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Abstract. We propose a unified logical framework for specifying and proving
both termination and non-termination of various programs. Our framework is
based on a resource logic which captures both upper and lower bounds on re-
sources used by the programs. By an abstraction, we evolve this resource logic
for execution length into a temporal logic with three predicates to reason about
termination, non-termination or unknown. We introduce a new logical entailment
system for temporal constraints and show how Hoare logic can be seamlessly
used to prove termination and non-termination in our unified framework. Though
this paper’s focus is on the formal foundations for a new unified framework, we
also report on the usability and practicality of our approach by specifying and ver-
ifying both termination and non-termination properties for about 300 programs,
collected from a variety of sources. This adds a modest 5-10% verification over-
head when compared to underlying partial-correctness verification system.

1 Introduction

Termination proving is an important part of correctness proofs for software systems as
“so-called partial correctness is inadequate: if a program is intended to terminate, that
fact must be part of its specification.” – Cliff Jones [28]. Thus, total correctness proofs,
denoted by the Hoare triple [P ]c[Q], require the code fragment c to be shown terminat-
ing in addition to meeting the postconditionQ after execution. The termination of a loop
or a recursive method is usually proven by a well-founded termination measure given
to the specification. However, such a measure is not a component of the logical formu-
las for pre/post specifications. A reason for this distinction is that specification logic
typically describes program states, while the termination proofs are concerned with the
existence of well-founded measures to bound the execution length of loops/recursions,
as argued by Hehner in [25]. Due to this distinction, we cannot automatically leverage
richer logics that have been developed for safety properties to conduct more intricate
termination and non-termination reasoning.

For illustration, let us use the Shuffle problem proposed in the Java Bytecode Recur-
sive category of the annual Termination Competition [34]. In this problem, an acyclic
linked list is shuffled by the shuffle method together with the auxiliary reverse

method, whose source code is shown in Fig. 1. To prove that shuffle terminates, we



public static List shuffle(List xs) {
if (xs == null) return null;
else {
List next = xs.next;
return new List(xs.value,

shuffle(reverse(next)));
}
}

public static List reverse(final List l) {
if (l == null || l.next == null)
return l;

final List nextItem = l.next;
final List reverseRest =

reverse(nextItem);
l.next = null; nextItem.next = l;
return reverseRest; }

Fig. 1. The Shuffle problem from the Termination Competition

need to firstly show that reverse also terminates. While the termination of reverse
can be easily proved by current approaches, such as [31,8,12], proving shuffle ter-
minates is harder because it requires a functional correctness related fact: the reverse
method does not change the length of the list. Based on this fact, it is possible to show
that the linked list’s length is also decreasing across the recursive method call shuffle;
as a result, the method always terminates.

Therefore, without an integration of termination specification into logics for func-
tional correctness, such as separation logic [37], the termination of shuffle is hardly
specified and proved by verification systems based on the traditional Hoare logic for
total correctness. Note that automated termination provers, such as AProVE [21] and
COSTA [3], are not able to show that shuffle terminates, even after applying a nu-
meric abstraction on the size property to shuffle [33], due to the lack of information
flow between the correctness and the termination arguments. We believe that relatively
complex problems, such as Shuffle, highlight the need of a more expressive logic with
the ability of integration into various safety logics for termination reasoning.

Moreover, if the termination proof fails, e.g., when the input list of shuffle is
cyclic, the program will be implicitly assumed to be possibly non-terminating. That is,
definite non-termination is neither explicitly stated nor proven by Hoare logic. Explicitly
proving non-termination has two benefits. First, it allows more comprehensive specifi-
cations to be developed for better program understanding. Second, it allows a clearer
distinction between expected non-termination (e.g., reactive systems where loops are
designed to be infinite) and failure of termination proofs, paving the way for focusing
on real non-termination bugs that minimize on false positives.

Some specification languages, such as Dafny [32], ACSL [7] and JML [30], allow
the specification of possible non-termination but their verifiers provide limited support
for this feature. For example, the Dafny verifier only allows this specification on loops
or tail-recursive methods1 while Frama-C [16] for ACSL has not implemented it. On the
other hand, we can use the false postcondition, which indicates that the method’s exit
is unreachable, to specify definite non-termination. However, such postcondition for
partial correctness is not preferred as it is usually considered too strong for functional
properties and distinct from termination proofs. This distinction has been designed into
Dafny, Frama-C and KeY with JML [2], that makes the tools fail to take into account

1 http://www.rise4fun.com/Dafny/PnRX
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non-terminating behavior when proving termination. For example, Dafny succeeds in
proving the termination of a recursive method2 though this method contains a call to
a non-terminating method.3 In fact, for termination proofs, these tools simply check
that there is a finite number of recursive calls to the analyzed methods, rather than the
methods’ termination per se.

Our proposal. We propose integrating both termination and non-termination require-
ments directly into the specification logic for functional properties. Our work follows
Hoare and He [26] and Hehner [24], in which the termination is reasoned together with
partial correctness proof. In [24], the program is instrumented with a time variable t
and the termination is proven by a finite bound on the exact execution time t′−t, where
t, t′ are the initial, resp. final time. In [26], a special ghost variable ok is used to signify
termination. However, these approaches presently do not handle non-termination.

As a formal foundation to unify termination and non-termination reasoning and
integrate them into functional correctness proofs, we introduce a new resource logic
which captures the concept of resource capacity; tracking both minimum and maximum
amounts of resources used by some given code. Our logic uses a primitive predicate
RC〈l, u〉 with invariant 0≤l≤u to capture a semantic notion of resource capacity (l, u)
with the lower bound l and the upper bound u. Through this resource logic, we can
specify a variety of complexity-related properties, including the notions of termination
and non-termination, by tracking the number of calls (and loop iterations) executed by
the given code. Termination is denoted by the presence of a finite upper bound, while
non-termination is denoted an infinite lower bound on the execution length.

To support a more effective mechanism, we shall derive a simpler temporal logic
from the richer resource logic itself. We define three temporal predicates, Term M ,
Loop and MayLoop, where M is a well-founded termination measure, and associate
them with each method in a given program to denote the termination, definite non-
termination and possible non-termination of these methods, respectively. In terms of re-
source reasoning, these predicates represent RC〈0, embed(M)〉, RC〈∞,∞〉 and RC〈0,∞〉,
respectively, where embed(M) is a finite bound obtained through an order-embedding
of M into naturals. Using the enriched specification logic, functional correctness, ter-
mination and non-termination of methods can be verified under a single modular frame-
work. With this unification, the predicate TermM denotes exactly definite termination,
instead of just denoting the bound on the number of loop iterations or method recursions
like the termination measures used in the traditional Hoare logic for total correctness.

