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Despite their popularity and importance, pointer-based programs remain a major challenge
for program verification. In recent years, separation logichas emerged as a contender for formal
reasoning of pointer-based programs. Recent works have focused on specialized provers that
are mostly based on fixed sets of predicates. In this paper, wepropose an automated verification
system for ensuring the safety of pointer-based programs, where specifications handled are con-
cise, precise and expressive. Our approach usesuser-definablepredicates to allow programmers
to describe a wide range of data structures with their associatedshape, sizeandbag(multi-set)
properties. To support automatic verification, we design a new entailment checking procedure
that can handlewell-foundedpredicates (that may be recursively defined) usingunfold/foldrea-
soning. We have proven the soundness and termination of our verification system and built a
prototype system to demonstrate the viability of our approach.

1. Introduction

Separation logic supports reasoning about shared mutable data structures, i.e., structures
where an updatable field can be referenced from more than one point. Using it, the specifi-
cation of heap memory operations and pointer manipulationscan be made more precise (with
the help of must-aliases) and concise (with the help of frameconditions). While the foundations
of separation logic have been laid in seminal papers by Reynolds [51] and Ishtiaq and O’Hearn
[25], new automated reasoning tools based on separation logic [4,19] have gradually appeared.
Several recent works [3,16] have designed specialised solvers that work for a fixed set of pred-
icates (e.g. the predicatelseg to describe a segment of linked-list nodes). This paper focuses
on an automated reasoner that works for user-defined predicates.

When designing a static reasoning mechanism for programs, two key issues that we need to
consider areautomationandexpressivity. Automation comes in two main flavors based either
on automatedverificationor on automatedinference. In automated verification for imperative
programs, pre/post conditions are typically specified for each method/procedure (and an invari-
ant given for each loop) before the reasoning system automatically checks if each given program
code is correct with respect to the given pre/post/invariant annotations. In automated inference
[53], these annotations are expected to be derived by the reasoning system. Intraprocedural
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inference is expected to derive loop invariants, while interprocedural inference is also expected
to derive pre/post conditions for methods/procedures. While inference can be said to be more
useful in general, it must be said that automated verification is of great importance too, and
it can complement inference in several ways. Firstly, programmers’ insights may be captured
via annotations to handle difficult examples that inferencesystem may be unable to handle.
Secondly, the verification system may act as an independent checker on the inference system.
Thirdly, the verification system plays a useful role within a“proof-carrying code” system [42],
where annotations of untrusted components must always be verified prior to their actual execu-
tion. Furthermore, an automated verification system allowsus to explore the boundary of what
is achievable in software verification which has been identified as a Grand Challenge [23,27]
for computing research.

Expressivity is another major issue for automated reasoning systems. By allowing more
properties to be easily captured, where possible, our verification tool can support better safety
and give higher assurance on program correctness. This paper’s main goal is to raise the level
of expressivity that is possible with an automated verification system based on separation logic,
so as to support the specification and verification of shape, size and bag properties of imperative
programs. We make the following technical contributions towards this overall goal:

• We provide auser-specifiedpredicate specification mechanism that can capture a wide
range of data structures with different kinds of shapes. By shapes, we mean the ex-
pected forms of some linked data structures, such as cyclic lists, doubly-linked list or even
height-balanced trees and sorted lists/trees. Moreover, we provide a novel mechanism to
soundly approximate each predicate describing a data structure by a heap-independent
pure formula which plays an important role in entailment proving. This allows our proof
obligations to be eventually discharged by classical provers, such as Omega or Isabelle
(Secs 2 and 4).

There are data structures that are beyond the capability of the current system. This is due
to the fact that, in our approach, references between the objects of a data structure are
captured by passing object references and fields as parameters to predicate invocations.
Consequently, our predicates cannot precisely capture datastructures with non-local ref-
erences, which do not have a direct relationship with fields of surrounding objects, but
rather are determined by some global constraint.

• We improve the expressiveness of our automated verificationtool by allowing it to capture
shape, size and bag properties from each predicate that is being used to define some data
structure. The size properties may capture sophisticated data structure invariants, such
as orderedness (for sorted list/trees) and also balanced height properties (for AVL-trees).
The bag constraints enable expressing reachability properties, as they can capture the
nodes (or values) reachable inside a heap predicate. For instance, our specification can
capture all elements of a list, our verification system can then prove the preservation of
the elements inside the list after sorting. These abstract properties are important as they
are easily specified by users, but are not automatically handled by existing verification
systems based on separation logic (Sec 3).

• We design a new procedure to prove entailment of separation heap constraints. This pro-
cedure usesunfold/fold reasoning to deal with predicate definitions that describe some



data structures with sophisticated shapes/properties. While the unfold/fold mechanism
may not be totally new, we have identified sufficient conditions for soundness and termi-
nation of the procedure in the presence of user-defined recursive predicates (Sec 4).

• We have implemented a prototype verification system with theabove features and have
also proven both its soundness and termination (Secs 5 and 6).

We briefly survey the state-of-the-art on research that focuses on using separation logic for
either program analysis or verification. The general framework of separation logic [51,25] is
highly expressive but undecidable. In the search for a decidable fragment of separation logic
for automated verification, Berdine et al. [3] support only a limited set of predicateswithout
size properties, disjunctions and existential quantifiers. Similarly, Jia and Walker [26] postpone
the handling of recursive predicates in their recent work onautomated reasoning of pointer
programs. Our approach is more pragmatic as we aim for a soundand terminating formulation
of automated verification via separation logic, but do not aim for completeness in the expressive
fragment that we handle. In VMCAI’07 [44], we present the proposal for a verification system
that supports user-defined predicates with size properties. In ICECCS’07 [9], we extend the
proposal with a bag/set specification mechanism. The current paper is a journal version of
these two papers. We have added clarification regarding the role and mechanism of implicit vs
explicit instantiation, and provided proofs on the soundness of our verification system.

On the inference front, Lee et al. [38] conduct an intraprocedural analysis for loop invariants
using grammar approximation under separation logic. Theiranalysis can handle a wide range
of shape predicates with local sharing but is restricted to predicates with two parameters and
without size properties. Gotsman et al. [19] also formulatean interprocedural shape inference
which is restricted to just the list segment shape predicate. Sims [54] extends separation logic
with fixpoint connectives and postpones substitution to express recursively defined formulae to
model the analysis of while-loops. However, it is unclear how to check for entailment in their
extended separation logic. While our work does not address the inference/analysis challenge,
we have succeeded in providing direct support for automatedverification via an expressive
specification mechanism through user-specified predicateswith shape, size and bag properties.
In the following sections, we provide some details on the symbolic mechanisms used to provide
automated program verification for a procedural language with support for pointers to heap-
based data structures.

This work is organized in eight sections. After the introduction, Sec 2 presents the language
and specifications. Sec 3 and Sec 4 describe the forward verification and entailment rules,
respectively, whereas their soundness is proved in Sec 5. Sec 6 summarizes the experimental
results, Sec 7 reviews some related works, and Sec 8 concludes our work. The proofs for our
soundness rules are given in the Appendix.

2. Language and Specifications

In this section, we first introduce a core imperative language and then depict our specification
language which supports user-defined shape predicates withshape, size and bag properties.

2.1. Language
We provide a simple imperative language in Figure 1. A program comprises a list of type

declarations (tdecl∗) and a list of method declarations (meth∗). We use the supscript∗ to help



P ::= tdecl∗ meth∗

tdecl ::= datat| spred
datat ::= data c { field∗ }
field ::= typev
type ::= c | τ
τ ::= int | bool | float | void
meth ::= type mn((ref typev)∗, (typev)∗) where mspec{e}
e ::= null | kτ | v | v.f | v:=e | v1.f :=v2 | new c(v∗)

| e1; e2 | typev; e | mn(v∗) | if v then e1 else e2

Figure 1. A Core Imperative Language

denote a list of items, for examplev∗ denotes a list of variables,v1, .., vn. With regard to the used
terminals,c denotes the name of a user-defined data type,v, v1, v2 stand for variable names,mn
represents a method name,k is a numeric constant, andf denotes a field name. For simplicity,
we shall assume that programs and specification formulas we use are well-typed. To simplify
the presentation but without loss of expressiveness, we allow only one-level field access likev.f
(rather thanv.f1.f2...), and we allow only boolean variables (but not expressions)to be used as
the test conditions for conditionals. (for brevity, we use the variablev in the test condition for
conditionals to denote a boolean variable). The language supports data type declaration via
datat, and shape predicate3 definition viaspred. The syntax for shape predicates is given in the
next subsection.

