions drawn from these experiments.

1. The use of� and� as selection parameters correctly
selected objects withsimilar contents for the case of small
� and large�. For example, choosing reference objects
from the same directory generated encoded objects that
were smaller thangzipconsistently (on the average) for all
sites studied. Therefore, the conjecture that “closeness”
of URLs implies similarity in content was true for the case
of small� and large�, but not true for large� and small
�.
2. The parameter� was better in predicting good perfor-
mance for small�, as in the case of� = 0 (same URL) and
� = 2 (same directory). However, for larger values,� may
be a better indicator of good performance than�.
3. While the compression is good for small� and large�,
it shows no clear trend when only one of the dimensions
(� or �) is varied.

B. Set 2: Distribution of Similarity Ordering in Actual
Traces

Results from Section IV-A show thatnpactperformed
significantly better thangzipanddiff if objects with high
similarity ordering are used as references. The objective
of this section is to show that in an actual user browsing
session, our proposed selection algorithm is able to pick
up reference objects with high similarity ordering most of
the time.

To verify our claim, we made use of an actual user
trace. We had two requirements for the trace. First, the
requested URL must be retained in the trace in order to
compute� and�. Second, the trace should record the
behavior of the actual client making the request so that
per-client statistics could be collected. The first require-
ment ruled out the use of most publicly available HTTP
logs (e.g., UC Berkeley Home IP Web Traces8 and Dig-

8http://www.cs.berkeley.edu/�gribble/traces/index.html

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

8

0

6

12

18

24

0

4

812

16

20
24

0

2

4

6

8

10

12

%.
Distribution

Path DifferencePath Similarity

Fig. 12. Distribution of Path Difference and Path Similarity in Boston
University Trace usingw = 64

ital’s Web Proxy Trace9) because the URLs had been
anonymized for privacy reason. The second requirement
ruled out the NLANR10 cache access logs because the log
entries were highly aggregated. With these limitations,
we can only find an older log from Boston University [3]
which satisfied our requirements.

The Boston University trace contains 762 unique users,
and after removing URLs with extensions that indicated
that they may be non-HTML or non-text objects (e.g.,
those with extension gif, jpeg etc.), 197,004 URLs were
left. The maximum number of URLs per user is 4,412
and the minimum number of accesses per user is 16. 448
users have 100 or more URLs accesses. For each user’s
access log, we used the selection algorithm to selectn ref-
erence objects, whose aggregate path differences and path
similarities are recorded as a (�; �) tuple. To simulate the
effect of caching, we used a moving window size ofw,
wherew represents the cache size.

Figure 12 shows the density function of the (�; �) tuples
for the case ofw = 64. Of all the requests, 78% found 3
or more URLs from the same site. Among these requests,
37.7% found 3 or more URLs with� = 0 (same name),
76.7% had� � 6 , and 90.7% had� � 10. Whenw is in-
creased to 1024, the improvement only improves slightly.

The distribution of(�; �) was heavily concentrated in
the regions of� � 10 and 80% of the tuples had� � 6
(i.e., mean� = 2). Earlier results (Section IV-A) demon-
strated that the region with mean� = 2 corresponds to
region of high object similarity. With� = 6, the 3 ref-
erence objects must either be all from the same directory
(Section IV-A.3) or have at least one object with the same
name (Section IV-A.1). From the results of Section IV-A,
the first case has a 38% improvement overgzipand 17%
improvement overdiff, while the second case can have a
90% improvement overgzipand a 23% improvement over
diff.

In summary, the distribution of (�; �) in this trace con-
tains a significant amount of reference locality such that

9ftp://ftp.digital.com/pub/DEC/traces/webtraces.html
10http://ircache.nlanr.net

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70

np
ac

t F
ile

 S
iz

e
/ g

zi
p

F
ile

 S
iz

e

Users

npact/gzip

Fig. 13. Performance ofnpactusing traces fromwww.bell-labs.com

our selection heuristics can find highly similar URLs. In
fact, at least 80% of the accesses would benefit from the
use ofnpact.