Our research contributions can be summarized as follows:

− A new resource logic that can capture lower and upper bounds on resource usage
via the concept of resource capacity, together with an entailment procedure to sup-
port correctness proofs with resource-related properties. (Sec. 3)

− A temporal logic that is abstracted from the resource logic to reason about both
program termination and non-termination. We introduce three new temporal con-
straints, its entailment and Hoare rules lifted from the resource logic. (Sec. 4)

2 http://www.rise4fun.com/Dafny/6FuR
3 The example in ACSL and JML are at http://loris-7.ddns.comp.nus.edu.sg/∼project/hiptnt/others.zip
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pred isEvenNat(int n) ≡ n≥0 ∧ ∃m · n = 2∗m;
int sumE (int n)
requiresisEvenNat(n) ∧ Term[n] ∨

¬isEvenNat(n) ∧ Loop

ensures true;
{ if (n==0) return 0;
else return n+ sumE(n−2); }

while (x>y)
requires

x≤y ∧ Term[] ∨
x>y ∧ x<0 ∧ Loop ∨
x>y ∧ x≥0 ∧ MayLoop

ensures x′≤y′;
{ y=x+y; x=x−1; }

(a) (b)

Fig. 2. Examples on numerical programs

− A successful integration of both resource and temporal logics into a separation
logic based verifier [36]. The new temporal logic is expressive enough to specify
and successfully verify the (non-)termination behaviors for about 300 benchmark
programs collected from a variety of sources, including the SIR/Siemens test suite
[18] and problems from the Termination Competition (Sec. 5). The prototype im-
plementation and benchmark are available for online use and download at:

http://loris-7.ddns.comp.nus.edu.sg/∼project/hiptnt/

2 From Resource to Temporal Logic

We introduce a general resource predicate RC〈l, u〉 where l is a lower bound and u is an
upper bound on resource capacity, with invariant 0≤l≤u. This resource predicate can be
specialized to execution capacity to capture a variety of complexity-related properties,
via lower and upper bounds on the total number of method calls during the execution of
a given piece of code. We shall give an instrumented semantics for this specific resource
logic, and also specialize it for reasoning about termination and non-termination. To
prove termination, we simply use the predicate RC〈0, u〉 where u is some finite value,
namely u<∞. To prove non-termination, we can use the predicate RC〈∞,∞〉 which
signifies an infinite lower bound. Lastly, if we cannot prove either termination or non-
termination, we use the predicate RC〈0,∞〉 which covers all possibilities.

The resource logic we have outlined is quite expressive, and could moreover be spe-
cialized for reasoning on just termination and non-termination with the direct handling
of infinity ∞ value. In order to design a simpler logic, we introduce a temporal logic
with three distinct predicates, as follows: (i) TermM to denote RC〈0, embed(M)〉, (ii)
Loop to denote RC〈∞,∞〉 and (iii) MayLoop to denote RC〈0,∞〉. Such a temporal logic
is considerably simpler than the more expressive resource logic, since we can omit rea-
soning with∞. We can also use a simpler termination measure M , based on depth of
recursion rather than number of calls, but relate to the latter using embed(M). More-
over, these temporal predicates can be made flow-insensitive, and thus need only appear
in each method’s precondition where they describe execution capacity required for the
method’s execution. This two-level approach simplifies both the design of a formal se-
mantics, and the development of a verification framework for (non-)termination.

For illustration, let us look at some numerical examples, starting with the method
sumE in Fig. 2(a). This method is required to return the sum of all even natural num-
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bers that are less than or equal to the input n. However, the implementation satisfies
this requirement only when n is an even natural number, denoted by the predicate
isEvenNat(n); otherwise, the method does not terminate4. In our approach, these dis-
tinct scenarios can be described in a termination-enriched specification by seamlessly
integrating the temporal constraints Term[n] and Loop into a logic with disjunctions.

JML and ACSL also support the specification of several method behaviors. How-
ever, the current ACSL implementation in Frama-C does not allow fine-grained termina-
tion related specification of each behavior and ignores conditional termination clauses.
As a result, it cannot verify all the (non-)terminating behaviors of sumE together. KeY
allows the specification of termination for each individual method behavior but it cannot
disprove the termination of sumE when n is an odd positive number, because the vari-
ant n is still valid under this precondition. In contrast, our unified termination and non-
termination reasoning does not accept the temporal constraint Term[n] in these prestates
because the execution starting from them will eventually reach a non-terminating exe-
cution when n<0. In terms of resource reasoning, Term[n], denoting a finite resource,
is invalid as it cannot satisfy the infinite resource required by the non-termination.

The next example in Fig. 2(b) illustrates a usage of MayLoop constraint. Starting
from any prestate satisfying x>y ∧ x≥0, the execution of the given loop may reach
either the base case (when x≤y, indicated by Term[]) or the non-terminating case (when
x>y ∧ x<0, indicated by Loop). We observe that this MayLoop precondition can be
strengthened to the non-linear constraint 4x2+4x+8y+9≥0 for non-termination, but this
requires stronger arithmetic solvers.

Though our proposal is independent of the underlying logics on functional prop-
erties, it can leverage infrastructures of richer logics5 to conduct termination and non-
termination reasoning for more complex domains. For example, our proposed temporal
constraints are easily integrated into formulas of separation logic to reason about the
termination and non-termination of heap-based programs. We choose a fragment of sep-
aration logic with the separating conjunction ∗ and the points-to operator 7→ to specify
the heap assertions. These operators are used to describe several data structures, such
as linked list and tree. For example, the inductive predicate lseg(root, p, n) declared
in Fig. 3(a) describes a list segment size of n from root to p with an invariant property
stated that the list’s size is non-negative. This predicate can be used to specify either
null-terminating lists (when p = null) or circular lists (when p = root).

We then use the predicate lseg for the pre and postconditions of two methods
reverse and shuffle in the Shuffle problem. The specification of each method in-
dicates that the method’s result res is a linked list with the same size n as the input list.
From these safety specifications, the temporal constraint Term[n] integrated into the
precondition of each method is able to specify that the depth of recursion is bounded by
the size of the input list, thus indicating the method’s termination.

From the perspective of resource reasoning, a temporal constraint in the precondi-
tion of a method defines the bounds of available resource allowed for program execu-
tions from prestates satisfying (safety part of) this precondition. This idea is similar to

4 The verification system assumes the use of arbitrary precision integers. When finite integers
are used, we may give a different temporal specification for those prestates.

5 In comparison with the first-order logic with linear arithmetic for numerical programs.
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data List { int value; List next; }

pred lseg(root, p, n) ≡ root=p ∧ n=0 ∨
∃v, q · root7→List(v, q)∗lseg(q, p, n−1)
inv n ≥ 0;

List reverse (List l)
requires lseg(l, null, n) ∧ Term[n]
ensures lseg(res, null, n);

List shuffle (List xs)
requires lseg(xs, null, n) ∧ Term[n]
ensures lseg(res, null, n);

(a) (b)

Fig. 3. A specification in separation logic to verify the correctness of Shuffle’s methods

Atkey’s logic [6], a type-based amortized resource analysis for imperative programs,
which associates a piece of resource with each element of the data structures prior pro-
gram execution. However, Atkey’s approach only tracks the upper bound of resource
usage, so that it cannot reason about non-termination. This shortcoming also applies
to other type-based approaches for termination reasoning, such as [1,39]. In addition,
while the amortized resource analysis accounts for individual time-step (or heap chunk),
we use termination measures, which are much simpler, to facilitate termination proofs.
For example, to analyze shuffle, Atkey’s logic requires the global length property to
present the polynomial resource associated with the input list using the technique of
Hoffmann and Hofmann [27], which is much harder than locally reasoning about each
node of the list as stated in his paper. Finally, this logic is built on top of just separation
logic, rather than being generic as our proposal.