The following data node declarations can be expressed in ourlanguage and will be used as
examples throughout the paper. Note that they are recursivedata declarations with different
numbers of fields.

data node { int val; node next }
data node2 { int val; node2 prev; node2 next }
data node3 { int val; node3 left; node3 right; node3 parent }

Each methodmethis associated with a pre/post specificationmspec, the syntax of which will
be given in the next subsection. For simplicity, we assume that variable names declared inside
each method are all distinct.

Pass-by-referenceparameters are marked withref. For formalization convenience, they are
grouped together. This pass-by-reference mechanism is useful for supporting reference param-
eters of languages such as C♯. As an example of pass-by-reference parameters, the following
function allows the actual parameters of{x, y} to be swapped at its callers’ sites.
void swap(ref node2 x, ref node2 y) where · · · { node2 z:=x ; x:=y ; y:=z }
Furthermore, these parameters allow each iterative loop tobe directly converted to an equiv-

alent tail-recursive method, where mutation on parametersare made visible to the caller via
pass-by-reference. This technique of translating away iterative loops is standard and is helpful
in further minimising our core language.

3Shape predicates are predicates specifying data structureshapes. Our shape predicates can also specify size and
bag properties of data structures.



The standard insertion sort algorithm can be written in our language as follows:

node insert(node x, node vn) where · · ·
{ if (vn.val≤x.val)
then { vn.next:=x; vn }
else if (x.next=null) then
{ x.next:=vn; vn.next:=null; x }

else { x.next:=insert(x.next, vn); x }}

node insertion sort(node y)
where · · ·

{ if (y.next=null) then y
else {
y.next:=insertion sort(y.next);
insert(y.next, y)}}

The insert method takes a sorted listx and a nodevn that is to be inserted in the correct
location of its sorted list. Theinsertion sort method recursively applies itself (sorting) to
the tail of its input list, namelyy.next, before inserting the first node, namelyy, into its now
sorted tail. Note that we use an expression-oriented language where the last subexpression (e.g.
e2 from e1;e2) denotes the result of an expression. The missing method specifications (to be
filled in the place of· · · ), denoted bymspec, are described in the next section.

2.2. The Specification Language
Separation logic [51,25] extends Hoare logic [21] to support reasoning about shared mutable

data structures. One connective that it adds to classical logic is separation conjunction∗. The
separation formulap1 ∗ p2 means that the heap can be split into two disjoint parts in which p1
andp2 hold, respectively. Our work will make use of this connective in our specifications. In
our approach, the verifier takes as input a command and a precondition. It then derives the
strongest postcondition upon termination of the command and checks if the strongest postcon-
dition implies the declared postcondition.

We propose a mechanism based on predicates (that may be recursively defined) to allow
user specification of data structure shapes with size and reachability properties. Our shape
specification is based on separation logic with support for disjunctive heap states. Furthermore,
each shape predicate may have pointer, integer or bag parameters to capture relevant properties
of data structures.

Separation logic [51,25] uses the notation7→ to denote singleton heaps, e.g. the formula
p 7→[val : 3, next : l] represents a singleton heap referred to byp, where[val : 3, next : l]
is a data record containing fieldsval andnext. On the other hand, separation logic also uses
predicate formulas to denote more complicated shapes, e.g.lseg(p, q) represents list segments
starting from the head pointerp and containing all the data nodes until theq pointer is reached.
In our system, we unify these two different representationsinto one form:p::c〈v∗〉. Whenc is
a data type name,p::c〈v∗〉 stands for a singleton heapp 7→[(f:v)∗] wheref∗ are fields of data
declarationc. Whenc is a predicate name,p::c〈v∗〉 stands for the predicate formulac(p, v∗) .
The reason we distinguish the first parameter from the rest isthat each predicate has an implicit
parameterroot as its first parameter. Effectively, this is a “root” pointerto the specified
data structure that guides data traversal and facilitates the definition ofwell-foundedpredicates
(given later in this section). As an example, an acyclic linked list (that terminates with anull
reference) can be described by:

root :: ll〈n〉 ≡ (root=null∧n=0)∨
(∃i, m, q · root::node〈i, q〉∗q::ll〈m〉∧n=m+1)

inv n≥0



The parametern captures aderivedvalue that denotes the length of the acyclic list starting
from root pointer. The above definition asserts that anll list can be empty (the base case
root=null) or consists of a head data node (specified byroot::node〈i, q〉) and a separate tail
data structure which is also anll list (q::ll〈m〉). The∗ connector ensures that the head node
and the tail reside in disjoint heaps. We also specify a default invariantn≥0 that holds for allll
lists. (This invariant can be verified by checking that each disjunctive branch of the predicate
definition always implies its stated invariant. In the case of ll predicate, the disjunctive branch
with n = 0 implies the given invariantn≥0. Similarly, then = m + 1 branch together with
m≥0 from the invariant ofq::ll〈m〉 also implies the given invariantn≥0.) Our predicate uses
existential quantifiers for local values and pointers, suchasi, m, q. The syntax for inductive
shape predicates is given in Figure 2. For each shape definition spred, the heap-independent
invariantπ over the parameters{root, v∗} holds for each instance of the predicate. Types need
not be given in our specification as we have an inference algorithm to automatically infer non-
empty types for specifications that are well-typed. For thell predicate, our type inference can
determine thatm, n, i are ofint type, whileroot, q are of thenode type. As the construction
of type inference algorithm is quite standard for a languagewithout polymorphism [47], its
description is omitted in the current paper. Note that arbitrary recursive shape relation can lead
to non-termination in our reasoning. We avoid this problem by proposing a notion of well-
founded shape predicates, which will be discussed later in the current section.

The use of separation logic enables more precise and concisereasoning for heap memory, as it
can easily support must-aliasing and local reasoning. Regarding must-aliasing, when we specify
that x::node〈3, y〉∗y::node〈5, x〉 to be a precondition of some method, we can immediately
determine thatx, y are non-aliased, namelyx 6=y due to the use of the separation conjunction,
while x.next = y andy.next = x are must-aliases for the two fields from the heap formula.
In contrast, if we had used the formulax::node〈3, y〉∧y::node〈5, x〉, we may not be able to
determine ifx, y are aliased with each other, or not. Regarding local reasoning about heap-
allocated data structures [16,46], it means that reasoningabout a command concerns only the
part of the heap that the command reads or writes, i.e. the commands footprint. Note that local
reasoning is also present in the original formulation of Hoare logic [21] with the substitution
treatment of assignment, but is lost if heap-based data structure, and thus aliasing, is introduced
to the programming language. This loss of locality is noted as the pointer swing problem
by Hoare and He [22]. Due to local reasoning, in our system, a precondition guarantees the
existence of all memory locations that the procedure accesses. Hence, we can assume that
only the heap memory specified in the precondition of each method may be modified by the
method’s body. This makes specifications using separation logic shorter by omitting the need
to write modifiesclauses that are necessary in traditional specification languages, such as JML
[37] or Spec♯[1].

A more complex shape, doubly linked-list with lengthn, is described by:

dll〈p, n〉 ≡ (root=null∧n=0)∨(root::node2〈 , p, q〉∗q::dll〈root, n−1〉)
inv n≥0

The dll shape predicate has a parameterp that represents theprev field of the first node of
the doubly linked-list. It captures a chain of nodes that areto be traversed via thenext field
starting from the current noderoot. The nodes accessible via theprev field of theroot node
are not part of thedll list. This example also highlights some shortcuts we may useto make



shape specifications shorter. We use underscoreto denote an anonymous variable. All the
variables (including anonymous variables) in the RHS of the shape definition, which are not
parameters of the given predicate, such asq, are existentially quantified. Furthermore, terms
may be directly written as arguments of shape predicate or data node, while theroot parameter
on the LHS can be omitted as it is an implicit parameter that must be present for each of our
predicate definitions.

