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Abstract

We study the automated verification of pointer safety for heap-manipulating imperative pro-
grams with unknown procedure calls. Given a Hoare-style partial correctness specification S =
{Pre} C {Post} in separation logic, where the program C contains calls to some unknown pro-
cedure U , we infer a specification SU for the unknown procedure U from the calling contexts.
We show that the problem of verifying the program C against the specification S can be safely
reduced to the problem of proving that the procedure U (once its code is available) meets the
derived specification SU . The expected specification SU for the unknown procedure U is au-
tomatically calculated using an abduction-based shape analysis. We have also implemented a
prototype system to validate the viability of our approach. Preliminary results show that the
specifications derived by our tool fully capture the behaviors of the unknown code in many cases.
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1. Introduction

While automated verification of memory safety remains a big challenge [14, 21], espe-
cially for substantial system software such as the Linux distribution and device drivers,
significant advances have been seen recently on the automated verification of pointer
safety for such software [6, 22]. The abduction-based compositional shape analysis [6]
is able to calculate the pre/post specifications for procedures in a bottom-up approach,
based on the call-dependency graph. It can verify the pointer safety of a large portion
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of the Linux kernel and many device drivers manipulating shared mutable data struc-
tures. One issue that has not been dealt within their work is unknown procedure calls. In
their SpaceInvader tool, unknown calls are currently ignored and replaced by the empty
statement skip during the verification. This may lead to imprecise or unsound results in
general. Our work here is to investigate this issue carefully and provide a better solution
to the verification of pointer safety of programs with unknown calls.

Automated program verifiers usually require to have access to the entire given pro-
gram, which in practice may not be completely available for various reasons. For instance,
some programs (e.g. in C) may contain unknown calls that correspond to function point-
ers, some programs (e.g. in OO) may contain calls to interface methods whose actual
implementations may not be available statically, or some programs may have calls to
library procedures whose code is not available during verification. Other possible scenar-
ios can be found in remote procedure calls such as COM/DCOM [20], mobile code and
software upgrading, where program fragments may be unavailable at verification time. To
deal with the verification of programs with unknown procedure calls, current automated
program verifiers either
• ignore the unknown procedure calls, e.g. replacing them by skip [6], which can be

unsound in general; or
• assume that the program and the unknown procedure have disjoint memory footprints

so that the unknown call can be safely ignored due to the hypothetical frame rule [18];
however, this assumption does not hold in many cases; or

• use specification mining [1] to discover possible specifications for the (unknown part of
the) program, which is performed dynamically by observing the execution traces and
is not likely to be exhaustive for all possible program behaviors; or

• take into account all possible implementations for the unknown procedure [10, 12].
In general, there can be too many such candidates, making the verification almost
impossible at compile time; or

• simply stop at the first unknown procedure call and provide an incomplete verification,
which is obviously undesirable.

Approach and contributions. We propose a different approach in this paper to
the verification of programs with unknown procedure calls. Given a specification S =
{Pre} C {Post} for the program C containing calls to an unknown procedure U, our so-
lution is to proceed with the verification for the known fragments of C, and at the same
time infer a specification SU that is expected for the unknown procedure U based on
the calling context(s). The problem of verifying the program C against the specification
S can now be safely reduced to the problem of verifying the procedure U against the
inferred specification SU, provided that the verification of the known fragments does not
cause any problems. The inferred specification is subject to a later verification when an
implementation or a specification for the unknown procedure becomes available (e.g. at
loading time in Java).

The intuition of our method to infer the unknown procedure’s specification can be di-
vided into two steps. The first step is to analyze the code before the unknown procedure
call to discover its precondition. The second is to analyze the code after the unknown
call in order to discover its postcondition. For the second step, one might suggest to use
a deductive backwards analysis, starting from the postcondition of the program being
verified, to derive an expected postcondition for the unknown procedure. We cannot fol-
low this suggestion due to a technical challenge: backwards reasoning over the separation
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domain is simply too costly to implement ([6]). Therefore, we exploit an abductive for-
wards reasoning [6, 11] to derive the unknown procedure’s postcondition, and in this way
the verification can be accomplished.

Our paper makes the following technical contributions:
• We propose a novel framework in separation logic for the verification of pointer safety

for programs with unknown calls.
• The top-down feature of our approach can potentially benefit the general software

development process. Given the specification for the caller procedure, it can be used
to infer the specification for the callee procedures. This is a potentially beneficial
complement for current bottom-up approaches ([13]).

• We have enhanced the abduction mechanism, resulting in an improved algorithm for
the verification use. Compared with bi-abductive analysis [6] we have added additional
reasoning rules (e.g. for the list tail matching) such that the use of inaccurate reasoning
rules (like the “missing” rule) is avoided in many cases. We have also introduced a more
practical partial order to judge the quality of different solutions for abduction.

• We have successfully incorporated the call-by-reference mechanism into the forward
analyses in the separation domain.

• We have built a prototype system to test the viability and performance of our approach,
and we have conducted some initial experimental studies to evaluate the precision of
the results and the scalability of our system. Preliminary results show that our tool
can derive expressive specifications which fully capture the behaviors of the unknown
code in many cases.

Outline. Section 2 employs a motivating example to informally illustrate our main ap-
proach. Section 3 presents the programming language and the abstract domain for our
analysis. Section 4 introduces our abductive reasoning. Section 5 defines two abstract
semantics used in our verification. Section 6 depicts our verification algorithms. Experi-
mental results are shown in Section 7, followed by some concluding remarks.

2. A Motivating Example

In this section we illustrate informally, via an example, how our analysis infers the
specification for an unknown procedure. Our analysis makes use of a separation domain
similar to the one used in the SpaceInvader tool [6, 9]. To keep the presentation simple, we
use a small imperative language with both call-by-value and call-by-reference parameters
for procedures. Formal details about the abstract domain and the language will be given
in Section 3.

Example 1. Our goal is to verify the procedure findLast against the given pre/post
specifications shown in Figure 1. The data structure node { int data; node next }
defines a node in a linked list. The predicate ls(x, y) used in the pre/post specifications as
well as other places denotes a (possibly empty) list segment referred to by x and ended
with the pointer y (i.e., y denotes the next field of the last node). Its formal definition
is given in page 7.

According to the given specification, the procedure findLast takes in a non-empty
linked list x and stores a reference to the last node of the list in the call-by-reference
parameter z. Here we group call-by-value and call-by-reference parameters together and
use semicolon ; to separate them. Note that findLast calls an unknown procedure
unkProc at line 4. 2
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// Given Specification:
// PrefindLast := ls(x, null) ∧ x6=null
// PostfindLast := ls(x, z) ∗ z 7→null

void findLast(node x; ref node z) {
0 node w, y;
0a // ∆ := PrefindLast ∆ ` x6=null
1 w := x.next;
1a // ∆ := x7→w ∗ ls(w, null) ∧ x6=null
2 if (w == null) z := x;
2a // ∆ := x7→w ∧ x6=null ∧ w=null ∧ z=x

2b // ∃w, y ·∆ ` PostfindLast
3 else {
3a // ∆ := x7→w ∗ ls(w, null) ∧ x6=null ∧ w 6=null
3b // H := Local(∆, {x, y}) := x7→w ∗ ls(w, null) ∧ x6=null ∧ w 6=null
3c // R0 := Frame(∆, {x, y}) := emp ∧ x6=null ∧ w 6=null
4 unkProc(x; y);
4a // ∆ := R0 ∗M0 M0 := (emp ∧ x=a ∧ y=b) M := M0

4b // ∆ 0 [y/x] PrefindLast
4c // ∆ ∗ [M1] . [y/x] PrefindLast (s.t. ∆ ∗M1 ` [y/x] PrefindLast ∗ true)
4d // M1 := ls(y, null) ∧ y 6=null M := M ∗M1

4e // ∆ ∗M1 ` [y/x] PrefindLast ∗ R1 R1 := emp ∗ x=a ∧ y=b

5 findLast(y; z);
5a // ∆ := ([y/x] PostfindLast) ∗ R1

5b // ∆ 0 PostfindLast
5c // ∆ ∗ [M2] . PostfindLast M2 := ls(x, y) M := M ∗M2

6 } }
6a // PreunkProc := ∃w · [a/x, b/y] H

6b // PostunkProc := [a/x, b/y] M

Fig. 1. Verification of findLast calling an unknown procedure unkProc.