3 A Logic for Resource Reasoning

In proving termination and non-termination, our goal is to use resource reasoning based
on execution capacity to provide a means for quantitatively assessing the execution
length of a program. For this purpose, we introduce a resource logic to formally assess
the minimum and a maximum bounds on a program’s resource consumption. We first
extend the program state model with a mechanism to track resource capacities of the
underlying machine. Since the particular consumed resource is countable and possibly
infinite, we use the set N∞, short for N ∪ {∞}, as its domain.

3.1 Resource Capacity

Definition 1 (Program states) A program state σ is a triple (s, h, r) of stack s ∈ S
(locals), heap h ∈ H (memory) and r ∈ R, resource capacity where r is a pair (rl, ru)
of bounds in N∞, with 0 ≤ rl ≤ ru, denoting the allowed minimum and maximum
resource consumption for executions starting from the current program state.

Intuitively, a program state’s resource capacity (rl, ru) ensures that any execution
starting from this state must consume at least rl and at most ru of the tracked resource.

Definition 2 (Resource Capacity Ordering) Let (≤c) ⊂ N∞ × N∞ be the resource
capacity ordering, such that (bl, bu) ≤c (al, au) iff al ≤ bl and bu ≤ au.

6



(s, h, r) |=Ψ1∨ Ψ2 ≡ (s, h, r) |= Ψ1 or (s, h, r) |= Ψ2

(s, h, r) |=Ψ1∧ Ψ2 ≡ (s, h, r) |= Ψ1 and (s, h, r) |= Ψ2

(s, h, r) |=∃x∗i ·Ψ ≡ ∃ν∗i ·(s[(xi 7→νi)∗], h, r) |= Ψ

(s, h, r) |=µ ≡ (s, h) |= µ

(s, h, r) |= RC〈al, au〉 ≡ (s, h) |= rl = al ∧ ru = au where r=(rl, ru)

(s, h, r) |= ρ1 I ρ2 ≡ ∀r′·if (s, h, r′) |= ρ1 then (s, h, r 	 r′) |= ρ2

Fig. 5. Semantics of Assertions in the Resource-Aware Logic

The resource capacity (al, au) is considered larger (or more general) than (bl, bu)
if al≤bl and bu≤au. The intuition is that under this condition, any execution which
guarantees the capacity (bl, bu) also guarantees the capacity (al, au). Based on this
observation, (0,∞) is the largest resource capacity. In fact, it indicates an unconstrained
resource consumption.

In order to properly define an operational semantics in terms of the proposed pro-
gram state model, we also need to be able to express resource consumption. To this end
we define a splitting operation over the resource capacity. We will say that a capacity
(al, au) can be split into capacities (bl, bu) and (cl, cu), written (al, au) 	 (bl, bu) =
(cl, cu), if whenever an execution that guarantees the capacity (bl, bu) starts from a state
with the capacity (al, au) then the remaining capacity is (cl, cu). In other words, the
executions allowed by (al, au) can be decomposed into executions required by (bl, bu)
followed by executions required by (cl, cu).

Definition 3 (Resource Capacity Splitting) Given resource capacities (al, au),(bl, bu)
with bu ≤ au and al + bu ≤ au + bl then (al, au)	 (bl, bu) = (cl, cu) where

cl = min{xl ∈ N∞ | xl + bl ≥ al} and cu = max{xu ∈ N∞ | xu + bu ≤ au}.

From Defn. 3, (cl, cu) is the largest resource consumption allowed for any execution
following executions satisfying (bl, bu) such that the overall resource consumption is
described by (al, au). Under this interpretation it follows naturally that when bu > au
the splitting operation is undefined as cu does not exist. In addition, when al + bu >
au + bl, the splitting operation is also undefined as it would lead to cl > cu.

3.2 Assertion Language and Semantics for a Resource-Aware Logic

To support resource reasoning, we extend a minimalistic assertion language with two
resource assertions, as shown in Fig. 4. We use v and v∗ for variables and sequences of
variables, f(v∗) for functions from variables to N∞, µ and Φ to represent resource-free
formulas and ρ for resource assertions.

The resource assertion ρ ranges over (i) atomic resource assertions RC〈al, au〉, where
al, au are functions from variables to N∞; and (ii) splitting resource assertions ρ1 I ρ2,
which holds for states that allow executions to be split into two execution fragments, on
which ρ1 and ρ2 hold respectively.

7



Ψ ::=
∨
(∃v∗ · µ∧ ρ)∗

Φ ::=
∨
(∃v∗ · µ)∗

ρ ::= RC〈al, au〉 | ρ1 I ρ2
a ::= f(v∗)

Fig. 4. The Assertion Language

We concisely list in Fig. 5 the semantic model for
the assertion language. We observe that the usual se-
mantics of the logical connectives, e.g., conjunctions
and disjunctions, lifts naturally over resource asser-
tions. The semantics of the resource-free assertions is
straightforward: a resource-free formula µ holds for
all states (s, h, r) such that (s, h) |= µ with respect to
the semantics of the corresponding underlying logic.

We point out that we have chosen to model the
RC〈al, au〉 assertion as a precise predicate. That is, a program state σ satisfies a re-
source constraint ρ if the resource capacity in σ is equal to the evaluation, in the
context of σ, of the upper and lower functions associated with ρ. This modeling re-
lation ensures that the resource assertion ρ is precise with regards to the resource ca-
pacity, where (s, h, r) |= ρ does not imply (s, h, r′) |= ρ whenever r′ is larger than
r, i.e., r′ ≥c r. Consequently, RC〈al, au〉 ` RC〈bl, bu〉 iff (s, h) |= al=bl ∧ au=bu.
Additionally, RC〈al, au〉 ∧ RC〈bl, bu〉 ≡ RC〈al, au〉 iff al=bl ∧ au=bu; otherwise,
RC〈al, au〉 ∧ RC〈bl, bu〉 ≡ false.

To provide a precise modular resource reasoning, we lift the semantic split operation
into a resource splitting assertion ρ1 I ρ2. This enables our proof construction to follow
the same style of other resource manipulating logics, such as separation logic. The
intuition behind the splitting resource assertions is that ρ1 I ρ2 holds for any program
state from which it is possible to consume as many resources as ρ1 requires and end
in a state that satisfies ρ2. Or equivalently, ρ1 I ρ2 holds for all states whose resource
capacity can be split into two portions, such that the resulting capacities satisfy ρ1 and
ρ2, respectively. In addition, we can useI to add a resource capacity ρ1 into the current
available resource capacity ρ, resulting in ρ I ρ1. The semantics of ρ1 I ρ2 is also
given in Fig. 5.

3.3 Resource-Enhanced Entailment with Frame Inference

Based on the semantics of resource assertions and the standard definition of the logical
entailment relation (i.e., Ψ1 ` Ψ2 iff ∀σ · if σ |= Ψ1 then σ |= Ψ2), it is possible to
define an entailment for resource constraints of the form ρ ` ρ1 I ρ2 as follows:

Lemma 1 (Resource Entailments). Given resource assertions ρ, ρ1 and ρ2, ρ ` ρ1 I
ρ2 iff ∀s, h, r, r1 · if (s, h, r) |= ρ and (s, h, r1) |= ρ1 then (s, h, r 	 r1) |= ρ2.