User-definable shape predicates provide us with more flexibility than some recent automated
reasoning systems [3,5] that are designed to work with only asmall set of fixed predicates. Fur-
thermore, our shape predicates can describe not only theshapeof data structures, but also their
sizeandbag properties. (Examples with bag properties will be described later in Sec 2.2.1.)
This capability enables many applications, including those requiring the support for data struc-
tures with more complex invariants. For example, we may define a non-empty sorted list as
below. The predicate also tracks the length, the minimum andmaximum elements of the list.

sortl〈n, min, max〉 ≡ (root::node〈min, null〉 ∧ min=max ∧ n=1)
∨ (root::node〈min, q〉 ∗ q::sortl〈n−1, k, max〉 ∧ min≤k)

inv min≤max ∧ n≥1

The constraintmin≤k guarantees that sortedness property is adhered between anytwo adjacent
nodes in the list. We may now specify (and then verify) the insertion sort algorithm mentioned
earlier (see Sec 2.1 for the code) :

node insert(node x, node vn) where
x::sortl〈n, mi, ma〉 ∗ vn::node〈v, 〉 ∗→
res::sortl〈n+1, min(v, mi), max(v, ma)〉

node insertion sort(node y)
where y::ll〈n〉 ∧ n>0 ∗→
res::sortl〈n, , 〉

Note that we useΦpr ∗→Φpo to capture a preconditionΦpr and a postconditionΦpo of a
method, as an abbreviation of the standard representationrequires Φpr; ensures Φpo [1,37].
A special identifierres is used in the postcondition to denote the result of the method. Later
in the verification system, we also use it to denote the value of the latest expression. The pre-
condition ofinsertion sort ensures thaty points to a non-empty singly linked list (the fact
that the list is non-empty is given by the constraintn>0), whereas the postcondition shows that
the output list is sorted and has the same number of nodes,n, as the input list. Regarding the
insert method, the precondition assumes that the method takes a sorted list of sizen pointed
by x, and a nodevn that is to be inserted in the correct location in the sorted list. The post-
condition asserts that the method returns a pointer to a sorted list of sizen+1, whose minimum
stored value is the minimum between the smallest value before the insertion,mi, and the newly
inserted value,v. Similarly, the maximum stored value is the maximum betweenthe largest
value before the insertion,ma, and the newly inserted value,v.

The separation formulas we use are in a disjunctive normal form (eg.Φ,Φpr,Φpo in Figure 2).
Each disjunct consists of a∗-separated heap constraintκ, referred to asheap part, and a heap-
independent formulaπ, referred to aspure part. The pure part does not contain any heap nodes
and is presently restricted to pointer equality/disequality γ, Presburger arithmetics, φ ([49])
and bag constraintϕ, φ. Furthermore,∆ denotes a composite formula that could always be
safely translated into theΦ form which captures a disjunct of heap states, denoted byκ, that
are in separation conjunction.4 ∆ will be used in the rest of the paper for denoting an abstract

4This translation is elaborated later in Figure 5.



spred ::= c〈v∗〉 ≡ Φ inv π
mspec ::= Φpr ∗→Φpo

Φ ::=
∨
(∃v∗·κ∧π)∗

π ::= γ∧φ
γ ::= v1=v2 | v=null | v1 6=v2 | v 6=null | γ1∧γ2
κ ::= emp | v::c〈v∗〉 | κ1 ∗ κ2

∆ ::= Φ | ∆1∨∆2 | ∆∧π | ∆1∗∆2 | ∃v·∆
φ ::= ϕ | b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
a ::=s1=s2 | s1≤s2
b ::=true | false | v | b1=b2

s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2) | min(s1,s2) | |B|
ϕ ::= v∈B | B1=B2 | B1⊏B2 | ∀v∈B·φ | ∃v∈B·φ
B ::= B1⊔B2 | B1⊓B2 | B1−B2 | {} | {v}

Figure 2. The Specifications

state. The constraint domainsφ for properties are currently chosen, due to the availability of
the corresponding solvers. However, we envisage the use of more complex constraint domains
in the future, with the adoption of new constraint solvers/provers in our system. In the rest of
the paper, we will use the following bag operators [55]: bag union⊔, bag intersection⊓, bag
subsumption⊏, and bag cardinality|B|.

As we have already seen, separation formulas are used in pre/post conditions and shape defi-
nitions. In order to handle them correctly without running into unmatched residual heap nodes,
we require each separation constraint to bewell-formed, as given by the following definitions:

Definition 2.1 (Accessible)A variable isaccessibleif it is a method parameter, or it is a special
variable, eitherroot or res.

Definition 2.2 (Reachable)Given a heap constraintκ and a pointer constraintγ, the heap
nodes inκ that are reachable from a set of pointersS can be computed by the following function.

reach(κ, γ, S) =df p::c〈v∗〉∗reach(κ−(p::c〈v∗〉), γ, S∪{v|v ∈ {v∗}, IsPtr(v)})
if ∃q ∈ S · (γ =⇒ p=q) ∧ p::c〈v∗〉 ∈ κ

reach(κ, γ, S) =df emp, otherwise

Note thatκ−(p::c〈v∗〉) removes a termp::c〈v∗〉 from κ, while IsPtr(v) determines ifv is of
pointer type.

For illustration, consider the example given below:

reach(p::node〈 , q〉∗q::ll〈n〉, true, {p}) =df p::node〈 , q〉∗reach(q::ll〈n〉, true, {p, q})
=df p::node〈 , q〉∗q::ll〈n〉

Definition 2.3 (Well-Formed Formulas) A separation formula is well-formed if



• it is in a disjunctive normal form
∨
(∃v∗ · κi ∧ γi ∧ φi)

∗ whereκi is for heap formula, and
γi ∧ φi is for pure, i.e. heap-independent, formula, and

• all occurrences of heap nodes are reachable from its accessible variables,S. That is, we
have∀i · κi = reach(κi, γi, S), modulo associativity and commutativity of the separation
conjunction∗.

For example, consider the separation formulap1::node〈 , null〉∗p2::node〈 , null〉 and the
set of accessible variablesS={p1}. The formula is not well-formed asp2 is not reachable from
p1.

reach(p1::node〈 , null〉∗p2::node〈 , null〉, true, {p1}) =df p1::node〈 , null〉

In our specifications, we allowroot to appear only in predicate bodies, andres in post-
conditions. The primary significance of thewell-formedcondition is that all heap nodes of a
heap constraint are reachable from accessible variables. This allows the entailment checking
procedure to correctly match nodes from the consequent withnodes from the antecedent of an
entailment relation.

Arbitrary recursive shape relations can lead to non-termination in unfold/fold reasoning. To
avoid that problem, we propose to use onlywell-foundedshape predicates in our framework.

Definition 2.4 (Well-Founded Predicates)A shape predicate is said to bewell-foundedif it
satisfies the following conditions:

• its body is a well-formed formula,

• for all heap nodesp::c〈v∗〉 occurring in the body,c is a data type name iffp = root.

Note that the definitions above are syntactic and can easily be enforced. An example of
well-founded shape predicates isavl - binary tree with near balanced heights, as follows :

avl〈n, h〉 ≡ (root=null ∧ n=0 ∧ h=0)
∨ (root::node2〈 , p, q〉 ∗ p::avl〈n1, h1〉∗q::avl〈n2, h2〉
∧n=1+n1+n2∧ h=1+max(h1, h2) ∧ −1≤h1−h2≤1) inv n, h≥0

In contrast, the following three shape definitions are notwell-founded.

foo〈n〉 ≡ root::foo〈m〉 ∧ n=m+1
goo〈〉 ≡ root::node〈 , 〉 ∗ q::goo〈〉
too〈〉 ≡ root::node〈 , q〉 ∗ q::node〈 , 〉

Forfoo, theroot identifier is bound to a shape predicate. Forgoo, the heap node pointed byq
is not reachable from variableroot. Fortoo, an extra data node is bound to a non-root vari-
able. The first example may cause infinite unfolding, while the second example captures an
unreachable (junk) heap that cannot be located by our entailment procedure. The last example
illustrates the syntactic restriction imposed to facilitate termination of proof reasoning, which
can be easily overcome by introducing intermediate predicates. For example, we may use:

too〈〉 ≡ root::node〈 , q〉 ∗ q::tmp〈〉
tmp〈〉 ≡ root::node〈 , 〉

wheretmp is the intermediate predicate added to satisfy our well-founded condition.
Our specification language allows bag/multiset propertiesto be specified in shape predicates

and method specifications. This extra expressivity will be illustrated next by some examples.