For this example, the unknown call to unkProc performs essential modification to a
local variable, so it can neither be regarded as skip nor dealt with using the hypothetical
frame rule. The candidate implementations of unkProc are not available, preventing a
verification against all possible candidates. However our approach is still applicable here
as described below.

We conduct a symbolic execution ([4, 16]) on the procedure body starting with the
precondition PrefindLast (line 0a). The results of our analysis (e.g. the abstract states) are
marked as comments in the code. The analysis carries on as a standard forward shape
analysis until the unknown procedure call at line 4.

At line 3, the current symbolic heap ∆ is split into two disjoint parts: the local part
H (line 3b) that is dependent on, and possibly mutated by, the unknown procedure; and
the frame part R0 (line 3c) that is not accessed by the unknown procedure. Intuitively,
the local part of a symbolic heap w.r.t. a set of variables X is the part of the heap
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reachable from variables in X (together with the aliasing information); while the frame
part denotes the unreachable heap part (together with the aliasing information). For
example, for a symbolic heap ls(x,w) ∗ ls(y, z) ∗ ls(z, null) ∧ w=z, its local part w.r.t.
{x} is ls(x,w) ∗ ls(z, null)∧w=z, and its frame part w.r.t. {x} is ls(y, z)∧w=z. We will
have their formal definitions in Section 6.

We take H (line 3b) as a crude precondition for the unknown procedure, since it
denotes the symbolic heap that is accessible, and hence potentially usable, by the un-
known call. The frame part R0 is not touched by the unknown call and will remain in
the post-state, as shown in line 4a.

At line 4a, the abstract state after the unknown call consists of two parts: one is
the aforesaid frame R0 not accessed by the call, and the other is due to the procedure’s
postcondition which is unfortunately not available. Our next step is to discover the
postcondition by examining (the requirements of) the code fragment after the unknown
call by doing abductive reasoning (line 4a to 5c).

Initially, we assume the unknown procedure having an empty heap M0 as its postcondi-
tion 1 , and gradually discover the missing parts of the postcondition during the symbolic
execution of the code fragment after the unknown call. To do that, our analysis keeps
track of a pair (∆,M) at each program point, where ∆ refers to the current heap state,
and M denotes the expected postcondition discovered so far for the unknown procedure.
The notations Mi are used to represent parts of the discovered postcondition.

At line 5, the procedure findLast is called recursively. Since the current heap state
does not satisfy the precondition of findLast (as shown in line 4b), the verification
fails. However, this is not necessarily due to a program error; it may be due to the fact
that the unknown call’s postcondition is still unknown. Therefore, our analysis performs
an abductive reasoning (line 4c) to infer the missing part M1 for ∆ such that ∆ ∗ M1

entails the precondition of findLast w.r.t. some substitution [y/x]. As shown in line
4d, M1 is inferred to be ls(y, null) ∧ y 6=null, which is accumulated into M as part of
the expected postcondition of the unknown procedure. (We will explain the details for
abductive reasoning in Sec 4.) Now the heap state combined with the inferred M1 meets
the precondition of the procedure findLast, and also generates a residual frame heap
R1 (line 4e).

The heap state ∆ immediately after the recursive call (line 5a) is formed by findLast’s
postcondition and the frame R1, and it is expected to establish the postcondition of
findLast for the overall verification to succeed. However, it does not (as shown in line
5b). Again this might be due to the fact that part of the unknown call’s postcondition
is still missing. Therefore, we perform another abductive reasoning (line 5c) to infer the
missing M2 as follows:

ls(y, z) ∗ z 7→null ∧ x=a ∧ y=b ∗ [M2] . ls(x, z) ∗ z 7→null

such that ∆ ∗M2 entails PostfindLast. In this case, our abductor returns M2 :=ls(x, y) as
the result which is then added into M by separation conjunction, as shown in line 5c.

Finally, we generate the expected pre/post-specification for the unknown procedure
(lines 6a and 6b). The precondition is obtained from the local pre-state of the unknown
call, H, by replacing all variables that are aliases of a (or b) with the formal parame-
ter a (or b). The postcondition is obtained from the accumulated abduction result, M,

1 Note that we introduce fresh logical variables a and b to record the value of x and y when unkProc

returns.
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after performing the same substitution. Our discovered specification for the unknown
procedure unkProc(a;b) is:

PreunkProc := ∃w · a7→w ∗ ls(w, null) ∧ a6=null ∧ w 6=null

PostunkProc := ls(a, b) ∗ ls(b, null) ∧ b 6=null

The entire program is correct if unkProc meets the derived specification.

3. Programming Language and Abstract Domain

In this section, we first depict the syntax of a language in which programs may invoke
unknown procedures, and then present the abstract domain for our analysis.

To focus only on key issues, we use a simple imperative language:

E =df x | null
b =df E1=E2 | E1 6=E2

A[E] =df [E] := E1 | dispose(E) | x := [E]

A =df x := E | x := new(E) | skip

C =df A[E] | A | f(x;y) | C1;C2 |
if b then C1 else C2 fi | while b do C od

U =df unkFn(x;y) | { unkFn(x0;y0);C1;
unkFn(x1;y1);C2; . . . ;Cn−1; unkFn(xn;yn)} |

if b then V else C fi | if b then C else V fi |
if b then V1 else V2 fi | while b do V od

V =df { C1;U(x1;y1);C2 }(x0;y0)

P =df · | P ; f(x; ref y) { local z;C } |
P ; f(x; ref y) { local z;V }

Note that expressions (E) are program variables to record memory locations in the heap,
and all program variables are assumed of the same type, reference. The language has both
heap sensitive (A[E]) and heap insensitive (A) atomic commands. The former requires
access to the heap location referred to by E, while the latter does not. The command
C contains calls to known procedures only, while the commands U and V comprise
unknown procedure calls. Note also that our language allows both call-by-value and
call-by-reference parameters for procedures, and for convenience, we group call-by-value
parameters on the left and call-by-reference ones on the right, separated by a semicolon.

The unknown commands U and V specify the possible scenarios in which an unknown
call (unkFn(x;y)) may occur. Note that U and V may be annotated with two sets of vari-
ables, e.g. (x0,y0) in the definition of V , where x0 denotes variables that can be accessed,
but cannot be modified by V , and where y0 denotes variables that may be mutated by
V . The same annotation applies to U . These annotations can be obtained automatically
via a pre-processing phase of the analysis, by recording all the variables appearing in V
as the right(left)-value of an assignment, and/or as a call-by-value(reference) parameter
of a procedure invocation [17].
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Example 2 (Unknown procedure and unknown block). The parse tree of findLast’s
body (omitting local variable definition) in our motivating example is as in Figure 2. 2

V ({...}(x;w,y,z))

gggggggggggggg

XXXXXXXXXXXXXXX

C(w := x.next) U(x,w;y,z) C(skip)

if (w == null) then C(z := x) else V ({...}(x;y,z))

ccccccccccccccccccccccccccccccccccc

gggggggggggggg

C(skip) U(x;y)(unkProc(x; y)) C(findLast(y, z))

Fig. 2. The parse tree of findLast’s body.

A program P is composed of several procedures (with one of them as the entry
method). A procedure can be totally known to the verifier (so that its body is com-
posed by C), or it may contain an unknown block V .

We use a memory model similar to the standard one for separation logic [19]:

Stack =df (Var ∪ LVar ∪ SVar) → Val

Val =df Loc ∪ {null}
Heap =df Loc ⇀ Val

State =df Stack× Heap

The slight difference is that we have three (disjoint) set of variables: a finite set of
program variables Var = {x, y, ..}, logical variables LVar = {x′, y′, ..}, and the special
(logical) variables SVar = {a, b, ..}, with the last set reserved for unknown procedures
for specification purpose. As usual, Loc is a countably infinite set of locations, subsumed
by the set of values Val. The function Heap denotes a partial mapping from locations to
values and a program state is a pair of stack and heap.