Proof. We have

ρ ` ρ1 I ρ2
≡ ∀s, h, r · if (s, h, r) |= ρ then (s, h, r) |= ρ1 I ρ2

(Defn. of logical entailment)
≡ ∀s, h, r · if (s, h, r) |= ρ then ∀r1 · if (s, h, r1) |= ρ1 then (s, h, r 	 r1) |= ρ2

(Semantics of ρ1 I ρ2)
≡ ∀s, h, r, r1 · if (s, h, r) |= ρ and (s, h, r1) |= ρ1 then (s, h, r 	 r1) |= ρ2 2

It follows that given 	f , a lifting of resource capacity splitting to functions, then:
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Prog ::= tdecl∗ meth∗

tdecl ::= data c {(type v)∗}
type ::= c | bool | int | float | void
meth ::= type mn(([ref] type v)∗) Y {e}

Y ::= requires Ψ Y | ensures Ψ | ensures Φ
e ::= null | k | v | v.f | v:=e | v1.f :=v2 |

new c(v∗) | e1; e2 | type v; e | mn(v∗) |
return v | if v then e1 else e2

where c is a data type name; mn is a method name; k is a primitive constant; f is a field name

Fig. 6. A Core Imperative Language with Specifications

(ρ2l , ρ
2
u) = (ρl, ρu)	f (ρ1l , ρ

1
u)

RC〈ρl, ρu〉 ` RC〈ρ1l , ρ1u〉 I RC〈ρ2l , ρ2u〉

Entailments of the form ρ ` ρ1 I ρ2 are of particular interest in the context of
program verification as they naturally encode the restriction imposed at a method call
and the remaining restriction after the execution of this method. For the proposed re-
source logic, we construct a general entailment system with frame inference by merg-
ing the entailment of resource constraints presented earlier with the entailment system
corresponding to the underlying logic. Let the underlying entailment system be of the
general form Ψ ` Φ;Φr denoting that Ψ implies Φ with frame Φr. In sub-structural
logics such as separation logic, the frame captures any residual state that is not required
by the entailment. In pure logics where the program states are not changed, the frame
is simply the antecedent of the entailment.

To support logics with disjunctions, the entailment system firstly deconstructs dis-
junctive antecedents (e.g., using the rule [ENT−DISJ−LHS]) and consequents until for-
mulas of the form µ∧ρ with a single resource constraint6 are encountered in both sides
of the sub-entailments. The judgment system then applies the rule [ENT−CONJ] that is
slightly changed to handle resource constraints by splitting an entailment into two parts,
namely logical part and resource part. The logical goal is solved by the entailment sys-
tem µa ` µc ;Φr of the underlying logic. The resource goal is solved by using the
resource entailment rules presented above. The solving process for the resource part
leverages the entailment outcome Φr from the underlying logic, which is simply added
to the antecedent of the resource entailment, to check the condition stated in Defn. 3 for
the resource capacity splitting operation to be defined. -2mm

[ENT−DISJ−LHS]

Ψ =
∨
∃v∗i · (µi ∧ ρi)

∀i · (µi ∧ ρi) ` Φ;Ψ i
r

Ψ ` Φ;
∨
∃v∗i · Ψ i

r

[ENT−CONJ]

µa ` µc ;Φr

µa ∧ Φr ∧ ρa ` ρc I ρr
µa ∧ ρa ` µc ∧ ρc ; (Φr ∧ ρr)

3.4 Hoare Logic for Resource Verification

Language. We provide a core strict imperative language with usual constructs, such
as type declarations, method declarations, method calls, assignments, etc. in Fig. 6 to
facilitate the verification for multiple front-end imperative languages. For simplicity,

6 A conjunction of resource constraints can be simplified to either a single resource constraint or
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we choose a core language without while-loop constructs and assume a preprocessing
step that applies an automatic translation into tail-recursive methods with reference-type
parameters (declared by the keyword ref).

The pre and post conditions of a method are specified by the requires and ensures
keywords, followed by logic formulas in the assertion language in Fig. 4. Resource-
related assertions always appear in the method preconditions to denote resource re-
quirements imposed on the caller for its execution. In contrast, resource assertions in
the postconditions denote unspent/generated fuel returned to the caller, so that these as-
sertions may not appear in the postconditions, depending on the analyzed resource. For
example, as execution length (i.e., a temporal resource) can only be consumed, it is safe
and convenient to assume that the method consumes all the initially required resource;
thus we can avoid the need for execution length related assertions in postconditions.

Hoare Logic. We observe that the resource consumption of each program statement is
dependent on the tracked resource. As a result, the resource-aware Hoare logic needs
to be adapted accordingly for each resource type. In terms of termination and non-
termination reasoning, we are interested in the execution length as the tracked resource
capacity. In the next section, we will construct a specific Hoare logic to reason about
this resource.

4 (Non-)Termination Proofs via Resource Reasoning

For termination and non-termination reasoning, we have proposed three temporal con-
straints to capture: guaranteed termination Term X , guaranteed non-termination Loop

and possible non-termination MayLoop, where X is a ranking function built from pro-
gram variables. First, we define these constraints as resource capacity assertions, using
the more general RC predicate. Next, we leverage the resource logic in Sec. 3, spe-
cialized in execution capacity, to construct a logic for termination and non-termination
reasoning.

A resource-based definition for the proposed temporal constraints is as follows:

Definition 4 (Temporal Constraints) Temporal constraints are resource assertions over
program execution lengths, such that TermX ≡ RC〈0f , $〉, Loop ≡ RC〈∞f ,∞f 〉 and
MayLoop ≡ RC〈0f ,∞f 〉 where 0f and ∞f denote the constant functions always re-
turning 0 respectively∞. $ is a function of program variables to naturals, imposing a
finite upper bound on the execution length of a terminating program.

Using the definition of resource entailments in Lemma 1, we formalize the set of
valid entailments for temporal constraints below:

MayLoop ` MayLoop I MayLoop

MayLoop ` Term X I MayLoop

MayLoop ` Loop I MayLoop

Loop ` MayLoop I Loop

Loop ` Term X I Loop

Loop ` Loop I MayLoop

µ =⇒ Y ≤d X
µ∧Term X ` Term Y I Term X−dY

false as discussed in Sec. 3.2.
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where ≤d and −d are the ordering and the subtraction operation on the domain of the
termination measuresX and Y , respectively. All other decomposition attempts, such as
Term X ` MayLoop I and Term X ` Loop I , describe unfeasible splits. Thus in
those cases, the entailment fails and an error is signaled.

4.1 From Termination Measures to Execution Capacity’s Finite Upper Bounds

In Defn. 4, as X denotes a termination measure, a bounded function that decreases
across recursive method calls, the resource upper bound $ must also follow. Thus, the
mapping function from X to $ must be an order-embedding denoted by embed(X).
In our approach, the termination measure X is a list of arithmetic formulas over nat-
urals since this formulation is simpler to write than a single but more complex ter-
mination measure and it can be used for a wider range of programs. In general, an
order-embedding of lists of unbounded elements requires ordinals. However, transfinite
ordinals are not suitable to model finite computational resources denoted by Term X .

By a co-inductive argument that every execution of a terminating method only com-
putes finitely many different values, it follows that every non-negative element of a
lexicographic termination measure applied to states of the corresponding call tree is
upper-bounded. We then show that there always exists an order-embedding L from the
codomain of a termination measure (i.e., tuples of bounded naturals) to naturals, such
that embed(X) = L ◦X .

Lemma 2. If the termination of a program can be proven by a given lexicographic
termination measure, then for each call tree τ of the program, every element of the
termination measure applied to the program states corresponding to the nodes in the
call tree τ is bounded.