2.2.1. Bag of Values/Addresses
The earlier specification of sorting captures neither the in-situ reuse of memory cells nor

the fact that all the elements of the list are preserved by sorting. The reason is that the shape
predicate captures only pointers and numbers but does not capture the set of reachable nodes in
a heap predicate. A possible solution to this problem is to extend our specification mechanism
to capture either a set or a bag of values. For generality and simplicity, we propose to only
use the bag (or multi-set) notation that permits duplicates, though set notation could also be
supported. The shape specifications from the previous section are revised as follows:

ll2〈n, B〉 ≡ (root=null∧n=0∧B={})
∨(root::node〈 , q〉∗q::ll2〈n−1, B1〉∧B=B1⊔{root}) inv n≥0∧|B|=n

sortl2〈B, mi, ma〉 ≡ (root::node〈mi, null〉∧mi=ma∧B={root})
∨ (root::node〈mi, q〉∗q::sortl2〈B1, k, ma〉∧B=B1⊔{root} ∧ mi≤k)
inv mi≤ma ∧ B 6={}

Each predicate of the formll2〈n, B〉 or sortl2〈B, mi, ma〉 now captures a bag of addresses
B for all the data nodes of its data structure (or heap predicate). With this extension, we can
provide a more comprehensive specification for in-situ sorting, as follows :

node insert(node x, node vn) where
x::sortl2〈B, mi, ma〉 ∗ vn::node〈v, 〉 ∗→
res::sortl2〈B⊔{vn}, min(v, mi), max(v, ma)〉 {· · · }

node insertion sort(node y) where
y::ll2〈n, B〉 ∧ B 6={} ∗→ res::sortl2〈B, , 〉 {· · · }

The precondition ofinsert assumes that the method takes a sorted list pointed byx and a node
vn that is to be inserted in the correct location in the sorted list. The addresses of all nodes
stored in the list pointed byx are contained in the bagB, whereas the minimum and maximum
values are represented bymi andma, respectively. The postcondition asserts that the method
returns a pointer to a sorted list containing all nodes from the initial list,B, union with the new
node inserted,vn. In the resulted list, the minimum value stored is the minimum between the
smallest value before the insertion,mi, and the newly inserted value,v. Similarly, the maximum
value stored is the maximum between the largest value beforethe insertion,ma, and the newly
inserted value,v. The precondition ofinsertion sort ensures thaty points to a non-empty
singly linked list (the fact that the list is non-empty is given by the constraintB 6={}), whereas
the postcondition shows that the output list is sorted and contains the same nodesB as the input
list. We stress that this bag mechanism to capture the reachable nodes in a shape predicate is
quite general. For example, instead of heap addresses, we may also revise our linked list view
to capture a bag of reachable values, and its length, as follows:

ll3〈n, B〉 ≡ (root=null∧n=0∧B={})∨
(root::node〈a, q〉∗q::ll3〈n−1, B1〉∧B=B1⊔{a}) inv n≥0 ∧ |B|=n

Capturing a bag of values allows us to reason about the collection of values in a data structure,
and permits relevant properties to be specified and automatically verified (when equipped with



an appropriate constraint solver), as highlighted by two examples below:

data pair{node v1; node v2}
pair partition(node x, int p) where
x::ll3〈n, A〉 ∗→ res::pair〈r1, r2〉 ∗ r1::ll3〈n1, B1〉∗r2::ll3〈n2, B2〉
∧A=B1⊔B2 ∧ n=n1 + n2 ∧ (∀a∈B1·a≤p)∧(∀a∈B2·a>p)
{ if (x=null) then new pair(null, null)
else { pair t; t:=partition(x.next, p);

if (x.val≤p) then { x.next:=t.v1; t.v1:=x }
else { x.next:=t.v2; t.v2:=x };

t } }

bool allPos(node x) where
x::ll3〈n, B〉 ∗→ x::ll3〈n, B〉 ∧ ((∀a∈B·a≥0)∧res ∨ (∃a∈B·a<0)∧¬res)

{ if (x=null) then true
else if (x.val<0) then false else allPos(x.next) }

Note that both universal and existential properties over bags can be expressed. The first ex-
ample returns a pair of lists that have been partitioned froma single input list according to an
integer pivot. This partition function and its pre/post specification can be used to prove the total
correctness of the quicksort algorithm. The second exampleuses existentially and universally
quantified formulae to determine if at least one negative number is present in an input list, or not.
Note that the postcondition ofallPos preserves the fact thatx is still pointing to a singly-linked
list with the lengthn and the bag/set of valuesB: x::ll3〈n, B〉. These expressive specifications
can be handled by our separation logic prover in conjunctionwith relevant classical provers,
such as MONA [45] and Isabelle [30].

3. Automated Verification
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Figure 3: Our Approach to Verification

An overview of our automated ver-
ification system is given in Figure 3.
The front-end of the system is a stan-
dard Hoare-style forward verifier, which
invokes the entailment prover. In this
section, we present the forward verifier
which comprises a set of forward ver-
ification rules to systematically check
that the precondition is satisfied at each
call site, and that the declared postcon-
dition is successfully verified (assuming
the given precondition) for each method
definition. Note that we allow the precondition of a method tobe false. The body of any
such method can always be successfully verified. However, such a method must not be invoked
by a program at locations that are possibly reachable, as otherwise such program can never be
verified. This relaxation does not affect the soundness of our verification system. The back-end
entailment prover will be given in Sec 4.



[FV−IF]

⊢ {∆∧v′} e1 {∆1} ⊢ {∆∧¬v′} e2 {∆2}

⊢ {∆} if v then e1 else e2 {∆1∨∆2}

[FV−CONST]

∆1 = (∆∧eqτ (res, k))

⊢ {∆} kτ {∆1}

[FV−LOCAL]

⊢ {∆} e {∆1}

⊢ {∆} {t v; e} {∃ v, v′·∆1}

[FV−SEQ]

⊢ {∆} e1 {∆1} ⊢ {∆1} e2 {∆2}

⊢ {∆} e1; e2 {∆2}

[FV−VAR]

∆1=(∆∧res=v′)

⊢ {∆} v {∆1}

[FV−ASSIGN]

⊢ {∆} e {∆1} ∆2=∃res·(∆1∧{v}v
′=res)

⊢ {∆} v:=e {∆2}

[FV−NEW]

∆1=(∆ ∗ res::c〈v′1, .., v
′
n〉)

⊢ {∆} new c(v1, .., vn) {∆1}

[FV−FIELD−READ]

type(v) = c〈f1, .., fn〉
∆⊢v′::c〈v1, .., vn〉 ∗∆1 freshv1..vn

∆2 = ∃v1..vn·(∆1 ∗ v
′::c〈v1, .., vn〉∧res=vi)

⊢ {∆} v.fi {∆2}

[FV−FIELD−UPDATE]

type(v) = c〈f1, .., fn〉
∆⊢v′::c〈v1, .., vn〉 ∗∆1 freshv1..vn

∆2 = ∃v1..vn·(∆1 ∗ v
′::[v′0/vi]c〈v1, .., vn〉)

⊢ {∆} v.fi:=v0 {∆2}

Figure 4. Some Forward Verification Rules

3.1. Forward Verifier
We useP to denote the program being checked. With pre/post conditions declared for each

method inP , we can apply modular verification to a method’s body using Hoare-style triples
⊢ {∆1} e {∆2}. These areforward verificationrules that expect∆1 to be given before comput-
ing ∆2. Note that in our system, each abstract state (e.g.∆1, ∆2) may contain both unprimed
and primed versions of program variables (e.g.x, x′), where unprimed version (x) denotes the
initial value and primed version (x′) represents the latest value of the variable. Auxiliary logical
variables only appear as unprimed.

We now explain the operators/functions used in our verification rules. We first define acom-
position with updateoperator. Given a state∆1, a state change∆2, and a set of variables to be
updatedX={x1, . . . , xn}, the composition operatoropX is defined as:

∆1 opX ∆2 =df ∃ r1..rn · (ρ1∆1) op (ρ2∆2)
where r1, . . . , rn are fresh variables; ρ1 = [ri/x

′
i]
n
i=1 ; ρ2 = [ri/xi]

n
i=1

Note thatρ1 andρ2 are substitutions that link each latest value ofx′
i in∆1 with the corresponding

initial valuexi in ∆2 via a fresh variableri. The binary operatorop is either∧ or ∗. To illustrate
the operator, consider the following example. Suppose variablex is initialized by a program to
1, which is represented by

x=1 ∧ x′=1

The program executes the assignmentx:=x+2. The updated state is computed by

(x=1 ∧ x′=1) ∧{x} (x
′=x+2) ≡ (∃r1.x=1 ∧ r1=1 ∧ x′=r1+2) ≡ (x=1 ∧ x′=3)



which correctly reflects both the initial state and the updated state. Instances of this operator will
be used in the verification rule for assignment (as∧{v} in [FV−ASSIGN]) and in the verification
rule for method invocation (as∗V∪W in [FV−CALL]).