An abstract (program) state in our analysis is a symbolic heap representing a set of
concrete heaps. It is defined as follows:

E =df x | x′ | a Expressions

Π =df E1=E2 | E1 6=E2 | true | Π1∧Π2 Pure formulae

B(E1, E2) =df E1 7→E2 | ls(E1, E2) Basic separation predicates

Σ =df B(E1, E2) | true | emp | Σ1 ∗ Σ2 Separation formulae

∆ =df Π ∧ Σ Quantifier-free symbolic heaps

H =df ∃x.∆ Symbolic heaps

The expressions (x, x′ and a) correspond to the three kinds of variables (program, logical
and special ones). Pure formulae Π express the aliasing information among expressions.
The basic separation predicate B(E1, E2) denotes either a singleton heap or a list seg-
ment [6, 9, 16]. A (possibly empty) list segment is inductively defined as follows:

ls(E1, E2) =df (emp ∧ E1=E2) ∨ (∃E3 · E1 7→E3 ∗ ls(E3, E2))

Here the list segment predicate is regarded as a built-in predicate in our abstract domain,
as our abstract semantics and abduction are fine tuned for it. According to SpaceIn-
vader [6] we may extend it with other predicates. A symbolic heap H is composed of a
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pure formula Π and a separation formula Σ, possibly with existential quantifications over
them. The separation formula Σ is formed by the predicates B(E1, E2), true (arbitrary
heaps) and emp (an empty heap) via separation conjunction [19]. We use SH to denote
the set of all symbolic heaps and we will use the two terms “symbolic heap” and “abstract
state” interchangeably.

The semantics of a symbolic heap H [3, 4] is defined by the satisfaction relationship
(s, h) |= H between a pair of stack and heap states (s, h) and H, where s ∈ Stack and
h ∈ Heap:

|[x]|s =df s(x) |[null]|s =df null

(s, h) |= E1=E2 =df |[E1]|s = |[E2]|s (s, h) |= E1 6=E2 =df |[E1]|s 6= |[E2]|s
(s, h) |= Π1 ∧Π2 =df (s, h) |= Π1 and (s, h) |= Π2

(s, h) |= true =df always
(s, h) |= emp =df h = ∅ (s, h) |= E1 7→E2 =df h = {|[E1]|s7→|[E2]|s}
(s, h) |= Σ1 ∗ Σ2 =df h = h1 ∪ h2 and (s, h1) |= Σ1 and (s, h2) |= Σ2

where h1 and h2 are domain-disjoint

and the semantics of ls(E1, E2) can be obtained from its inductive definition over the
abstract domain. Based on such semantics, the entailment relationship between two sym-
bolic heaps H1 and H2 is straightforward:

H1 ` H2 =df ∀s, h · (s, h) |= H1 implies (s, h) |= H2

which is used to check whether one symbolic heap is stronger than another in our analysis.

4. Abduction

As shown in Example 1 (Section 2), when analyzing the code after an unknown call,
due to the lack of information about the unknown procedure, it is possible that the
current state is too weak to meet the required precondition for the next instruction. As
a consequence, the symbolic execution fails. A technique called abduction (or abductive
reasoning) [6, 11] can be used to discover a symbolic heap M to make the entailment
∆ ∗ M ` H ∗ R succeed, when the entailment ∆ ` H ∗ R fails. Here R denotes the
(automatically computed) frame part. For instance, the entailments at line 4b and line
5b failed in Example 1, and in both cases, the abduction algorithm was called to find the
missing M .

One problem in abduction is that there can be many solutions of M for the entailment
∆ ∗M ` H ∗ R to succeed. For instance, false can be a solution but should be avoided
where possible. As another example, for the entailment ls(y, z) ∗ M ` ls(x, z) ∗ R (a
similar one was at line 5c in Example 1 in Sec 2), an abductive reasoning may return,
for example, two different solutions: M = ls(x, y) with R = emp or M = ls(x, z) with
R = ls(y, z). A partial order ¹ over symbolic heaps was given by Calcagno et al. [6] to
make the selection from different solutions:

M ¹ M′ =df (M′ ` M ∗ true ∧M 0 M′ ∗ true)∨
(M′ ` M ∗ true ∧M ` M′ ∗ true ∧M′ ` M)

8



Intuitively speaking, consider two symbolic heaps M and M′, if M′ entails M (possibly
extended by some frame), then M is less than M′ under ¹. For example, we have ls(x, y) ¹
ls(x, y) ∗ ls(y, z), and emp ∨ ∃x, y.ls(x, y) ¹ emp.

With such partial order ¹, we can judge the quality of different solutions for abduction
by always choosing the least one according to ¹.

Two solutions can not be distinguished when they are not comparable under this
partial order. However, we may still prefer one solution over another in this case, as will
be discussed in Section 6. We would expect that the solution to incur as few free variables
as possible in the frame part (R). For this reason, we define a new order as follows:

M ¹∆
H M′ =df M¹M′ ∨ (M�M′ ∧M′�M ∧

∆ ∗M ` H ∗ R ∧∆ ∗M′ ` H ∗ R′ ∧
|fv(R)| ≤ |fv(R′)|)

Note that our partial order is defined over the set of solutions for one abduction. Intu-
itively, given two solutions which are not comparable w.r.t. ¹, our partial order may still
be able to compare them, if one incurs fewer free variables in the frame R than the other.
To ensure that the abductor will choose the former, but not the latter, we enrich the
abductor [6] with some new rules (right column below) so that it attempts to introduce
less free variables in the frame, where possible:

∆ ∗ [M] . ∆′ ∆ ∗ B(E, E′) 0 false

∆ ∗ [M ∗ B(E, E′)] . ∆′ ∗ B(E, E′)
missing

(E0=E1 ∧∆) ∗ [M] . ∃y′.∆′

∆ ∗ E0 7→E ∗ [∃x′.E0=E1 ∧M].
∃x′y′.∆′ ∗ E1 7→E

t-match

(E 6=E0 ∧∆ ∗ ls(x,E0)) ∗ [M] . ∆′

∆ ∗ ls(E, E0) ∗ [E 6=E0 ∧M] .
∃x.∆′ ∗ E 7→x

h-left
E 6=E0 ∧∆ ∗ ls(E0, x

′) ∗ [M] . ∃y′.∆′

∆ ∗ ls(E0, E) ∗ [E0 6=E ∧M].
∃x′y′.∆′ ∗ x′ 7→E

t-left

∆ ∗ [M] . ∆′ ∗ ls(E0, E1)
∆ ∗ B(E, E0) ∗ [M] . ∆′ ∗ ls(E, E1)

h-right
∆ ∗ [M] . ∃x′.∆′ ∗ ls(E0, E1)

∆ ∗ B(E0, E) ∗ [M] . ∃x′.∆′ ∗ B(E1, E)
t-right

where the rules from Calcagno et al. [6] are on the left and our new ones are on the right.
Compared with their work, when the matching from the head of a list segment fails, our
abductor also tries to match from the tail, instead of directly applying missing rule to
introduce a new separation predicate, which could bring in more free variables in the
frame. In our case, the rule t-match introduces aliasing information between two heads
of pointing-to relationships in the premise and conclusion of the abduction, respectively.
The last two rules try to match from the end of a basic separation predicate; if the
matching succeeds then the matched part will be dropped from both sides to reduce
the complexity of the predicates. For instance, in Example 1 in Section 2, for the last
abduction

∃y . ls(y, z) ∗ z 7→null ∗ [M] . ls(x, z) ∗ z 7→null

their abductor will return ls(x, z) as M, by trying to match the heads of the list segments
on both sides of ., and adding the missing heap part to the left hand side once the
matching fails. This solution is not optimal in the light that it introduces a free variable
z in the frame. Comparatively, our abduction tries to match also from the tail of a list
segment, finding ls(x, y) as the result for the aforesaid abduction, which is a minimal
solution under our partial order ¹∆

H .
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We prefer to find solutions that are (potentially locally) minimal with respect to
¹∆

H and consistent. However, such solutions are generally not easy to compute and can
incur excess cost (with additional disjunction in the analysis). Therefore, our abductive
inference is designed more from a practical perspective to discover anti-frames that should
be suitable as specifications for unknown procedures, and the order ¹∆

H is to state the
decision choices of our implementation of the abduction. This is proven in Sec 7 with the
experiments we conduct.

5. Abstract Semantics

This section introduces two kinds of abstract semantics we use to analyze the program:
an underlying semantics from the local shape analysis ([9]) and another semantics based
on both the first one and abduction from the composite shape analysis ([6]).