C. Set 3: Performance ofnpactbased on Actual Traces

C.1 Object transfer size reduction

In the final set of experiments, we compute the ac-
tual amount of savings usingnpactby performingnpact
(i.e., selection, encoding and decoding) for actual access
traces. The Boston University trace we used in Sec-
tion IV-B could not be used here because the age (3 years
old) of the logs meant that many of the URLs were out-
dated, and could no longer be fetched.

What we chose to do instead was to take a specific
multi-day server log, divide it into per-user access traces,
performnpactfor each such trace, and compute the mean
compression ratio. In the following, we presented our re-
sults based on the sitewww.bell-labs.com, where we had ac-
cess to the detailed server log.

Specifically, we obtained the server log ofwww.bell-

labs.com for 7 days from June 20 1998 to June 26 1998.
In this log, we were able to extract 3,296 user access trace
(based on unique IP addresses) that we “followed” using
npact, gzipanddiff.

Figure 13 plots the performance ofnpact relative to
gzip. Logs were ordered by their number of access. Fig-
ure 13 shows the ratio for the first 70 users with the
most number of accesses and Among the remaining 3,226
users, 2,831 out of 3,297 users had ratios smaller than 1
(npactoutperformsgzip), and 69 out of first 70 users had
ratio smaller than 1. The average ratio ofnpactovergzip
for all 3,279 users was 0.6693.

In summary, 86% of all users would benefit from the
use ofnpact. The larger the number of accesses, the more
likely that npactwould perform better. It can also be ob-
served from Figure 13(b) that substantial savings were
possible even for users with very few accesses.

The comparison withdiff is similar. The performance
of npact relative todiff for all users was 0.8170 on the
average.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

9

n = 0 n = 1 n = 3 n = 7
tselect(ms) 0.00 0.17 0.20 0.23
encode (kbyte/s) 900 722 380 176
decode (kbyte/s) 2,830 6,011 6,255 6,750

Fig. 14. Select/Encode/Decode Processing Times

-1

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9

Lo
g2

(L
at

en
cy

 (
m

s)
 o

f T
ra

ns
m

itt
in

g
1

K
b

)

Log2(Link Bandwidth (Kbps))

No Compression
npact

gzip
diff + gzip

Fig. 15. Transfer Time (in ms/kbyte) vs. Effective Link Bandwidth (in
kbyte/s)

C.2 Latency reduction

Latency reduction is achieved in our scheme iftselect+
tencode+ tdecode+

jo
0
j

s
<

joj

s

In order to quantify the reduction in latency, the selec-
tion, encoding and decoding speed ofnpact, gzipanddiff
were measured. Figure 14 shows the average execution
time of thenpactwith respect ton, averaging over 1,000
files. The measurements were done on a SUN Ultra2. The
compression speed ofgzipis 2,545 kbyte/s andgunzipde-
compresses at 12,270 kbyte/s. The encoding speed ofdiff
-e is 961 kbyte/s.

To ease the comparison in latency, we normalize all the
values to the inverse of rate (measured in ms/kbyte). The
normalized transfer time,Tnor (ms/kb) is defined asTnor
= tencode-nor+ tdecode-nor+

jo
0
j

s
� 1

joj
. (Selection time is neg-

ligible).
Figure 15 shows the values ofTTimefor various algo-

rithms for effective link bandwidth (s) from 1 kbps to 512
kbps. The base case of plain transfer without compression
is included for comparison. Despite its higher processing
overhead, the normalized latency incurred by usingnpact
is the lowest among all 4 curves tills reaches 256kbps.
This can be attributed to the higher compression achieved
by npact. Beyond that,gzip performs the best due to its
low overhead. Fors > 8096 kbps, plain transfer incurs
the smallest latency.