An equality operatoreqτ (to be used in the rule for constant expressions [FV−CONST]) con-
verts boolean constants andnull to their corresponding integer values, but ignores floating
point constants. The functionprime(V ) returns the primed form of all variables inV . The func-
tion nochange(V ) returns a formula asserting that the unprimed and primed versions of each
variable inV are equal. These two functions will be used in the verification rule for a method
declaration ([FV−METH]). The notation[e∗/v∗] used in a few rules represents substitutions of
v∗ by e∗. A special case is[0/null], which denotes replacement ofnull by 0. We will use
the variableP later in the verification rule for method invocation ([FV−CALL]) to denote the
entire program and it is used primarily to retrieve method declarations. As mentioned in last
section, we use the special identifierres to denote the value of the latest expression during the
verification.

Normalization rules for separation formulae are given in Figure 5. Note that the separation
conjunction operator∗ is commutative, associative, and distributive over disjunction. In sepa-
ration logic, the separation conjunction between a formulaand a pure (i.e. heap independent)
formula is logically equivalent to a normal conjunction, i.e.,∆ ∗ π = ∆ ∧ π [51]. This justifies
the third translation rule.

(∆1 ∨∆2) ∧ π ; (∆1 ∧ π) ∨ (∆2 ∧ π)
(∆1 ∨∆2) ∗∆ ; (∆1 ∗∆) ∨ (∆2 ∗∆)
(κ1∧π1) ∗ (κ2∧π2) ; (κ1∗κ2)∧(π1∧π2)
(γ1∧φ1) ∧ (γ2∧φ2) ; (γ1∧γ2) ∧ (φ1∧φ2)
(κ1∧π1) ∧ (π2) ; κ1∧(π1∧π2)

(∃x ·∆) ∧ π ; ∃y · ([y/x]∆ ∧ π)
where variabley is fresh not present inπ
(∃x ·∆1) ∗∆2 ; ∃y · ([y/x]∆1 ∗∆2)
where variabley is fresh not present in∆2

Figure 5. Normalization Rules to theΦ-form

A part of the forward verification rules are given in Figure 4.They are used to track heap
states as precisely as possible using path-sensitivity (the conditional rule [FV−IF]), flow-sensitivity
(the sequencing rule [FV−SEQ]), and context sensitivity (the method invocation rule [FV−CALL]).

Methods are verified using the rule [FV−METH], given below.

[FV−METH]

V={vm..vn} W=prime(V ) ∆=Φpr∧nochange(V ) ⊢ {∆} e {∆1} (∃W·∆1)⊢Φpo∗∆2

⊢ t0 mn(ref t1 v1, .., ref tm−1 vm−1, tm vm, .., tn vn) where Φpr ∗→ Φpo {e}

In order to verify a method’s body, the verifier assumes the method’s precondition. Further-
more, thenochangefunction initializes the current values of parameters to their initial (un-
primed) values, since each abstract state in our verification uses primed variables to denote the
latest (current) values of program variables and the precondition Φpr is given only in terms of
unprimed variables. The initial assumption∆ is then propagated through the bodye of the
procedure. At the end of the procedure, the current (primed)values of the pass-by-value pa-
rameters are existentially quantified from the poststate∆1, so that their values are not visible
by the postcondition, hence by callers of the procedure. A method postcondition may capture



only part of the heap at the end of the method, leaving some leaked heap nodes in∆2, if any.
For the case of a programming language with garbage collector, these leaked memory nodes do
not pose any problem, as they can be automatically recoveredat runtime. For a programming
language without garbage collector, the information contained in the formula∆2 would be use-
ful for memory leaks detection, which, as an orthogonal issue to the properties we verify in this
paper, has not been incorporated into our current system. Wecan disallow such memory leaks
by requiring the heap part of the formula∆2 to beemp.

When a procedure is called, the rule [FV−CALL] ensures that its precondition is satisfied at
the call site. The pass-by-value parameters,V, are equated to their initial values through the
nochangefunction, as their final values are not visible to the method’s callers. Afterwards, the
residual heap state,∆1, from checking procedure’s precondition is composed with its postcon-
dition to become the poststate,∆2, of the procedure call.

[FV−CALL]

t mn(ref (ti vi)
m−1
i=1 , (tj vj)

n
j=m) where Φpr ∗→Φpo {e} ∈ P V={vm..vn}

W={v1..vm−1} ρ=[v′k/vk]
n
k=1 ∆⊢ρΦpr ∗∆1 ∆2=((∆1 ∧ nochange(V)) ∗V∪W Φpo)

⊢ {∆}mn(v1, .., vm−1, vm, .., vn) {∆2}

For each shape definition, [FV−PRED] checks that its given invariant is a consequence of the
well-founded heap formula.

[FV−PRED]

XPure0(Φ) =⇒ [0/null](π)

⊢ c〈v∗〉 = Φ inv π

As it will be explained in Sec 4, the entailment between separation formulae is reduced
to entailment between pure formulae by successively removing heap nodes from the conse-
quent. When the consequent is pure, the heap formula in the antecedent can be soundly ap-
proximated by functionXPuren, which translates a given separation formula to its pure coun-
terpart. By an extra unfolding of its predicates,XPuren+1 function could give a more pre-
cise approximation thanXPuren. The formalization forXPuren will be presented in Sec 4
(Fig. 6). For illustration, we explain how [FV−PRED] rule is used to justify the invariant
n≥0 for the predicatell given in Sec 2. LetΦ be the body of thell predicate, i.e.Φ ≡
(root=null∧n=0) ∨ (root::node〈 , r〉∗r::ll〈n−1〉). Briefly, for n=0, XPure0 uses the defi-
nition of thell predicate, replaces all occurrences ofnull by 0 (so that the implication check
can be passed to a pure logic solver):

XPure0(Φ) =df ex j · (root=0∧n=0)∨(root=j∧j>0 ∧ XPure0(r::ll〈n−1〉))
≡ ex j · (root=0∧n=0)∨(root=j∧j>0∧n−1≥0)

Note that the constructex j captures a symbolic addressj that has been abstracted from the
heap noderoot::node〈 , r〉. Now, that we computedXPure0(Φ), we can check that the invariant
is a consequence of the heap formula.

(XPure0(Φ)⇒ [0/null]n≥0)
≡ (ex j · ((root=0∧n=0) ∨ (root=j∧j>0∧n−1≥0))⇒ n≥0)

The soundness of the forward verification is formulated in Sec 5.



4. Entailment Prover

Proof obligations generated by software verification systems are typically discharged by a
theorem prover, or a combination of theorem provers. For instance, ESC/Java [18] uses Simplify
[15]; Spec♯ [1] is compiled to Boogie [1], which in turn uses Simplify and,recently, Z3 [14];
Jahob [32,33] uses combinations of multiple theorem provers by its own combination approach.

Verification conditions generated by software verifiers typically involve multiple theories.
There are a number of different approaches to processing logical formulas involving multiple
theories. Nelson-Oppen is a well-known approach for combining quantifier-free formulas in
stably infinite theories over disjoint signatures (theories not sharing function or predicate sym-
bols) [43]. Simplify [15] and CVC [56] are two widely used implementations of the approach.
Another approach is Satisfiability Modulo Theories (SMT) [2]. This approach tries to decide
whether a formulaφ is satisfiable with respect to background theories for whichspecialized
decision procedures exist. Z3 is an efficient implementation based on this approach [14].

Our formulas are a combination of separation logic and heap-independent logics. None of
the popular existing approaches is tailored for combinations involving separation logic. Our
approach is designed to effectively handle an important fragment of the combined logic that
commonly arises in practical software verification problems. As shown in the verification rules
in Sec 3, our verification system generates the entailment relation of formulas, abbreviated as
heap entailment, of the form

(4.1) ∆A ⊢κ
V ∆C ∗∆R

which is shortcut for

(4.2) κ ∗∆A ⊢ ∃V ·(κ ∗∆C) ∗∆R

Our entailment prover deals with such heap entailments. To prove the heap entailment (4.1)
is to check whether heap nodes in the antecedent∆A are sufficiently precise to cover all nodes
from the consequent∆C , and (in case they are) to compute aresidual heap state∆R (also
known as “frame” in the frame inference [7]), which represents what was not consumed from
the antecedent after matching up with the formula from the consequent.κ is the history of nodes
from the antecedent that have been used to match nodes from the consequent,V is the list of
existentially quantified variables from the consequent. Note thatκ andV are derived during
the entailment proof. The entailment checking procedure isinitially invoked withκ = emp and
V = ∅. The entailment proving rules are explained in the rest of the section. In Section 5, we
will show that our entailment checking procedure issound, in the sense that, if we can find a
proof (and a residual heap state∆R) for (4.1), then the LHS of (4.2) semantically entails the
RHS of (4.2), that is, all models of the LHS are also models of RHS. Our heap entailment may
fail in that it can not find a residual heap state∆R for (4.1) after trying all possible entailment
proving rules. In many cases, this will indicate that there does not exist∆R such that LHS of
(4.2) semantically entails RHS of (4.2). However, since the completeness of our entailment
prover is open, we cannot rule out the possibility that thereis such∆R but our prover cannot
discover it using the current set of rules. This will be addressed in future work.