We denote the specifications of a procedure f(x;y) as a subset of SH × (SH ∪ {>})
(where > stands for a fault abstract state). Note that for a call-by-reference parameter x,
both old(x) and x may occur in a postcondition with the former referring to the value of
x in the pre-state (as in JML [15]).To illustrate, a postcondition ls(old(x), x) means that
there is a list segment beginning with the initial value of x (present in the precondition)
to the final x when the procedure returns. The set of all specifications for all procedures
is defined as

AllSpec =df P(Name× P(SH× (SH ∪ {>})))
where Name refers to the set of all function names. Then our underlying abstract seman-
tics’ type is defined as

|[C]| : AllSpec → P>(SH) → P>(SH)

where P>(SH) stands for P(SH ∪ {>}). Given a program C, a specification table T ∈
AllSpec, a set of abstract states S, |[C]|T S returns another set of abstract states.

Example 3 (Underlying semantics). For the findLast in our motivating example, sup-
pose the specification table T is

{(findLast(a, b), {(ls(a, null) ∧ a6=null, ls(a, b) ∗ b 7→null)})}
Then we know the symbolic execution |[findLast(x, y)]|T {ls(x, null)∧x6=null} will give
{ls(x, y) ∗ y 7→null} as result. 2

The basic transition functions below form the foundation of the first underlying se-
mantics. With one symbolic heap as input, they return either another symbolic heap or
a set of symbolic heaps:

rearr(E) =df SH → P>(SH[E]) Rearrangement

exec(A[E]) =df SH[E] → SH ∪ {>} Heap-sensitive execution

exec(A) =df SH → SH Heap-insensitive execution

abs =df SH → SH Abstraction

where SH[E] denotes a set of symbolic heaps in which each element has E exposed as
the head in one of its pointing-to conjuncts (E 7→F ). Here rearr(E) attempts to unroll
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the shape beginning with E to expose it as the head of a pointing-to predicate, say,
E points to another expression. (If such unrolling fails then it will return {>}.) This
is a preparation for the second transition function exec(A[E]), as it tries to perform
some dereference of E. The third function, like the semantics for stack-based variable
assignment and heap allocation, does not require such exposure of E, and thus is called
heap-insensitive compared with the second one. The last transition function conducts a
rolling over the shapes, to eliminate unimportant cutpoints to ensure termination for our
verification.

The rules for the basic transition functions are adopted from Distefano et al. [9], where
the logical variable x′′ is always fresh.

Below are the rules for rearrangement, where we try to find an explicit pointing-to
beginning with the expression E to be unrolled (or its alias). If such unrolling fails then
{>} is returned.

rearr(E) (∃x′.Π∧∆ ∗ ls(G,F )) =df if Π ` G=E then

{∃x′.Π∧E=F∧∆, ∃x′.Π∧∆ ∗ E 7→F,

∃x′, x′′.Π∧∆ ∗ E 7→x′′ ∗ ls(x′′, F )} else {>}
| (∃x′.Π∧∆ ∗G 7→F ) =df if Π ` G=E then

{∃x′.Π∧∆ ∗ E 7→F} else {>}
| (∃x′.Π∧∆) =df {>}

Below are rules for symbolic execution to reflect the effects, over heap or not, of atomic
commands.

exec (x := E)(∃x′.Π∧∆) =df ∃x′.x=[x′′/x]E ∧ [x′′/x](Π∧∆)

exec (x := [E])(∃x′.Π∧∆ ∗ E 7→F ) =df ∃x′.x=[x′′/x]F ∧ [x′′/x](Π∧∆ ∗ E 7→F )

| (∃x′.Π∧∆) =df >
exec ([E] := G)(∃x′.Π∧∆ ∗ E 7→F ) =df ∃x′.Π∧∆ ∗ E 7→G

| (∃x′.Π∧∆) =df >
exec (x := new(E))(∃x′.Π∧∆) =df ∃x′.[x′′/x](Π∧∆) ∗ x7→[x′′/x]E

exec (dispose(E))(∃x′.Π∧∆ ∗ E 7→F ) =df ∃x′.Π∧∆

| (∃x′.Π∧∆) =df >

Below are definitions of rules for abstraction. Their rationale is to remove any heap
garbage from the current state and eliminate logical cutpoints that are neither shared nor
essential in denoting a cyclic list over the heap. In our semantics, when the abstraction is
actually performed, the six rules are applied several rounds, with each round from the top
one to the bottom, until the abstracted state does not change any more. Its termination
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is discussed later in Section 6.2.

∃z′. E=x′ ∧Π ∧ Σ Ã ∃z′. [E/x′]Π ∧ Σ
Equality

x′ /∈LVar(Σ)
∃z′. E 6=x′ ∧Π ∧ Σ Ã ∃z′. Π ∧ Σ

Disequality

x′ /∈LVar(Π,Σ)
∃z′. Π ∧ Σ ∗ B(x′, E) Ã ∃z′. Π ∧ Σ ∗ true

Junk1

x′, y′ /∈LVar(Π,Σ)
∃z′. Π ∧ Σ ∗ B(x′, y′) ∗ B(y′, x′) Ã ∃z′. Π ∧ Σ ∗ true

Junk2

x′ /∈LVar(Π,Σ, E, F ) Π ` F=null

∃z′. Π ∧ Σ ∗ B1(E, x′) ∗ B(x′, F ) Ã ∃z′. Π ∧ Σ ∗ ls(E, null) Abs1

x′ /∈LVar(Π,Σ, E, F, E1, F1) Π ` F=E1

∃z′. Π ∧ Σ ∗ B1(E, x′) ∗ B(x′, F ) ∗ B(E1, F1) Ã ∃z′. Π ∧ Σ ∗ ls(E, F ) ∗ B(E1, F1)
Abs2

A lifting function p† is defined over partial functions on symbolic heaps to lift their

domains and ranges to a powerset of SH, plus >:

p†S =df {> | > ∈ S} ∪ {p H | H ∈ S \ {>}}

and this function is overloaded for rearr only to lift its domain to P>(SH):

rearr(E)†S =df {>|>∈S} ∪ (
⋃

H∈S\{>}
rearr(E) H)

The following function, filt, is to filter out any symbolic heap that does not satisfy the

given aliasing constraint:

filt (E=F )(H) =df if H 0 E 6=F then H ∧ E=F else undefined

filt (E 6=F )(H) =df if H 0 E=F then H ∧ E 6=F else undefined

and the program constructors’ semantics are based on the atomic ones defined above:

|[b]|T S =df filt(b)†S

|[A[E]]|T S =df abs† ◦ exec(A[E])† ◦ rearr(E)†S

|[A]|T S =df abs† ◦ exec(A)†S

|[C1;C2]|T S =df |[C2]|T ◦ |[C1]|T S

|[if b then C1 else C2 fi]|T S =df |[b;C1]|T S ∪ |[¬b;C2]|T S

|[while b do C od]|T S =df |[¬b]|T (lfix λS′.S ∪ |[b;C]|T S′)
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Finally we need to adapt the underlying abstract semantics to procedure invocation:

|[f(x;y)]|T S =df {[x/a,y/b,y′/old(b)]Post ∗ [y′/y]R | ∆∈S ∧
(Pre,Post)∈Specf ∧∆ ` [x/a,y/b]Pre ∗R}

where (f,Specf ) ∈ T and y′ are fresh

where T is an element of AllSpec. We assume here the formal parameters in f ’s specifica-
tions are expressed in terms of a,b and old(b), respectively. We first check whether the
procedure’s precondition is satisfied by the current state (subject to substitution), and
then replace it with the (substituted) postcondition to indicate the effect of the procedure
call.

Next we define the abstract semantics with abduction used in our verification to
discover the effect of unknown procedure calls.

|[C]|A : AllSpec → P>(SH× SH) → P>(SH× SH)

Here P>(SH × SH) denotes P((SH ∪ {>}) × (SH ∪ {>})). Given a specification table
T ∈ AllSpec, each element of the input (or output) for |[C]|AT is a pair of two symbolic
heaps, of which the first denotes the current program state, and the second stands for the
abduction result. In our framework, this semantics is used to accumulate the discovered
effect of unknown procedure calls into the second symbolic heap in the pair.