Proof. As the program can be proven to terminate by the measure [Xn, Xn−1, . . . , X0],
the corresponding evaluation call tree is finite. The reason is that if the call tree is infinite
then by König’s lemma [29], there is an infinite evaluation path, which means that the
program is non-terminating.

Let Si be the set of evaluating values of Xi and N be the finite number of the
tree’s nodes. Then, for all i, the cardinality |Si|≤N or Si is finite. As a result, the set
S =

⋃
Si is also finite. The maximum value k of S is the upper bound of every element

of the given termination measure. 2
If every element xi, where 0 ≤ i ≤ n − 1, of a lexicographic termination mea-

sure [xn, xn−1, . . . , x0] corresponding to a given call tree τ is bounded by a constant
k, we can use the base b = k+1 to construct a possible order-embedding function
D([xn, xn−1, . . . , x0]) = xn ∗ bn + xn−1 ∗ bn−1 + . . .+ x0. The function D preserves
the order of the given measure along every trace of τ , as stated by Lemma 3.

Lemma 3. For all xn, . . . , x0, yn, . . . , y0 ∈ N such that ∀i ∈ {0..n − 1} · xi, yi < b,
[xn, . . . , x0] >l [yn, . . . , y0] iff D([xn, . . . , x0]) > D([yn, . . . , y0]), where >l is the
lexicographic ordering.
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Proof. (⇒) From the premise, we have ∃i∈{0..n} · xn=yn∧ . . .∧xi+1=yi+1∧xi>yi.
Consequently, xi−yi≥1. Moreover, because ∀i · 0≤xi, yi<b, we also have 1−b ≤
xi−yi ≤ b−1. Let consider

D([xn, xn−1, . . . , x0])−D([yn, yn−1, . . . , y0])
= (xi − yi) ∗ bi + (xi−1 − yi−1) ∗ bi−1 + . . .+ (x0 − y0)
≥ bi + (1− b) ∗ (bi−1 + . . .+ 1) = bi + (1− bi) = 1 > 0

Thus, D([xn, . . . , x0]) > D([yn, . . . , y0]).
(⇐) By contradiction, assume that [xn, . . . , x0] <l [yn, . . . , y0]. Similarly to the

above proof, we have D([yn, . . . , y0]) > D([xn, . . . , x0]), which is a contradiction.
Moreover, if ∀i·xi=yi thenD([xn, . . . , x0])=D([yn, . . . , y0]). As a result, [xn, . . . , x0] >l

[yn, . . . , y0]. 2
In general, such a bounded constant k for a call tree τ can be determined by a

function K of initial values of the call tree’s variables. For example, the constant k for
the loop in Fig. 2(b) is

k = K(x0, y0) =

{
max(1− x0, y0 − x2

0

2 + x0

2 + 1) , if x0 ≤ 1
x0 − y0 , if x0 > 1

which is the maximum value of the expression r={1−x, if x ≤ 1; x−y, if x > 1},
applied to the execution trace starting with symbolic initial values x0 and y0. The cor-
responding order-embedding of the loop is D([m,n]) = m ∗ (k + 1) + n.

For a loop, the order-embedding D would be enough to ensure the sufficiency of
execution capacity because the loop execution has only one trace. In order to give a
proper estimate of the execution capacity for more complex recursion patterns, espe-
cially when the termination measures are based on the depth of recursion, we propose

using a more refined embedding for a call tree, that is L =

{
D ,N ≤ 1
ND ,N > 1

, where N

is the maximum number of children for each node of the call tree.
Therefore, given the termination measure X of a terminating program, there always

exists an order-embeddingL from the codomain ofX to naturals. The functionL can be
constructed from initial values of program variables and the call trees corresponding to
these initial values. As a result, embed(X) = L◦X is a function from program variables
to naturals, which describes an upper bound on the number of method calls taken by
any execution of the program.

4.2 Termination and Non-Termination Verification

Here we elaborate on the construction of both termination and non-termination proofs
based on Defn. 4 and the verification framework in Fig. 7 for tracking execution length
as resource. Although execution length can be tracked at various levels of granularities,
we choose to track it only at method calls (i.e., as the total number of method calls) in
order to simplify the verification rules and the operational semantics. In Fig. 7, we only
outline the Hoare logic rules for the method call and the return statements, which are
especially relevant to the verification of execution lengths as they encode the resource
consumption. The Hoare rules for other constructs are standard because they do not
interact with the resource of interest.
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CheckMin(Ψ1) CheckMin(Ψ2)

CheckMin(Ψ1 ∨ Ψ2)

µ ` ρl = 0

CheckMin(µ ∧ RC〈ρl, ρu〉)

[FV−CALL]

t0 mn((t v)∗) (ΨPre, ΦPost) {code}∈Prog
Ψ ` RC〈1, 1〉;Θ Θ ` ΨPre ;Φ Ψr = Φ ∧ ΦPost

` {Ψ}mn(v∗) {Ψr}

[FV−RET]

CheckMin(Ψ)

` {Ψ} return v {Ψ ∧ res = v′}

Fig. 7. Hoare Verification Rules: Method Call and Return

As a standard preprocessing step, we check that all predicate invariants are satisfied,
including the invariants of resource constraints: the resource assertion RC〈ρl, ρu〉 in
precondition ΨPre is consistent if 0 ≤ ρl ≤ ρu, that is, for each disjunct µ ∧ RC〈ρl, ρu〉
of ΨPre it follows that µ ` ρu ≥ ρl ∧ ρl ≥ 0. We observe that the invariant check
on Term X requires that every element of X be non-negative to ensure a non-negative
upper-bound L◦X , so that the execution capacity satisfies the invariant 0≤0f≤L◦X .

In the method call rule [FV−CALL], the available execution capacity is first de-
creased by one step, denoted by RC〈1, 1〉, to account the cost of method call, followed
by a check that the callee’s requirements are met. This check is translated into an entail-
ment for proving the method precondition. Finally, the poststate after this method call
is computed. With the help of the resource-enhanced entailment system introduced in
Sec. 3.3, both logical and resource proving are combined into one entailment, resulting
in a standard-looking Hoare rule for method call.

In addition, specifically for temporal constraints, two entailments Ψ ` RC〈1, 1〉;Θ
and Θ ` ΨPre ;Φ can be combined into Ψ ` ΨPre ;Φ by using a new entailment `t
for temporal constraints.

Definition 5 (Unit Reduction Temporal Entailments) Given temporal constraints θ,
θ1 and θ2, θ `t θ1 I θ2 iff ∀s, h, r · if (s, h, r) |= θ then (s, h, r 	 (1, 1)) |= θ1 I θ2.

Therefore, if θ is Loop or MayLoop then θ `t θ1 I θ2 iff θ ` θ1 I θ2. If θ is TermX
then µ ∧ Term X `t Term Y I Term ((X−d1d)−dY ) if µ =⇒ Y <d X , where 1d is
the unit of termination measures’ domain. Basically, the check Y <d X is equivalent
to the check that termination measures are decreasing across recursive method calls in
the traditional termination proof. By introducing the temporal entailment `t, we obtain
a resource-based temporal logic which is related to only the temporal constraints and
thus the underlying resource reasoning becomes implicit.