We now briefly discuss the key steps that we may use in such an entailment proof. Firstly, we
present the reduction from entailment between disjunctiveformulas with existential quantifiers
to entailment between quantifier-free conjunctive formulas.



Disjunction
An entailment with a disjunctive antecedent succeeds if both disjuncts entail the consequent.

On the other hand, entailment with disjunctive consequent succeeds if either of the disjuncts
succeeds.

[ENT−LHS−OR]
∆1⊢

κ
V∆3 ∗∆4 ∆2⊢

κ
V∆3 ∗∆5

∆1∨∆2⊢
κ
V∆3 ∗ (∆4∨∆5)

[ENT−RHS−OR]
∆1⊢

κ
V∆i ∗∆

R
i

∆1⊢
κ
V (∆2∨∆3) ∗∆R

i

i∈{2, 3}

Existential Quantifiers
Existentially quantified variables from the antecedent aresimply lifted out of the entailment

relation by replacing them with fresh variables. On the other hand, we keep track of the exis-
tential variables coming from the consequent by adding themto V .

[ENT−RHS−EX]
∆1⊢

κ
V ∪{w}([w/v]∆2) ∗∆

freshw

∆1⊢
κ
V (∃ v ·∆2) ∗∆

[ENT−LHS−EX]
[w/v]∆1⊢

κ
V∆2 ∗∆

freshw

∃v ·∆1⊢
κ
V∆2 ∗∆

Next, we now present reduction of entailment between two quantifier-free conjunctive for-
mulae to entailment between two pure formulae.

Consequent with Empty Heap
The base case for our entailment checker occurs when the consequent is a pure formula, in

which case the [ENT−EMP] rule is applied. The rule first approximates the antecedentof the
entailment, including the heap formulae that have been matched previously and kept inκ. It
then invokes an off-the-shelf theorem prover to check if theapproximation of the antecedent
implies the heap-independent consequent. This strategy offers us the flexibility to use different
logics for the pure part.

[ENT−EMP]
ρ=[0/null]

XPuren(κ1∗κ)∧ρπ1=⇒ρ∃V·π2

κ1∧π1⊢
κ
V π2 ∗ (κ1∧π1)

Matching up heap nodes from the antecedent and the consequent
The rule [ENT−MATCH] works by successively matching up heap nodes that can be proven

aliased.

[ENT−MATCH]
XPuren(p1::c〈v∗1〉∗κ1∗π1)=⇒p1=p2 ρ=[v∗1/v

∗
2]

κ1∧π1∧freeEqn(ρ, V )⊢
κ∗p1::c〈v∗1〉

V−{v∗
2
} ρ(κ2∧π2) ∗∆

p1::c〈v∗1〉∗κ1∧π1⊢
κ
V (p2::c〈v

∗
2〉∗κ2∧π2) ∗∆

XPuren(p1::c〈v∗1〉∗κ1∗π1)=⇒p1=p2 checks ifp1 andp2 can be proved to be aliased based on
information in the antecedent of an entailment. If two aliased atomic heap formulas have the
same name, which means they are two objects of the same type, or two instances of the same
predicate, we require their components to be the same. The unification of the two aliased heap



formula is accomplished by the application of substitutionρ to the remaining of the consequent.
We also removev∗2 from the set of existentially quantified variables since variablesv∗2 have been
substituted away.

When a match occurs and an argument of the heap node coming fromthe consequent is free,
the entailment procedure binds the argument to the corresponding variable from the antecedent
and moves the equality to the antecedent. In our system, freevariables in consequent are vari-
ables from method preconditions. These bindings play the role of parameter instantiations
during forward reasoning, and can be accumulated into the antecedent to allow the subsequent
program state (from residual heap state) to be aware of theirinstantiated values. This process is
formalized by the functionfreeEqn, whereV is the set of existentially quantified variables:

freeEqn([ui/vi]
n
i=1, V ) =df let πi = (if vi∈V then true else vi=ui) in

∧n

i=1 πi

For soundness, we perform a preprocessing step to ensure that variables appearing as arguments
of heap nodes and predicates are i) distinct and ii) if they are free, they do not appear in the
antecedent by adding (existentially quantified) fresh variables and equalities. This guarantees
that the formula generated byfreeEqndoes not introduce any additional constraints over existing
variables in the antecedent, as one side of each equation does not appear anywhere else in the
antecedent.

As the matching process is incremental, we keep the successfully matched nodes from an-
tecedent inκ for better precision. For example, consider the following entailment proof:

(((p=null ∧ n=0) ∨ (p 6=null ∧ n>0))∧n>0 ∧ m=n) =⇒ p 6=null (input XPure1)
(XPure1(p::ll〈n〉) ∧ n>0 ∧ m=n =⇒ p 6=null) ∆R = (n>0 ∧ m=n) (by [ENT−EMP])

n>0 ∧ m=n ⊢p::ll〈n〉 p 6=null ∗ ∆R (by [ENT−MATCH])
p::ll〈n〉 ∧ n>0 ⊢ p::ll〈m〉 ∧ p 6=null ∗ ∆R

Had the predicatep::ll〈n〉 not been kept and used, the proof would not have succeeded since we
require this predicate andn>0 to determine thatp 6=null. Such an entailment would be useful
when, for example, a list with positive lengthn is used as input for a function that requires a
non-empty list. Note the transfer ofm=n to the antecedent (and subsequently to the residual
heap state∆R).

Apart from the matching operation, two other essential operations that may be required in an
entailment proof are (1) unfolding a shape predicate and (2)folding some data nodes back to a
shape predicate.

Unfolding a shape predicate in the antecedent
If a predicate instance in the antecedent is aliased with an object in the consequent, we unfold

it. Unfolding basically replaces the predicate instance byits predicate definition, normalizes the
resulting formula, and resumes entailment checking.

Each unfolding either exposes an object that matches the object in the consequent, or reduces
the atomic heap formula in the antecedentp1::c1〈v

∗
1〉 to a pure formula. The former case results

in a reduction of the consequent by using [ENT−MATCH]. In the latter case, the entailment
either (i) fails immediately since the checker is unable to find an aliased heap node or, (ii) if the
resulted pure formula reveals additional aliasing information, the entailment checker continues
with a new aliased heap node from the antecedent. If the new aliased heap node is an object, a
match occurs and thus a reduction of the consequent. Otherwise a new unfolding is called on.



This process cannot go forever as every time it happens, one predicate from the antecedent is
removed and no new predicate instance is generated. Overall, the termination of the entailment
checking procedure is not compromised, as we prove in Theorem 5.5.

[ENT−UNFOLD]
XPuren(p1::c1〈v∗1〉∗κ1∗π1)=⇒p1=p2 IsPred(c1)∧IsData(c2)

unfold(p1::c1〈v∗1〉)∗κ1∧π1⊢
κ
V (p2::c2〈v

∗
2〉∗κ2∧π2) ∗∆

p1::c1〈v
∗
1〉∗κ1∧π1⊢

κ
V (p2::c2〈v

∗
2〉∗κ2∧π2) ∗∆

[UNFOLDING]
c〈v∗〉≡Φ inv π ∈ P

unfold(p::c〈v∗〉) =df [p/root]Φ

The functionIsPred(c) (resp. IsData(c)) returnstrue if c is a shape predicate (resp. a data
node). For illustration, consider the following example.

x::ll3〈n, B〉∧n>2 ⊢ (∃r·x::node〈r, y〉∧y 6=null∧r ∈ B) ∗ ∆R

where∆R captures the residual heap state of entailment (to be computed). Note that a predi-
catex::ll3〈n, B〉 from the antecedent and a data nodex::node〈r, y〉 from the consequent are
co-related via the same variablex. For the entailment to succeed, we would first unfold the
ll3〈n, B〉 predicate in the antecedent ([ENT−UNFOLD]):

∃q1, v ·x::node〈v, q1〉∗q1::ll3〈n−1, B1〉∧n>2∧B=B1 ⊔ {v}
⊢ (∃r·x::node〈r, y〉∧y 6=null ∧ r ∈ B) ∗ ∆R

After removing the existential quantifiers ([ENT−RHS−OR], [ENT−LHS−OR]), we obtain:

x::node〈v, q1〉∗q1::ll3〈n−1, B1〉∧n>2 ∧ B=B1 ⊔ {v}
⊢ (x::node〈r, y〉∧y 6=null ∧ r ∈ B) ∗ ∆R

The data node in the consequent is then matched up ([ENT−MATCH]), giving:

q1::ll3〈n−1, B1〉∧n>2∧B=B1 ⊔ {v}∧q1=y ⊢ (q1 6=null ∧ v ∈ B) ∗ ∆R

Folding against a shape predicate in the consequent
If a predicate instance in the consequent does not have a matching predicate instance in the

antecedent, we attempt to generate one by folding the antecedent.