Example 4 (Abstract semantics with abduction). Consider the same setting for findLast
in Example 3. For the semantics with abduction |[findLast(x, y)]|AT {ls(x, null)}, we will
have {(ls(x, y)∗y 7→null, x6=null)} as result. Here in order to obtain the first component
of the pair as the final state (ls(x, y) ∗ y 7→null), the second component (x6=null) must
be added to its corresponding input state ls(x, null). 2

This semantics also consists of the basic transition functions which composes the
atomic instructions’ semantics and then the program constructors’ semantics. Here the
basic transition functions are lifted as follows:

Rearr(E)(H, M) =df

let H=rearr(E)(H) and S={(H ′,M)|H ′ ∈ H ∩ SH}
in if (> /∈ H) then S

else if (H ` E=a for some a ∈ SVar) and (M 0 a7→x′ for fresh x′ ∈ LVar)
then S ∪ {(H ∗ E 7→x′,M ∗ a7→x′)} else S ∪ {>}

Exec(A)(H, M) =df let H=exec(A)(H)in {(H ′,M)|H ′ ∈ H} ∪ {>|> ∈ H}
where A is [E] := G or dispose(E)

Exec(x := E)(∃x′.Π∧∆,M) =df (∃x′.x=σE ∧ σ(Π∧∆), σM)

Exec(x := [E])(∃x′.Π∧∆ ∗ E 7→F ) =df (∃x′.x=σF ∧ σ(Π∧∆ ∗ E 7→F ), σM)
| (∃x′.Π∧∆) =df if ∃x′.Π∧∆ ∗ E 7→F ` false then (>, σM)

else (∃x′.x=σF ∧ σ(Π∧∆ ∗ E 7→F ), σ(M ∗ E 7→F ))

Exec(x := new(E))(∃x′.Π∧∆) =df (∃x′.σ(Π∧∆) ∗ x7→σE, σM)

Abs(H, M) =df (abs(H), abs(M))
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In the lifted Rearr, in case of a rearrangement failure, we utilize abduction to discover
a pointing-to in the current heap, followed by another attempt of rearrangement. If it
succeeds, then the abduction result is confirmed and added to the current state. Note that
in the definition of Exec we need to treat variable assignments specifically. As can be seen
in the rules, when x is assigned to a new value, the original value is still preserved in a fresh
logical variable x′′ with a substitution σ = [x′′/x]. This allows us to keep the connection
among the history values of a variable and its latest value, which may be essential as
a link from the unknown procedure’s postcondition to its caller’s postcondition. This
is because the unknown procedure’s postcondition may refer to one of such variable’s
historical values, and its caller’s postcondition can count on that variable’s final value. In
that case, the recorded values in the abduction results will serve as a connection among
these abstract states. Abs simply performs abstraction over both H and M.

The filter function Filt now only works on the first symbolic heap of a pair:

Filt(b)(H, M) =df (filt(b)(H),M)

and the abstract semantics for the program constructors is as follows:

|[b]|AT S =df Filt(b)†S

|[A[E]]|AT S =df Abs† ◦ Exec(A[E])† ◦ Rearr(E)†S

|[A]|AT S =df Abs† ◦ Exec(A)†S

|[C1;C2]|AT S =df |[C2]|AT ◦ |[C1]|AT S

|[if b then C1 else C2 fi]|AT S =df |[b;C1]|AT S ∪ |[¬b;C2]|AT S

|[while b do C od]|AT S =df |[¬b]|AT (lfix λS′.S ∪ |[b;C]|AT S′)

Same as above, at last is the semantics for procedure invocation with abduction:

|[f(x;y)]|AT S =df {([x/a,y/b,y′/old(b)]Post ∗ [y′/y]R, [y′/y]M) | (∆,M)∈S∧
(Pre,Post)∈Specf ∧∆ ` [x/a,y/b]Pre ∗R} ∪
{([x/a,y/b,y′/old(b)]Post ∗ [y′/y]R, [y′/y](M ∗M′)) |

(∆,M)∈S ∧ (Pre,Post)∈Specf ∧∆0[x/a,y/b]Pre ∗R∧
∆ ∗ [M′] . [x/a,y/b]Pre}

where (f,Specf ) ∈ T and y′ are fresh

where T is an element of AllSpec. We also use a,b and old(b) for formal parameters in
the specification. This rule distinguishes two cases: 1. the current state in S is sufficiently
strong to entail Pre subject to some substitutions, and corresponding postcondition is
established; 2. the current state does not entail substituted Pre, and abduction is applied
with further requirements on the current state accumulated (M′). It will combine the
results from both cases to update the state after the procedure invocation and continue
with the symbolic execution.
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6. Verification

Based on the abstract semantics defined in the last section, we present in this section
our algorithms for the verification of programs with unknown calls.

6.1. Main Verification Algorithm

1. Main algorithm. Our verification algorithm given in Figure 3 attempts to verify the
body of the current procedure (the third input, comprising an unknown command U)
against the given specifications (the second input). The first input gives a set of known
procedure specifications, which are necessary as the current procedure may invoke known
procedures apart from unknown ones. If the verification succeeds, it returns specifications
that are expected for all unknown procedures invoked within U for the whole verification
to succeed. If it fails, we know that the current procedure cannot meet one or more
given specifications, no matter what specifications are given to the invoked unknown
procedures. Returned specifications will be expressed using special variables a,b, etc. as
in the earlier example.

For each specification (Pre,Post) to verify against (line 2), the algorithm works in
three steps. Based on the underlying semantics mentioned earlier, it first computes the
post-states of C1 (i.e. S0) from Pre (line 3), from which it extracts the preconditions for
U(x;y) using the function Local. Intuitively, it extracts the part of each ∆1 reachable from
the variables that may be accessed by U , namely, x and y (line 6). Here fv(∆) stands for
all free (program and logical) variables occurring in ∆. The function Local(Π ∧ Σ, {x})
is defined as follows:

Local(Π∧Σ, {x}) =df ∃fv(Π∧Σ) \ ReachVar(Π∧Σ, {x}) ·
Π ∗ ReachHeap(Π∧Σ, {x})

where ReachVar(Π∧Σ, {x}) is the minimal set of variables reachable from {x}:

{x} ∪ {z2 | ∃z1,Π1 · z1∈ReachVar(Π∧Σ, {x}) ∧Π=(z1=z2) ∧Π1}∪
{z2 | ∃z1,Σ1 · z1∈ReachVar(Π∧Σ, {x}) ∧ Σ=B(z1, z2) ∗ Σ1} ⊆ ReachVar(Π∧Σ, {x})

where B(z1, z2) stands for either z1 7→z2 or ls(z1, z2). And the formula ReachHeap(Π∧Σ,
{x}) denotes the part of Σ reachable from {x} and is formally defined as the ∗-conjunction
of the following set of formulae:

{Σ1 | ∃z1, z2,Σ2 · z1∈ReachVar(Π∧Σ, {x}) ∧ Σ=Σ1∗Σ2 ∧ Σ1=B(z1, z2)}
The second step is to symbolically execute C2, using the abstract semantics with

abduction, to discover the postconditions for U(x;y) (lines 8–10). At line 8, since we know
nothing about U , we take emp as the post-state of U . Therefore, the initial state for the
symbolic execution of C2 is simply the frame part of state not touched by U . Here Frame
is formally defined as

Frame(Π∧Σ, {x}) =df Π ∧ UnreachHeap(Π∧Σ, {x})
where UnreachHeap(Π∧Σ, {x}) is the formula consisting of all ∗-conjuncts from Σ which
are not in ReachHeap(Π∧Σ, {x}).

Note that x=a ∧ y=b ∧ z=c are used to record the snapshot of variables associated
with U using the special variables a,b and c. The symbolic execution of C2 at line 8
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Verify : AllSpec× P(SH× SH)× V ⇀ AllSpec ∪ {fail}
Algorithm Verify(T ,SpecV , {C1;U(x;y);C2}(x0;y0))
1 SpecU := ∅
2 foreach (Pre,Post) ∈ SpecV do
3 S0 := |[C1]|T {Pre ∧ y0=old(y0)}
4 if > ∈ S0 then return fail endif
5 foreach ∆1 ∈ S0 do
6 PreU := Local(∆1, {x,y})
7 Denote z = fv(PreU ) \ {x,y}
8 S := |[C2]|AT {([old(b)/y]Frame(∆1, {x,y}) ∧

x=a∧y=b∧z=c, emp∧x=a∧y=b∧z=c)}
9 S′ := { (∆,M) | (∆,M)∈S ∧∆ ` Post ∗ true } ∪

{ (∆ ∗M′,M ∗M′) | (∆,M)∈S ∧
∆ 0 Post∗true ∧∆∗[M′] . Post }

10 if ∃(∆,M)∈S′ . fv(M) * ReachVar(∆, {a,b})
then return (fail,M) endif

11 foreach (∆,M) ∈ S′ do
12 PreU := [a/x,b/y, c/z]PreU

13 PostU := sub alias(M, {a,b, c})
14 g := (fv(PreU ) ∩ fv(PostU )) ∪ {a,b}
15 SpecU := SpecU ∪ {(∃(fv(PreU )\g) · PreU ,PostU )}
16 end foreach
17 end foreach
18 end foreach
19 TU := CaseAnalysis(T ,SpecU , U)
20 Post Check(T ]TU ,SpecV , {C1;U ;C2})
21 return T ]TU

end Algorithm

Fig. 3. The main verification algorithm.

returns a set S of pairs (∆,M) where ∆ is a possible post state of C2 and M records
the discovered effect of U . At line 9, we check whether or not each ∆ can establish the
postcondition Post for the whole procedure. If not, another abduction ∆∗[M′] . Post is
invoked to discover further effect M′ which is then added into M.