In the method return rule [FV−RET], the CheckMin predicate, which is also defined
in Fig. 7, ensures that the specified minimum computation resource has been completely
consumed when the method returns. Note that if the method does not terminate, the
minimum guaranteed execution length is always satisfied since the actual return point is
never reached. For temporal constraints, CheckMin holds for any TermX and MayLoop
as the lower bounds in their execution capacities are always 0. In non-termination cases,
CheckMin(µ∧Loop) only holds when µ is unsatisfiable. This check ensures that a return
statement cannot be executed/reachable from a state satisfying Loop.
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t0 mn((t v)∗) {code}∈Prog
<(s, h, r),mn(w∗)>↪→<([v 7→s[w]]∗:s, h, r	(1, 1)), code>

<(st:s, h, r), return v> ↪→ <s |res 7→st[v], h, r,nop>

r = (0, )

<([st], h, r), return> ↪→ <[], h, r,nop>

Fig. 8. Key Rules in Operational Semantics

4.3 Soundness

Our goal here is to prove the soundness of our resource-aware Hoare logic for execu-
tion lengths. First, we outline an operational semantics for the verified strict imperative
language. Second, we define a Hoare triple with respect to this operational semantics
and prove the soundness of our Hoare rules, i.e., the operational semantics would get
stuck on executions starting in states that falsify the resource assertions.

Operational semantics. We have modified a standard small-step operational semantics
to incorporate the execution capacity. In Fig. 8, we list only the method call and return
steps; the other steps do not interact with the execution capacity in any interesting way.
As mentioned previously, our core language does not have loops. Therefore, execution
capacity is only consumed at method calls.

The formulation of the method call step ensures that at least one execution step is
still allowed by the current execution capacity, via the capacity subtraction r	(1, 1),
corresponding to the first entailment in the verification rule [FV−CALL] in Fig. 7. As
a result, the semantics will not allow (e.g., eventually get stuck on) executions which
requires more resource than the available resource upper bound in the initial states.
For example, the semantics will not allow infinite executions from states in which the
capacity has finite values.

The return operational rule ensures that executions do not finish if the resource
lower bound has not been consumed all. That is, the operational semantics prohibits
the return step if the call stack has height 1 and the execution capacity has a non zero
lower bound, which would equate with a return from the outermost method before all
the required steps have been taken.

Hoare Triples. We define the Hoare triple in a continuation-passing style as in Appel
and Blazy [4]. A configuration is a pair of code k and state σ. We say a configuration is
safe, written safe(k, σ), if all reachable states are safely halted or can continue to step:

safe(k, σ) ≡ ∀k′, σ′ · <σ, k> ↪→∗ <(s′, h′, r′), k′>→
((k′ = nop ∧ s′ = [] ∧ r′ = (0, ) ∨ ∃σ′′, k′′ ·<σ′, k′> ↪→ <σ′′, k′′>)

We say that a formula P guards code k, written guards(P, k) when the code k is safe
on any state accepted by P :
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guards(P, k) ≡ ∀σ · σ |= P → safe(k, σ)

We now define the Hoare triple {Ψ}c{Φ} in a continuation passing style using guards:

{Ψ}c{Φ} ≡ ∀k · guards(Φ, k) → guards(Ψ, c; k)

Note that we dramatically simplified Appel and Blazy’s Hoare tuple to include just
enough detail to indicate how the temporal assertions fit into the setup without over-
whelming the presentation. We conclude by stating the key soundness theorems.

Theorem 1 (Safety). If ` {Ψ} c {Φ} then ∀σ · σ � Ψ → safe(c, σ).

Proof. For all σ, safe(nop, σ), so for all Φ, guards(Φ,nop). If we instantiate k = nop
in the Hoare triple definition then safety follows immediately. 2

In addition, by guaranteeing that the Hoare tuple {Ψ}c{Φ} holds, the safety theo-
rem also implies that the postcondition holds after the execution of the code c. More
precisely, this style of Hoare tuple implies the expected soundness property for any
decidable postcondition.

Proposition 1. If ` {Ψ} c {Φ} then Φ holds after the execution of the code c.

Proof. To show that if the Hoare tuple {Ψ}c{Φ} holds then the postcondition Φ holds,
we design the continuation k as a “tester” program that tests the resulting state and gets
stuck if the test fails, otherwise does nothing. For example, consider a postcondition
Φ = x>3, we can use a continuation k:

k = if (x > 3) then skip else get stuck

such that k will be safe iff the state of the machine after c’s execution satisfies Φ. Thus,
we know Φ guards k. We can feed that fact into our Hoare tuple to get Ψ guards c; k.
Therefore we know that either: (i) c does not terminate, or (ii) c does terminate, and
the resulting state is enough to make k safe, which implies (by k’s construction) that Φ
holds after c terminates. 2

Theorem 2. The standard Hoare rules (e.g., assignment, conditional, sequential com-
position) are sound with respect to the semantics of our Hoare judgment.

Proof. In [4], it is proven sound a set of Hoare rules very similar to ours for a language
that has many of the same features, e.g., load/ store/ assignment/ conditional, making
the proofs of these features very similar. 2

Theorem 3. The Hoare rules for method call and return are sound.

Proof. The proof of the return rule is standard, except in the case of returning from a
method requiring the resource assertion RC〈l, u〉 whose the lower bound l is larger than
the actual execution length of the method. In this case, operational semantics must get
stuck. The Hoare rule for return requires that the CheckMin predicate holds, meaning
that return is not executed with any such precondition. That is, the Hoare rule prohibits
the execution of a return from a program state with r = (l, ) where l > 0, which
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describes a superset of the states in which the operational semantics would block when
executing a return step. Specifically, a proper Hoare derivation guarantees that non-
terminating code never returns since the lower bound l =∞ has never been consumed
all.

The proof for the method call rule hinges on the proof that the precondition guar-
antees that there exists an execution capacity with a smaller upper bound that suffices
for the callee. The resource-enhanced entailment from Sec. 3.3 and the Hoare rule for
method call guarantee exactly this, meaning that a proper Hoare derivation guarantees
that all function calls requires smaller upper bounds in their execution capacities than
the available resource in the current program state. Hence, this guarantees the upper
bound requirement of the resource assertion is never violated. 2

We have used an operational semantics enriched with execution counters to show
that a proper Hoare derivation guarantees that the operational semantics never blocks
in accordance with the resource specifications. However, the execution counters do not
have a counterpart in a “real machine” as modelled by a standard operational semantics.
Below we will outline one such standard, erased semantics and show that our enriched
semantics is a strict subset of the erased semantics. Thus the soundness results for our
resource logic with regards to the enriched semantics simply carry to the erased seman-
tics.

t0 mn((t v)∗) {code}∈Prog
<(s, h),mn(w∗)> ↪→ <([v 7→s[w]]∗:s, h), code>

<(st:s, h), return v> ↪→ <(s |res7→st[v], h),nop>

Theorem 4 (Erasure). The set of executions allowed by the enriched operational se-
mantics is a subset of the set of executions allowed by the erased operational semantics.

Proof. Each rule in the enriched operational semantics directly corresponds to a rule in
the erased operational semantics that has precisely a subset of its premises. Since the
enriched state never affects the erased state (except for perhaps making the machine
get stuck more often), any execution (sequence of operational steps) in the enriched
semantics corresponds directly to an execution in the erased semantics. 2

4.4 Flow-Insensitive Temporal Logic

Observe that the current formulation of the temporal logic with temporal constraints
is flow-sensitive since the entailment θ `t θ1 I θ2 might return a residue θ2 distinct
from θ. However, with the following observations, we can formalize a flow-insensitive
version of the temporal logic and provide a further abstraction on the resource-based
framework presented so far.