[ENT−FOLD]
IsPred(c2)∧IsData(c1) (∆r, κr, πr)∈foldκ(p1::c1〈v

∗
1〉∗κ1∧π1, p2::c2〈v

∗
2〉)

XPuren(p1::c1〈v∗1〉∗κ1∗π1)=⇒p1=p2 (πa, πc)=split
{v∗

2
}

V (πr) ∆r∧πa⊢κr

V (κ2∧π2∧π
c) ∗∆

p1::c1〈v
∗
1〉∗κ1∧π1⊢

κ
V (p2::c2〈v

∗
2〉∗κ2∧π2) ∗∆

[FOLDING]
c〈v∗〉≡Φ inv π ∈ P Wi=Vi−{v∗, p}

κ∧π⊢κ′

{p,v∗}[p/root]Φ ∗ {(∆i, κi, Vi, πi)}
n
i=1

foldκ′

(κ∧π, p::c〈v∗〉) =df {(∆i, κi, ∃Wi·πi)}
n
i=1



When a fold against a predicatep2::c2〈v∗2〉 is performed, the constraints related to variables
v∗2 are significant. Thesplit function projects these constraints out and differentiates those
constraints based on free variables. These constraints on free variables can be transferred to the
antecedent to support the variables’ instantiations.

split
{v∗

2
}

V (
n∧

i=1

πr
i ) ≡ let πa

i , π
c
i = if FV(πr

i ) ∩ v∗2 = ∅ then (true, true)
else if FV(πr

i ) ∩ V = ∅ then (πr
i , true) else (true, πr

i )
in (

∧n

i=1 π
a
i ,
∧n

i=1 π
c
i )

A formal definition of folding is specified by the rule [FOLDING]. Some heap nodes from
κ are removed by the entailment procedure so as to match with the heap formula of the pred-
icatep::c〈v∗〉. This requires a special version of entailment that returnsthree extra things: (i)
consumed heap nodes, (ii) existential variables used, and (iii) final consequent. The final con-
sequent is used to return a constraint for{v∗} via ∃Wi·πi. A set of answers is returned by the
fold step as we allow it to explore multiple ways of matching up with its disjunctive heap state.
Our entailment also handles empty predicates correctly with a couple of specialised rules.

For illustration consider the following example.

x::node〈1, q1〉∗q1::node〈2, null〉∗y::node〈3, null〉 ⊢ (x::ll3〈n, B〉∧n>1∧1 ∈ B) ∗ ∆R

The data nodex::node〈1, q1〉 from the antecedent and the predicatex::ll3〈n, B〉 from the con-
sequent are co-related by the variablex. In this case, we apply the folding operation to the first
two nodes from the antecedent against the shape predicate from the consequent. After that, a
matching operation is invoked since the folded predicate now matches with the predicate in the
consequent.

The fold step may be recursively applied but is guaranteed toterminate for well-founded
predicates as it will reduce a data node in the antecedent foreach recursive invocation. This
reduction in the antecedent cannot go on forever. Furthermore, the fold operation may introduce
bindings for the parameters of the folded predicate. In the above, we obtain∃n1, n2 · n=n1+1∧
n1=n2+1 ∧ n2=0 and ∃B1, B2 · B=B1∪{2} ∧ B1={1}∪B2 ∧ B2={}, wheren1, n2, B1, B2 are
existential variables introduced by the folding process, and are subsequently eliminated. These
binding formulae may be transferred to the antecedent ifn andB are free (for instantiation).
Otherwise, they will be kept in the consequent. Sincen andB are indeed free, our folding
operation would finally derive:

y::node〈3, null〉 ∧ n = 2 ∧ B = {1, 2}⊢ (n>1 ∧ 1 ∈ B) ∗ ∆R

The effects of folding may seem similar to unfolding the predicate in the consequent. How-
ever, there is a subtle difference in their handling of bindings for free derived variables. If we
choose to use unfolding on the consequent instead, these bindings may not be transferred to the
antecedent. Consider the example below wheren is free :

z=null ⊢ z::ll3〈n, B〉 ∧ n>−1 ∗ ∆R

By unfolding the predicatell3〈n〉 in the consequent, we obtain :

z=null ⊢ (z=null∧n=0∧B = {}∧n>−1)
∨(∃q, v·z::node〈v, q〉∗q::ll3〈n−1, B1〉∧B = B1 ∪ {v}∧n>−1) ∗ ∆R



There are now two disjuncts in the consequent. The entailment fails for the second one because
it mismatches. The first one matches but the entailment stillfails as the derived bindingn=0
was not transferred to the antecedent.

XPuren(
∨
(∃v∗·κ∧π)∗) =df

∨
(∃v∗·XPuren(κ)∧[0/null]π)∗

XPuren(emp) =df true

XPuren(κ1 ∗ κ2) =df XPuren(κ1) ∧ XPuren(κ2)

IsData(c) freshi
XPuren(p::c〈v∗〉) =df ex i·(p=i∧i>0)

IsPred(c) freshi∗

Invn(p::c〈v∗〉) = ex j∗ ·
∨
(∃u∗·π)∗

XPuren(p::c〈v∗〉) =df ex i∗ · [i∗/j∗]
∨
(∃u∗·π)∗

Figure 6.XPure: Translating to Pure Form

Approximating separation formula by pure formula
In our entailment proof, the entailment between separationformulae is reduced to entailment

between pure formulae by successively removing heap nodes from the consequent until only a
pure formula remains. When this happens, the heap formula in the antecedent can be soundly
approximated by functionXPuren. The indexn is a parameter that indicates how precise the
caller wants the approximation to be. A related function that XPuren uses is theInvn function.
This function, along withXPuren, computes and updates shape predicate invariants with more
precise invariants. The definition ofInvn is given by the following rules:

(c〈v∗〉 ≡ Φ inv π0) ∈ P
Inv0(p::c〈v∗〉) =df [p/root, 0/null]π0

(c〈v∗〉 ≡ Φ inv π0) ∈ P
Invn(p::c〈v∗〉) =df [p/root]XPuren−1(Φ)

In the base case, whenn = 0, Invn returns the user-supplied invariant. All occurrences of
null are replaced by 0 so that we can pass the returned formula to a pure logic solver. Param-
eters of the predicates are replaced by the corresponding actuals. Whenn > 0, Invn invokes
XPuren−1 to compute a more precise invariant based on the body of the predicate.

The functionXPuren(Φ), whose definition is given in Fig 6, returns a sound approximation
of Φ as a formula of the form:β ::= ((

∨
(∃v∗·π)∗) | (ex i · β)) 5, whereex i construct is being

used to capture a distinct symbolic addressi that has been abstracted from a heap node or
predicateΦ. XPuredifferentiates between symbolic addresses coming from disjoint regions of
the heap described by formulas conjoined by the separating conjunction∗ :

XPuren(κ1 ∗ κ2) =df XPuren(κ1) ∧ XPuren(κ2)

where∧ is further normalized as follows:

(ex I · φ1) ∧ (ex J · φ2) ; ex I ∪ J · φ1 ∧ φ2 ∧
∧

i∈I,j∈J i 6= j

5Hereβ is defined as either
∨
(∃v∗·π)∗ or recursively asex i · β.



We illustrate how the approximation functions work by computing XPure1(p::ll〈n〉). LetΦ
be the body of thell predicate, i.e.Φ ≡ (root=null∧n=0) ∨ (root::node〈 , r〉∗r::ll〈n−1〉).

Inv0(p::ll〈n〉) =df n ≥ 0

XPure0(Φ) =df ex j · (root=0∧n=0)∨(root=j∧j>0 ∧ Inv0(r::ll〈n−1〉))
= ex j · (root=0∧n=0)∨(root=j∧j>0∧n−1≥0)

Inv1(p::ll〈n〉) =df [p/root]XPure0(Φ)
= ex j · (p=0∧n=0) ∨ (p=j∧j>0∧n−1≥0)

XPure1(p::ll〈n〉) =df ex i · [i/j]Inv1(p::ll〈n〉)
= ex i · (p=0∧n=0) ∨ (p=i∧i>0∧n−1≥0)

The following normalization rules are also used to propagateex to the leftmost :

(ex I ·φ1)∨(ex J ·φ2) ; ex I∪J · (φ1 ∨ φ2)
∃ v · (ex I ·φ) ; ex I · (∃ v ·φ)

Theex i∗ construct is converted to∃ i∗ when the formula is used as a pure formula. For instance,
the aboveXPure1(p::ll〈n〉) is converted to∃i · (p=0∧n=0) ∨ (p=i∧i>0∧n−1≥0), which is
further reduced to(p=0∧n=0)∨(p>0∧n−1≥0).