V. CONCLUSION

We presented a technique which we callcache-based
compactionfor reducing the size (optimizing the latency)
of Web transfer. The two key ideas behind our technique
is: (1) an efficient selection heuristic, and (2) the use
of an extended dictionary (specifically the client cache)

for compression. Our compaction technique significantly
generalizes previous work on optimizing Web transfer us-
ing compression or differencing.

Through experiments, we observe that our compaction
technique provides significant improvement over previ-
ously proposed techniques for real-life user accesses.

The technique of compaction can be applied to other
domains in addition to Web browsing. For example, we
believe it is also applicable to electronic mail, and can po-
tentially be a part of a generic wireless middleware layer.

REFERENCES

[1] Timo Alanko, Markku Kojo, Mika Liljeberg, and Kimmo
Raatikainen. Mowgli: Improvements for internet applications us-
ing slow wireless links. InProceedings of PIMRC, pages 1038–
1042, Helsinki, Sep 1997. IEEE.

[2] Gaurav Banga, Fred Douglis, and Micheal Rabinovich. Optimistic
deltas for www latency reduction.USENIX, 1997.

[3] Carlos R. Cunha, Azer Bestavros, and Mark E. Crovella. Char-
acteristics of www client-based traces. Technical Report BU-CS-
95-010, Department of Computer Science, Boston University, July
1995.

[4] Adam Dingle and Tomas Partl. Web cache coherence.Fifth Inter-
national World Wide Web Conference, May 1997.

[5] Bradley M. Duska, David Marwood, and Micheal J. Feeley. The
measured access characteristics of world-wide-web client proxy
caches. USENIX Symposium on Internet Technologies and Sys-
tems, Dec 1997.

[6] Armando Fox and Eric Brewer. Reducing www latency and band-
width requirements by real-time distillation. InFifth International
World Wide Web Conference, May 1996.

[7] James Griggioen and Randy Appleton. The design, implementa-
tion, and evaluation of a predictive caching file system. Technical
Report CS-264-96, Department of Computer Science, University
of Kentucky, Lexington, KY, June 1996.

[8] James Gwertzman and Margo Seltzer. World-wide web cache con-
sistency.Proceedings of the USENIX Technical Conference, 1996.

[9] Barron C. Housel and David B. Lindquist. Webexpress: A sys-
tem for optimizing web browsing in a wireless environment.Pro-
ceedings of the Second Annual International Conference on Mo-
bile Computing and Networking, pages 108–116, Nov 1996.

[10] James J. Hunt, Kiem-Phong Vo, and Walter F. Tichy. Delta al-
gorithms: an empirical analysis.ACM Transactions on software
Engineering and Methodlogy, 7(2):192–214, Apr 1998.

[11] Thomas M. Kroeger, Darrell D.E. Long, and Jeffrey C. Mogul.
Exploring the bounds of web latency reduction from caching and
prefetching. USENIX Symposium on Internet Technologies and
Systems, DEC 1997.

[12] Jeffery C. Mogul, Fred Douglis, Anja Feldmann, and Balachander
Krishnamurthy. Potential benefits of delta encoding and data com-
pression for http. InProceedings of the ACM SIGCOMM, pages
181–194, 1997.

[13] Venkata N. Padmanabhan and Jeffery C. Mogul. Using predic-
tive prefetching to improve world wide web latency. InComputer
Communication Review. ACM, July 1996.

[14] Duane Wessels and K. Claffy. ICP and the Squid Web Cache.
IEEE Journal on Selected Areas in Communication, 16(3):345–
357, April 1998.

[15] Jacob Ziv and Abraham Lempel. A universal algorithm for se-
quential data compression.IEEE Transaction of Information The-
ory, IT–23(3):337–343, May 1977.

[16] Jacob Ziv and Abraham Lempel. Compression of individual se-
quences via variable-rate coding.IEEE Transaction of Information
Theory, IT–24(3):530–536, Sep 1978.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