First, it is possible to refine the granularity of the termination and non-termination
verification by tracking only execution lengths of (mutually) recursive method calls.
Second, using König’s lemma [29], it is sufficient to inspect individual execution traces
in the call tree for deciding just termination or non-termination, instead of tracking the
total execution length of all traces in the call tree. That is, a program terminates iff every
execution trace is finite; otherwise, the program is non-terminating.
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Based on these observations, the tracked resource will be abstracted to capture the
execution capacity required for the longest trace in the call tree, instead of the exe-
cution capacity required for the remaining program. With this, the resource (for the
longest trace allowed) remains unchanged after each splitting operation, which deter-
mines the residue resource needed for subsequent method calls. Thus, for every method,
we endeavor to provide a single abstract resource that is sufficient for executing a given
method call and also its remaining code sequences.

By using this abstraction, we can obtain a formulation on temporal entailment that
ensures θ `t θ1 I θ whereby the temporal constraint in residue is always identical to
the one in the antecedent. Therefore, we can omit the definition for the operator −d.
Moreover, the finite upper bound $ used for the definition of TermX in Defn. 4 can be
determined as$ = D◦X , instead of the largerL◦X . As a result, without any change to
the Hoare rules, during a method’s verification, the same initial resource capacity is used
for the verification of call traces and thus facilitating a simpler verification procedure
for temporal constraint. As a direct outcome of this abstraction, the temporal assertions
Loop, MayLoop and Term X are now flow-insensitive, and therefore closer to the pure
logic form, as opposed to the sub-structural form of resource logics. Note that flow-
insensitive label applies to only the temporal constraints. In general, program states
(e.g., denoted by separation logic as the underlying logic) remain flow-sensitive since
they might be changed due to changes on heap state and program variables.

5 Experiments

We have implemented the proposed termination logic into an automated verification
system, called HipTNT. The integration of the termination logic into an existing system
allows us to utilize the infrastructure that has been developed for some richer specifi-
cation logics, such as separation logic, beyond a simple first-order logic. Consequently,
we are able to specify and verify both termination and non-termination properties, in
addition to correctness properties for a much wider class of programs, including heap-
manipulating programs. In this system, the final proof obligations are automatically
discharged by off-the-shelf provers, such as Z3 [17]. The expressivity of our new inte-
grated logic is shown in the following experimental results, in which the lexicographic
order is needed for about 25% of our experimental programs.

5.1 Numerical Programs

The verification system was evaluated using a benchmark of over 200 small numerical
programs selected from a variety of sources: (i) from the literature, such as [14,12],
(ii) from benchmarks used by other systems (that are AProVE [21], Invel [38] and
Pasta [19]) and (iii) some realistic programs, such as the Microsoft Zune’s clock driver
that has a leap-year non-termination bug. Most of the methods in these benchmark
programs contain either terminating or non-terminating code fragments, expressed in
(mutual) recursive calls or (nested) loops. To construct these benchmarks we added the
novel termination specifications to the original examples from the analysis tools for
termination and non-termination. We have chosen these benchmarks in order to show
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Benchmarks Programs Term Loop MayLoop PC(s) TC(s) Overhead (%)

Invel 59 137 81 12 14.88 15.96 6.77
AProVE 124 534 120 8 15.73 17.21 8.60

Pasta 44 219 10 3 4.95 5.79 14.51
Others 48 194 32 22 7.35 8.78 16.29

Totals/(%) 275 1084 (79.0%) 243 (17.7%) 45 (3.3%) 42.91 47.74 10.12%

Fig. 9. Termination Verification for Numerical Programs

the usability and practicality of our approach. A comparison with these tools would be
of less relevance as our proposal focuses on verifying the given specifications rather
than infer them.

To express the programs’ behavior more precisely and concisely, we integrated the
proposed logic into an enhanced mechanism for structured specification with automatic
case analysis [20]. The more expressive specification language can be formally de-
scribed by the following grammar rule:

Y ::= case {π1⇒Y1; . . . ; πn⇒Yn} | requires Ψ Y | ensures Φ
It allows the decomposition of a program’s behavior into multiple disjointed scenarios
(guarded by πi) for easier comprehension. This decomposition also helps with verifica-
tion performance, as it helps to reduce disjunctive form and to avoid repeated proving of
common sub-formula. For example, the new structured specification of the sumE method
in Sec. 2, can be defined as follows:

int sumE (int n)
case { isEvenNat(n)⇒ requires Term[n] ensures true;

¬isEvenNat(n)⇒ requires Loop ensures false; }
Fig. 9 summarizes the characteristics and the verification times for a benchmark

of numerical programs. Columns 3-5 describe the number of preconditions that have
been specified and successfully verified as terminating, non-terminating or unknown,
respectively. As hoped for, the number of preconditions annotated by MayLoop occupies
the smallest fragment (about 3%) of the total number of preconditions. Such MayLoop

constraints were only used in some unavoidable scenarios as discussed in Sec. 2. In
contrast, the Term constraints (with the given measures) are in the majority because
most of the methods are expected to be terminating, except for the Invel benchmark
which focuses on mostly non-terminating programs.

Our verification system can perform both correctness and termination proofs. Col-
umn 7 (TC) gives the total timings (in seconds) needed to perform both termination
and correctness proofs for all the programs in each row, while column 6 (PC) gives the
timings needed for just correctness proofs. The difference in the two timings represents
the small overheads needed for termination and non-termination reasoning.

5.2 Heap-manipulating Programs
As illustrated in Fig. 10, we have also conducted termination reasoning on our own
benchmark of heap-based programs using various data structures with a small over-
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Programs LOC Procedures Term Loop MayLoop PC(s) TC(s) Overhead (%)

AVL 390 13 18 0 0 13.89 14.66 5.25
Linked List (LL) 135 13 13 0 0 0.28 0.29 3.45

Sorted LL 480 13 15 0 0 1.33 1.38 3.62
Circular LL 80 4 4 4 0 1.04 1.18 11.86
Doubly LL 174 11 12 0 0 0.41 0.46 10.87
Complete 112 6 7 0 0 2.58 3.53 26.91
Heap Tree 214 5 6 0 0 14.82 15.12 1.98

BST 165 6 6 0 0 0.93 1.04 10.58
Perfect Tree 83 5 5 1 0 0.32 0.33 3.03

Red-Black Tree 556 19 25 0 0 6.22 6.40 2.81
BigNat 235 18 18 0 0 15.13 15.42 1.88

Totals/ 2624 114 129 5 0 56.95 59.81 4.78%
(%) (96.3%) (3.7%)

Fig. 10. Termination Verification for Heap-manipulating Programs

head. The modular structure of the resource reasoning framework in Sec. 3 facilitates
the embedding of temporal constraints into a richer specification mechanism based on
separation logic, automatically extending it to proving termination or non-termination
properties over heap-manipulating programs. The temporal entailment judgment in the
[ENT−CONJ] rule can leverage the power of the separation logic entailment engine to
discharge the temporal constraints in a heap-related entailment.