There can be some complication here. Note that there can be a potential bug in the
program, or the given specification is not sufficient. As a consequence of that, the result
M returned by our abductor may contain more information than what can be expected
from U , in which case we cannot simply regard the whole M as the postcondition of U .
For example, consider the code fragment unknown(x); z:=y.next with the precondition
x7→null. Before the second instruction (dereference of y.next) we use abduction to get
y 6=null. However, noting the fact y/∈ReachVar(∆, {x}) where ∆ = emp∧y 6=null is the
state immediately after the unknown call plus the abduction result, we know that from
the unknown call’s parameters (x), y is not reachable, and hence the unknown call will
never establish a state where y 6=null. In that case we are assured that the procedure
being verified cannot meet the specification.
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To detect such a situation, we introduce the check in line 10. It tests whether the whole
abduction result is reachable from variables accessed by U . If not, then the unreachable
part cannot be expected from U , which indicates a possible bug in the program or some
inconsistency between the program and its specification. In such cases, the algorithm
returns an additional formula that can be used by a further analysis to either identify
the bug or strengthen the specification. Recall the example presented in the previous
paragraph: since y 6=null cannot be established by the unknown call, if we add it to the
precondition of the code fragment (to form a new precondition x7→null∧ y 6=null), then
the verification with the new specification can move on and will potentially succeed. We
will exemplify this later with experimental results.

The third step (lines 11–16) is to form the derived specifications for U in terms of
variables a,b and g, where g denotes logical variables not directly accessed by U , but
occurring in both pre- and postconditions. The formula sub alias(M, {a,b, c}) is obtained
from M by replacing all variables with their aliases in {a,b, c}. It is defined as

sub alias(M, {x}) =df ({[x/x′] | x∈{x} ∧ x′∈aliases(M, x)} M)∧
∧{x = x′ | x, x′∈{x} ∧ x′∈aliases(M, x)}

where a set of substitutions before a formula M denotes the result of applying all those
substitutions to M, and aliases(M, x) returns all the aliases of x in M.

Finally, at line 19, the obtained specifications SpecU for U are passed to the case
analysis algorithm (given in Figure 4) to derive the specifications of unknown procedures
invoked in U . At line 20, we conduct a post analysis for soundness purpose.

2. Case analysis algorithm. In order to discover specifications for unknown procedures
invoked in U , the algorithm in Figure 4 conducts a case analysis according to the structure
of U . In the first case (line 2), U is simply an unknown call. In this situation, the algorithm
simply returns all the pre-/postcondition pairs from SpecU as the unknown procedure’s
specifications.

In the second case (line 4), U is an if construct and each branch contains an unknown
block. The algorithm uses the main algorithm to verify the two branches separately with
preconditions Pre∧b and Pre∧¬b respectively, where Pre is one of the preconditions of
the whole if. The results obtained from the two branches are then combined using the ]
operator:

R1 ]R2 =df {(f,Refine(Spec1
f ∪ Spec2

f )) | (f,Spec1
f )∈R1 ∧ (f,Spec2

f )∈R2}
where Refine is defined as

Refine (∅) =df ∅
Refine ({(Pre,Post)} ∪ Spec) =df if ∃(Pre′,Post′)∈Spec · Pre′¹Pre ∧ Post¹Post′

then Refine(Spec)

else {(Pre,Post)} ∪ Refine(Spec)

The intuition of Refine is to eliminate any specification (Pre′,Post′) from a set if there
exists a “stronger” one (Pre,Post) such that Pre¹Pre′ and Post′¹Post. ] is to refine the
union of two specification sets.
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CaseAnalysis : AllSpec× P(SH× SH)× U ⇀ AllSpec ∪ {fail}
Algorithm CaseAnalysis(T ,SpecU , U)
1 switch U

2 case unkFn(x;y)
3 return {(unkFn,SpecU )}
4 case if b then V1 else V2 fi
5 SpecT := {(Pre∧b,Post) | (Pre,Post) ∈ SpecU}
6 SpecF := {(Pre∧¬b,Post) | (Pre,Post) ∈ SpecU}
7 R1 := Verify(T ,SpecT , V1)
8 R2 := Verify(T ,SpecF , V2)
9 return R1 ]R2

10 case if b then V else C fi
11 SpecT := {(Pre∧b,Post) | (Pre,Post) ∈ SpecU}
12 R := Verify(T ,SpecT , V )
13 if ∃(Pre,Post) ∈ SpecU ,∆ ∈ |[C]|T {Pre ∧ ¬b} ·

∆=> ∨∆ 0 Post∗true then return fail
14 else return R endif
15 case if b then C else V fi (Similar to the previous case)
16 case while b do V od
17 Denote V as {C1;U(x1;y1);C2}(x;y)

18 Define loop(x;y){ if b then V ; loop(x;y) fi}
19 T ′ := T ] { (loop,SpecU ) }
20 return Verify(T ′,SpecU , {if b then V ; loop(x;y) fi}(x;y))
21 case unkFn(x0;y0); { ;Ci; unkFn(xi;yi)}n

i=1

22 return {(unkFn,SeqUnkCalls(T ,SpecU , U))}
end Algorithm

Fig. 4. The case analysis algorithm.

The third and fourth cases (line 10 and 15) are for if constructs which contain one
unknown block in one branch. This is handled in a similar way as in the second case.
The only difference is that, for the branch without unknown blocks, we need to verify it
with the underlying semantics (line 13).

The fifth case is the while loop. In the motivating example in Section 2, we have
shown that our approach is able to handle the verification of a tail-recursive function
provided with both pre- and postconditions, our solution here is to translate the while
loop into a tail-recursive function to verify it. As can be seen in lines 16 – 20, the algorithm
generates a new function loop for the while loop, and takes the variables accessed by V to
be its parameters. Note that the read-only variables (x) become call-by-value parameters
and other possibly mutable ones (y) become call-by-reference parameters (which is one
reason for us to introduce call-by-reference parameters in our language). The algorithm
then adds the specifications found for the while loop as loop’s specifications into table T ,
verifying it, and at the same time obtaining specifications for the unknown procedure in
the while loop, using the main algorithm Verify.

In the last case (line 21), where U consists of multiple unknown procedure calls in
sequence, the algorithm invokes another algorithm, SeqUnkCalls, to deal with it.
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3. Verifying sequential unknown calls. To handle the most complicated case, un-
known procedure calls in sequence, we still need the SeqUnkCalls algorithm. First we
illustrate the brief idea using two sequential unknown procedure calls as an example,
followed by the general algorithm.

Suppose we have

{Pre} {unkFn1(x0;y0);C; unkFn2(x1;y1)} {Post}
where C is the only known code fragment within the block. Our current solution attempts
to find a common specification to capture both unknown procedures’ behaviors.

The algorithm works in three steps. In the first step, it extracts the precondition for
the first procedure, say PreU , from the given precondition Pre by extracting the part of
heap that may be accessed by the call via x0 and y0, which is similar to the first step of
the main algorithm Verify. Aiming at a general specification for both unknown calls, it
then assumes that the second procedure has a similar precondition PreU . In the second
step, it symbolically executes the code fragment C with the help of the abductor, to
discover a crude postcondition, say Post0U , expected from the first unknown call. This is
similar to the second step of the main algorithm Verify, except that the postcondition
for C is now assumed to be PreU . In the third step, the algorithm takes Post0U (with
appropriate variable substitutions) as the postcondition of the second unknown call, and
checks whether or not the derived post (Post0U ) satisfies Post. If not, it invokes another
abduction to strengthen Post0U to obtain the final postcondition PostU for the unknown
procedures. Note that this strengthening does not affect soundness: the strengthened
PostU can still be used as a general postcondition for both unknown procedures.