For example, consider the following entailment, which might be encountered when
verifying a method call with heap arguments (e.g., the length method of linked lists),

ll(x, n) ∧ x 6=null ∧ Term[n] ` x7→node( , y)∗ll(y, n1)∧Term[n1]

The entailment prover for separation logic can infer the constraint n1=n−1 (e.g., by the
unfolding mechanism and explicit instantiation mechanism introduced in [36]) when
checking the spatial part of the entailment, which is a necessary condition to ensure the
validity of the eventual temporal entailment judgment

x 6=null ∧ n1=n−1 ∧ Term[n] `t Term[n1] I Term[0]

Due to the tight integration with the underlying logic, this task of specifying and
verifying the termination properties was easy even though some of the programs use
non-trivial data structures (e.g., Red-Black and AVL-trees), or non-linear constraints
(e.g., the BigNat program, which implements infinite precision natural numbers (by
linked lists) with procedures for some arithmetic operations, in addition to a fast multi-
plication method based on the Karatsuba algorithm).

We have successfully determined that none of the above methods have any unknown
termination behaviors. All the methods were terminating, except for some methods in
circular list and perfect tree. In the case of the latter, a method to create a perfect tree
would go into an infinite loop if a negative number was given as its height. Further-
more, during the verification of termination properties, we discovered a bug in our own
merge method (for two AVL trees) that went into a loop due to wrong parameter order.
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Programs LOC Proc. Term Loop MayLoop PC(s) TC(s) Overhead (%)
TPDB Benchmark
Shuffle 20 2 2 0 0 0.23 0.26 11.54
LessLeavesRec 22 2 2 0 0 0.30 0.36 16.67
Alternate 23 2 2 0 0 0.37 0.39 5.13
SortCount 32 3 6 0 0 3.06 3.45 11.30
UnionFind 39 5 8 0 0 0.51 0.53 3.92
DivTernary 55 9 12 0 0 0.77 0.87 11.49
WorkingSignals 126 17 23 0 0 8.74 9.50 8.00
MinusUserDefined 21 2 10 0 0 0.30 0.36 16.67
MultiLasso 14 1 3 1 1 0.12 0.13 7.69
Totals/(%) 352 43 68 1 1 14.40 15.85 9.15%

(97.14%) (1.43%) (1.43%)

Fig. 11. Termination Verification for the SIR/Siemens and TPDB Benchmark

The partial correctness proof did not detect this problem. It was later corrected into a
terminating method, a courtesy of our newly integrated feature.

5.3 SIR/Siemens and Termination Problems Data Base (TPDB) Benchmarks

Moreover, the termination verification has also been done on some medium programs
taken from the SIR/Siemens industrial test suite [18] and selective problems from the
Termination Competition [34], as shown in Fig. 11. Beside data structures, some pro-
grams in the SIR/Siemens benchmark also use arrays in their implementation (e.g.,
tcas and replace programs). For the Termination Competition’s problems, we select
problems in the Java Bytecode categories that cannot be automatically proved by the
competitors, such as AProVE and Julia.

However, the termination of all procedures in these benchmarks can be verified suc-
cessfully with a small overhead (about 5%) by our system. Note that for the printtokens
programs of the SIR/Siemens benchmark, some of their methods required a practical
assumption that the size of input files was finite for their termination; otherwise they
might not terminate as indicated by failures of the termination verification.

6 Related Work and Conclusion

There exists a rich body of related works on automatic analysis for termination [31,9,15],
non-termination [23,38,11], and both [21]. However, they consider termination and
non-termination reasoning as distinct from functional correctness reasoning. There-
fore, these works cannot leverage the result of functional correctness analysis to con-
duct more intricate (non-)termination reasoning. Recently, Brockschmidt et al. [10]
propose a cooperation between safety and termination analysis to find sufficient sup-
porting invariants for the construction of termination arguments but not considering
non-termination. Chen et al. [13] introduce a similar approach for proving only non-
termination. Our proposal complements these works since our aim is to construct a logic
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where termination and non-termination properties are directly integrated into specifica-
tion logics, and thus utilize the available infrastructure on functional correctness proofs.
We have achieved this, and have also successfully evaluated its applicability on a wide
range of programs, covering both numerical and heap-based programs.

Related to resource verification, [5] introduces a resource logic for a low-level lan-
guage. While this logic avoids the need of auxiliary counters, it redefines the semantic
model of the underlying logic to track the resource consumption via logical assertions,
making the proposal harder to retrofit to other logics. Moreover, this logic only targets
partial correctness, so that it does not take into account infinite resource consumption.

There are some works that are based on the well-foundedness of inductive defini-
tions of heap predicates [8,12] or user-defined quantitative functions over data struc-
tures [22] to prove termination of heap-manipulating programs. On one hand, they do
not require any explicit ranking function. On the other hand, these approaches might
have problems with programs like the Karatsuba multiplication method, in which the
arguments of the recursive calls are not substructures of the input lists. In addition,
the automated tools, such as AProVE and COSTA, cannot prove the termination of
this method. In contrast, our approach is more flexible as it allows explicit termination
measures, that are possibly non-linear, for proving programs’ termination. These termi-
nation measures can be constructed from not only the heap structures but also the values
of the data structures’ elements. For example, we use the actual value of the natural pre-
sented by a linked list to bound the execution of the Karatsuba method. Moreover, we
also allow non-termination to be specified and verified for these programs. We believe
that relatively complex examples, such as the Karatsuba method, highlight the benefits
of our approach, which trades a lower level of automation but gains additional power.

The comparison of our approach with the other specification languages, i.e.. Dafny
[32], JML [30], etc., has been discussed in Sec. 1. Another closely related work to ours
is that of Nakata and Uustalu [35]. In this work, a Hoare logic for reasoning about non-
termination of simple While programs (without method calls) was introduced. The logic
is based on a trace-based semantics, in which the infiniteness of non-terminating traces
is defined by coinduction. However, induction is still needed to define the finiteness of
traces. In contrast, with resources, we can unify the semantics of the proposed termina-
tion and non-termination temporal constraints and allow the Hoare logic for functional
correctness to be enhanced for termination and non-termination reasoning with minor
changes. Moreover, our logic allows interprocedural verification in a modular fashion.
Conclusion. Termination reasoning has been intensively studied in the past, but it re-
mains a challenge for the technology developed there to keep up with improvements to
specification logic infrastructure, and vice versa. We propose an approach that would
combine the two areas more closely together, through a tightly coupled union. Our
unique contribution is to embed both termination and non-termination reasoning di-
rectly into specification logics, and to do so with the help of temporal entailment. We
also show how its properties can be captured by a resource logic based on execution ca-
pacity, and how it could be abstracted into a flow-insensitive temporal logic. We believe
this approach would have benefits. Its expressiveness is immediately enhanced by any
improvement to the underlying logics. It can also benefit from infrastructures that have
been developed for the underlying logics, including those that are related to program
analysis. In particular we believe that a possible future avenue for investigation is to use
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the safety specifications as a basis for termination specification inference. Last, but not
least, it has placed termination and non-termination reasoning as a first-class concept,
much like what was originally envisioned by Hoare’s logic for total correctness.
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A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool. SSM, 4, 2005.
3. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA: Design and Imple-

mentation of a Cost and Termination Analyzer for Java Bytecode. In FMCO, 2008.
4. A. W. Appel and S. Blazy. Separation logic for small-step C minor. In TPHOLs, 2007.
5. D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A program logic

for resources. TCS, 389(3), 2007.
6. R. Atkey. Amortised resource analysis with separation logic. LMCS, 7(2), 2011.
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