Figure 5 presents the algorithm to infer specifications for n (n ≥ 2) unknown calls in se-
quence. As aforementioned, given a block of (n+1) unknown procedure calls with n pieces
of known code blocks sandwiched among them (unkFn(x0;y0) {;Ci; unkFn(xi;yi)}n

i=1 in
line 1), and the specification (Pre,Post) (line 3) for such a block, our approach generally
works in three steps: first, to compute a precondition for the unknown calls; second, to
verify each code fragment Ci (i = 1, ..., n) with abduction to collect expected behavior of
the unknown calls (as part of their postcondition); third, to guarantee that the collected
postcondition satisfies Post. If not, then another abduction is conducted to strengthen
the gained postcondition to ensure this.

The first step is completed by lines 4 to 6. The local part of Pre is extracted w.r.t.
the first unknown call’s parameters x0 and y0. Other free variables are distinguished as
z0, which may be ghost variables. Finally the precondition is found in terms of special
logical variables a,b and c.

The second step is performed over each Ci; unkFn(xi;yi). Its main idea is to take the
postcondition generated for the last unknown call (Posti−1), plus the frame part during
the entailment check against Prei−1, as the post-state of unkFn(xi−1;yi−1), and try to
verify Ci beginning with such a state, using abduction when necessary (line 9). After
the verification we get Si containing abstract states before unkFn(xi;yi), and we want
those states to satisfy its precondition PreU subject to substitution. Note that during the
verification of Ci and the last satisfaction checking we may use abduction to strengthen
the program state, whose results reflect the expected behavior of unkFn(xi−1;yi−1) and
are accumulated as its expected postcondition. Hence we achieve a sufficiently strong
postcondition for each unknown call.
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SeqUnkCalls : AllSpec× P(SH× SH)× U ⇀ P(SH× (SH ∪ {>}))
Algorithm SeqUnkCalls(T ,SpecU , U)
1 Denote U as unkFn(x0;y0) {;Ci; unkFn(xi;yi)}n

i=1

2 R := ∅
3 foreach (Pre,Post) ∈ SpecU do
4 PreU := Local(Pre, {x0,y0})
5 Denote z0 = fv(PreU ) \ {x0,y0}
6 PreU := [a/x0,b/y0, c/z0]PreU

7 S′0 := {(Pre ∧ y0=old(y0), emp ∧ a=x0 ∧ b=y0 ∧ c=z0)}
8 for i := 1 to n do
9 Si := |[Ci]|AT { (Posti−1∗[old(b)/yi−1] Frame(∆i−1, {xi−1,yi−1}),Posti−1) |

(∆i−1,Mi−1)∈S′i−1 ∧ Posti−1 = ([xi−1/a,yi−1/b, zi−1/c] sub alias(
Mi−1, {a,b, c}))∧a=xi−1∧b=yi−1∧c=zi−1} where zi−1 is fresh

10 S′i := {(∆,M) | (∆,M)∈Si∧σ∆ ` ∃c ·PreU∗true}∪{(∆∗M′,M∗M′) |
(∆,M)∈Si ∧ σ∆ 0 ∃c ·PreU∗true∧ σ∆∗[M′] . ∃c ·PreU}

where σ=[a/xi,b/yi]
11 if ∃(∆,M)∈S′i · fv(M) * ReachVar(∆, {a,b}) then

return (fail, Local(M, {x0, old(y0)})) endif
12 end for
13 Sn+1 := { (Postn∗[old(b)/yn]Frame(∆n, {xn,yn}),Postn) | (∆n,Mn)∈S′n∧

Postn = ([xn/a,yn/b, zn/c] sub alias(Mn, {a,b, c})) ∧
a=xn ∧ b=yn ∧ c=zn} where zn is fresh

14 S′n+1 := {(∆,M) | (∆,M)∈Sn+1 ∧∆ ` Post∗true} ∪ {(∆ ∗M′,M ∗M′) |
(∆,M)∈Sn+1 ∧∆ 0 Post∗true ∧∆∗[M′] . Post}

15 if ∃(∆,M)∈S′n+1 · fv(M) * ReachVar(∆, {a,b}) then
return (fail, Local(M, {x0, old(y0)})) endif

16 foreach (∆,M) ∈ S′n+1 do
17 PostU := sub alias(M, {a,b, c})
18 g := fv(PreU ) ∩ fv(PostU ) \ {a,b}
19 R := Refine(R ∪ {(∃fv(PreU ) \ (g ∪ {a,b}) · PreU ,PostU )})
20 end foreach
21 end foreach
22 return R
end Algorithm

Fig. 5. Algorithm for sequential unknown calls.

The third step is similar to the first algorithm: it checks whether the final abstract
state entails the postcondition of the whole block, and strengthens the final abstract
state with abduction if it cannot. Then the ghost variables are recognized and processed
analogously to the first algorithm. Finally the strongest specifications discovered for those
unknown procedures are returned.

Note that our current solution tries to find a common specification (Pre,Post) suitable
for all the unknown procedures. Generally we may allow the unknown procedures to
have different specifications. In theory, this can be achieved by a more in-depth analysis
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which examines the known code fragments in between those unknown calls. That is,
by analyzing the code fragment Ci we would hopefully obtain a postcondition for the
(i−1)-th procedure and a precondition for the i-th. In the case of two unknown calls
unkFn0(x0;y0);C1; unkFn1(x1;y1), the precondition for unkFn0 and the postcondition for
unkFn1 can be obtained as usual (by analyzing the code before unkFn0 and after unkFn1

respectively). To derive the postcondition Post0 for unkFn0 and the precondition Pre1 for
unkFn1, we initialize Post0 to be emp to start a forward analysis over C1 with abduction,
to accumulate (via abduction) the expected behavior of unkFn0 (for C1 to be verified)
as Post0, and extract a formula (which is relevant to the footprint of unkFn1) from the
abstract state at the end of C1 as Pre1. However, our initial experiments show that, unless
the fragment C1 is sufficiently complex to expose enough information expected from
unkFn0, the derived Post0 and Pre1 can be rather weak. As a consequence, the derived
specification for unkFn0 can be too weak (with a weak postcondition) and the one for
unkFn1 can be too strong (with a weak precondition). It remains an open problem how
we might tune the derived results to obtain more reasonable specifications. We conjecture
that certain heuristics might help and we will explore this further in our future work.

6.2. Soundness and Termination

Informally, in the presence of unknown procedure calls, the soundness of the verifi-
cation signifies that, a program is successfully verified against its specifications, if all
the unknown procedures that it invokes conform to the specifications discovered by the
verification algorithm. Therefore, the correctness of the program depends on a (possible)
further verification for the unknown procedures.

The soundness of our verification algorithm is guaranteed at line 20 in the algorithm
Verify. Upon return, the algorithm conducts another forward verification on the whole
program, assuming that the unknown procedures are already verified against the discov-
ered specifications. As in Calcagno et al. [6], this final check rules out any potentially
unsound pre/post pairs (due to the use of abstraction); therefore, it ensures the soundness
of our verification.

The termination of our verification algorithms is based on two facts: the finiteness of
verification input (program and its specifications), and the termination of our semantics.
Firstly, all the loops and (recursive) algorithm invocations in the three verification al-
gorithms are performed over the input program and specifications to be verified, where
each time of iteration deals with part of the specifications/states and each invocation
processes part of the input program structurally. Therefore, as long as all such process-
ing terminates, the whole verification will terminate. This fact is further guaranteed with
the termination of our abstract semantics, which can be proved by claiming the finite-
ness of program and logical variables, and hence the finiteness of all possible abstract
states [9]. Hence we can conclude that our verification algorithm terminates with results
of either fail or successfully returned specifications that the unknown procedures must
conform.

7. Experiments and Evaluation

We have implemented the two abstract semantics and the verification algorithms with
Objective Caml and evaluated them over some list processing programs to test their
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viability and precision. The results are in Table 1. The first and second columns denote the
programs used for evaluation [5, 8] and their time consumption, respectively. We manually
hide some code in the original programs as calls to unknown procedures, for which we
try to discover specifications during the verification process. The third column shows the
partial specification for each program that is provided as input to our algorithm. The
last column exhibits the discovered specifications for unknown procedures inside those
programs. The programs are listed in Figure 6.

Program Time(s) Program Specification Discovered Unknown Specification

findLast

(x; z)
0.00135

Pre := ls(x, null) ∧ x6=null

Post := ls(x, z) ∗ z 7→null

Pre:= ∃w · a 7→w ∗ ls(w, null)∧
a 6=null ∧ w 6=null

Post:= ls(a, b)∗ls(b, null)∧b 6=null

append

(y; x)
0.00216

Pre := ls(x, null)∗ls(y, null)

Post := ls(x, y) ∗ ls(y, null)

Pre := ls(a, null)

Post := ls(a, b) ∗ ls(b, null)

copy(x; y) 0.00204
Pre := ls(x, null)

Post := ls(x, null)∗ls(y, null)

Pre := ls(a, null)

Post := ls(a, null)

revCopy

(x; y)
0.00107

Pre := ls(x, null)

Post := ls(x,null)∗ls(y,old(y))

Pre := true

Post := true

clear(; x) 0.00239
Pre := ls(x, null)

Post := emp ∧ x=null

Pre := a 7→b ∗ ls(b, null)

Post := ls(b, null)

appendThree

(y, z; x)
0.00315

Pre:= ls(x, null)∗ls(y, null)∗
ls(z, null)

Post:= ls(x, null)

Pre := ls(a, null) ∗ ls(b, null)

Post := ls(a, null)

towardsLast

(x; y)
0.00428

Pre:= ls(x, null) ∧ x6=null

Post:= ls(x, y) ∗ ls(y, null)∧
x6=null

Pre:= ls(a, null) ∧ a 6=null

Post:= ls(a, null) ∗ ls(b, null)∧
a 6=null ∧ b 6=null

iWillFail

(x, y; )
0.00066

Pre:= ls(x, null)

Post:= ls(x, null) ∗ ls(y, null)
(fail, ls(y, null))

Table 1. Experimental results for simple list processing programs.

Here we note down two observations on the experimental results. The first is that the
discovered specifications for the unknown procedures are more general than we would
have expected. Bear in mind that we have replaced some code from those programs with
unknown calls. We have compared the inferred specifications for those unknown calls
with the original code. The results show that the specifications derived by our algorithm
not only fully capture the behaviors of the replaced code, but also suggest other possible
implementations. A case in point is our motivating example findLast given in Sec 2,
where the original code replaced by unknown call is y := x.next with the post-state
x7→y ∗ ls(y, null)∧ y 6=null. According to our result, the post-state can be more general,
namely, ls(x, y) ∗ ls(y, null) ∧ y 6=null. This suggests that as long as y is not null, the
unknown call can traverse any number of nodes towards the tail of the list.

The second observation is about the last program listed in the table, a procedure
called iWillFail, whose code is given as follows:

void iWillFail(node x, node y; ) { unknown(x; ) }
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findLast(x; ref z) {
node w := [x], y;
if w = null then z := x
else
unknown(x; y);
findLast(y; z)

fi
}

append (y; ref x) {
if x = null then x := y
else
unknown(x; w);
if w = null then [x] := y
else append(y; w)
fi

fi
}

copy(x; ref y) {
if x = null then y := null
else
w := [x];
copy (w; y);
unknown(; y);

fi
}

revCopy(x; ref y) {
if x = null then skip
else
unknown(; y);
w := [x];
revCopy (w; y)

fi
}

clear(; ref x) {
if x = null then skip
else
w := [x];
unknown(x, w; );
x := w;
clear(; x)

fi
}

appendThree(y, z; ref x) {
unknown(x, y; );
unknown(x, z; )

}

towardsLast(x; y) {
unknown(; x);
unknown(x; y)

}

iWillFail(x, y; ) {
unknown(x; )

}

Fig. 6. Code of experimental examples.

This program is expected to be verified against the specification (Pre = ls(x, null),
Post = ls(x, null) ∗ ls(y, null)). Our verification fails and returns an additional formula
ls(y, null) from our abduction process. A further analysis reveals that the failure is actu-
ally due to the given specification where the precondition Pre is too weak for the program
to establish the postcondition Post: since y is not reachable from the parameters of the un-
known call, no implementation of the unknown call can establish the postcondition Post
involving y. The returned formula from our verification can then be used to strengthen the
given specification. In this case, if we add ls(y, null) into Pre via separation conjunction,
the verification will succeed with the specification (Preu = ls(x, null),Postu = ls(x, null))
discovered for the procedure unknown.
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We have also conducted some experiments to test our approach’s performance and
scalability. The results are shown in Table 2.

Program Lines of code Time(s) Memory(Mb) Specs discovered

list.h list.c 474 0.2 14.54 4

tasks.h tasks.c 3150 11.2 17.972 4

wd-stat.h wd-stat.c
ctrins.h ctrins.c

1404 1.232 16.664 10

kr-db.h kr-db.c 1674 1.837 16.636 12

krbid.h krbid.c
krpage.h krpage.c

2873 6.44 16.676 11

kdbadapt.h kdbadapt.c
kdbview.h kdbview.c

3208 7.88 17.54 13

Table 2. Experimental results for performance.

These results were achieved with an Intel Core 2 Quad CPU 2.66GHz with 8Gb
memory. The verified programs are either source code from FreeRTOS [2] (list.c and
tasks.c), or some working code created by the author (wd-stat.c, ctrins.c, kr-db.c,
krbid.c, krpage.c, kdbadapt.c and kdbview.c). All these programs mainly deal with
pointer-based linear data structures, such as singly-linked and/or doubly-linked lists.
For example, list.c provides functions to initialize and modify lists, while tasks.c

calls those functions to manipulate several lists during runtime. The other programs,
wd-stat.c, ctrins.c, kr-db.c, krbid.c, krpage.c, kdbadapt.c and kdbview.c main-
tain some list-based vectors for runtime data storage, or hashtables implemented with a
series of linked lists. Meanwhile, these programs have many function calls in them, like
invocation of library functions or calls of other functions in the project.

As for verification purpose, we provide each function to be verified with its specification
and run our algorithm over it. The unknown functions are manually assigned, such as
library function calls which mainly consist of memory allocation functions like malloc,
and functions that reside in other programs of the project. Since we only consider pointer
safety of linked data structures at the moment, we did some modification to the programs
to revise the code not relevant to our verification (like data types int and char for
instance), such that the programs can be successfully verified.

The experimental results suggest that our approach might be able to scale up as a
verification system for pointer safety, albeit we are trying to do more experiments, as well
as optimize the algorithm, to justify this. What is more, we have tested the top-down
feature of our abductive based verification system in the experiments. For instance, the
specifications gained for “unknown” functions being invoked in tasks.c cohere with the
ones for the corresponding callee functions in list.c. The same situation also applies to
other test cases. Based on such results, we will investigate more towards this direction to
uncover the power of a top-down abductive-based system as a viable alternative to the
current bottom-up approaches [6, 13].
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8. Conclusion

It is a challenging problem to automatically verify (even pointer safety of) heap-
manipulating imperative programs with unknown procedure calls. We propose a novel
approach to this problem, which infers expected specifications for unknown procedures
from their calling contexts during the verification process. The program is proven correct
subject to the condition that the invoked unknown procedures meet the inferred spec-
ifications. We employ a forward shape analysis with separation logic and an enhanced
abductive reasoning mechanism to synthesize both pre- and postconditions of the un-
known procedure. As a proof of concept, we have also implemented a prototype system
to test the viability of the proposed approach.

There are two possible future directions. One is to explore a more general solution
for unknown calls in sequence as discussed, e.g., it might be possible for us to invent
some heuristics to strengthen the postcondition for the first unknown call, so that the
precondition of the second can be strengthened accordingly, to achieve more reasonable
specifications for both. Another direction is to extend this method to an abstract domain
combining separation and numerical information [7], so that more general properties, such
as memory safety and functional correctness, can be specified and verified. We envisage
that, with the combined domain, the abstract semantics and analysis algorithms will
remain conceivably the same, but the abduction will be redefined to discover the anti-
frames for the newly introduced numerical features.
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