The soundness of the heap approximation (given in the next section) ensures that it is safe
to approximate an antecedent by usingXPure, starting from a given sound invariant (checked
by [FV−PRED] in Sec 3). The heap approximation also allows the possibility of obtaining a
more precise invariant by unfolding the definition of a predicate one or more times, prior to
applying theXPure0 approximation with the predicate’s invariant. For example, when given
a pure invariantn≥0 for the predicatell〈n〉, the XPure0 approximation is simply the pure
invariantn≥0 itself. However, theXPure1 approximation would invoke a single unfold before
theXPure0 approximation is applied, yieldingex i·(root=0∧n=0∨ root=i∧i>0∧n−1≥0),
which is sound and more precise thann≥0, since the former can relate the nullness of theroot

pointer with the sizen of the list.
The invariants associated with shape predicates play an important role in our system. Without

the knowledgem≥0, the proof search for the entailmentx::node〈 , y〉 ∗ y::ll〈m〉 ⊢ x::ll〈n〉 ∧
n≥1 would not have succeeded (failing to establishn≥1). Without a more precisely derived
invariant usingXPure1 on predicatell, the proof search for the entailmentx::ll〈n〉 ∧ n>0 ⊢
x 6=null would not have succeeded either.

Implicit vs Explicit Instantiations
In the preceding subsections, we have presented a techniquefor the implicit instantiation

of free variables during the matching and the folding operations. This technique allows the
bindings of free variables to be transferred to the antecedent during entailment proving, but
kept the substitutions for existential variables within the consequent itself. This dual treatment
of free and existential variables is meant to restrict the instantiation mechanism to only those
which are strictly required for entailment proving.

In this subsection, we shall provide an alternative technique for theexplicit instantiation of
free variables. Our main purpose is to clarify the role of theinstantiation mechanism and to
provide a justification for the implicit instantiation technique being used in our current version
of entailment proving. To clarify the instantiation technique, let us consider a simple data type



which carries a pair of integer values:

data pair { int x; int y}

Let us also provide a simple method which checks if the sum of the two fields from the given
pair is positive, before returning the second field as the method’s result.

int foo(pair p) where
∃a · p::pair〈a, b〉 ∧ a+b>0 ∗→ res = b

{if (p.x+ p.y)≤0 then error() else p.y}

If the expected precondition does not hold, the above methodraises an error by calling a
specialerror() primitive. Furthermore, we shall assume that the pair object is leaked (or
garbage collected for some programming languages) after invoking this method. Take note
that logical variables (other than program variables) thatare used byboth precondition and
postcondition shall be marked as free variables, while those that are used in either precondition
or postcondition alone, shall be existentially bound. For our example, logical variableb is
free since it is used in both precondition and postcondition. In contrast, logical variablea is
existentiallyboundsince it is only used in the precondition. Our entailment prover distinguishes
free from bound variables in order to decide which bindings may be propagated to the residual
heap state. Let us re-visit our earlier implicit instantiation technique by examining the following
entailment proof.

(c = 2 ∧ b = 3 =⇒ ∃a · a = c ∧ a+b>0) ∆R = (c = 2 ∧ b = 3)

c = 2 ∧ b = 3 ⊢
p::pair〈2,3〉
{a} (a = c ∧ a+b>0) ∗ ∆R (by [ENT−EMP])

p::pair〈c, 3〉 ∧ c = 2 ⊢ ∃a · p::pair〈a, b〉 ∧ a+b>0 ∗ ∆R
(by [ENT−RHS−OR], [ENT−MATCH])

During matching of thepair data nodes, the bindingb = 3 is moved to the antecedent due to
free variableb, while the bindinga = c for bound variablea is kept in the consequent. Hence,
only the instantiation ofb = 3 is propagated to the residual heap state which can then be linked
with the postconditionres = b.

We shall now propose an alternative technique for the instantiation of free variables. To do
that, we introduce a new notation(∃v:I · ∆) that explicitly marksv as a variable to be instan-
tiated. This new notation is meant for each consequent that has been taken from a method’s
precondition for entailment proving. For our earlier method’s precondition, we can mark the
free variableb, as follows:(∃a∃b:I · p::pair〈a, b〉 ∧ a+b>0).

With this new notation, free variables are being treated as existential variables, except that
their bindings in the consequent may be transferred to the residual heap state. To incorporate
this effect, we modify the rule foremp consequent of entailment prover to:

[ENT−EMP′]
ρ=[0/null] (XPuren(κ1∗κ)∧ρπ1=⇒ρ∃V·π2) B = V−{v|v:I ∈ V } πI = (∃B·π2)

κ1∧π1⊢
κ
V π2 ∗ (κ1∧(π1∧πI))



Note that the residual heap state will now explicitly capture the bindings for free variables
that have been generated in the consequent viaπI . Using this modified rule, we can perform
entailment proving for our earlier example, as follows:

(c = 2 =⇒ ∃a, b · a = c ∧ b = 3 ∧ a+b>0) πI = ((∃a · (a = c ∧ b = 3 ∧ a+b>0))
∆R = (c = 2 ∧ (b = 3 ∧ c>−3))

c = 2 ⊢
p::pair〈2,3〉
{a,(b:I)} (a = c ∧ b = 3 ∧ a+b>0) ∗ ∆R (by [ENT−EMP′])

p::pair〈c, 3〉 ∧ c = 2 ⊢ ∃a∃b:I · p::pair〈a, b〉 ∧ a+b>0 ∗ ∆R
(by [ENT−RHS−OR], [ENT−MATCH])

This technique allowsany free variables to be explicitly instantiated, and is slightly more
general than the implicit technique which can only instantiate free variables that are present as
arguments of data nodes or predicates. Nevertheless, both techniques have a similar objective
of performing parameter instantiation for the precondition at each method call. Our current
implementation uses implicit instantiation which is simpler and incremental, but is slightly less
general than the explicit instantiation technique. As a future work, we will implement also the
explicit instantiation technique and compare both techniques in more detail.

4.1. Forward Verification Example
We present the detailed verification of the first branch of theinsert method from Sec 2.

While code is in bold face, program states are inside{}. Note that program variables appear
primed in formulae to denote the latest values, whereas logical variables are always unprimed.

(1). {x′::sortl〈n, mi, ma〉 ∗ vn′::node〈v, 〉} // [FV−METH](initialize precondition)

if (vn.val ≤ x.val) then {

(2). {(x′::node〈mi, null〉 ∗ vn′::node〈v, 〉 ∧ mi=ma ∧ n=1∧ v≤mi)
∨ (∃q, k · x′::node〈mi, q〉∗q::sortl〈n−1, k, ma〉∗vn′::node〈v, 〉
∧mi≤k ∧ mi≤ma ∧ n≥2 ∧ v≤mi)} // [FV−IF], [UNFOLDING]

vn.next := x;

(3). {(x′::node〈mi, null〉 ∗ vn′::node〈v, x′〉 ∧ mi=ma ∧ n=1∧ v≤mi)
∨ (∃q, k · x′::node〈mi, q〉 ∗ q::sortl〈n−1, k, ma〉∗vn′::node〈v, x′〉
∧mi≤k ∧ mi≤ma ∧ n≥2 ∧ v≤mi)} // [FV−FIELD−UPDATE]

vn

(4). {(x′::node〈mi, null〉 ∗ vn′::node〈v, x′〉 ∧ mi=ma ∧ n=1∧ v≤mi ∧ res=vn′)
∨ (∃q, k · x′::node〈mi, q〉∗ q::sortl〈n−1, k, ma〉 ∗ vn′::node〈v, x′〉
∧mi≤k ∧ mi≤ma∧n≥2 ∧ v≤mi ∧ res=vn′)} // [FV−VAR]

}

(5). {res::sortl〈n+1, min(v, mi), max(v, ma)〉}
// [FV−METH](checking postcondition), [FOLDING]

To facilitate the illustration, we label the abstract states by(1), .., (5). The state(1) is obtained
by initialising the precondition using thenochangeoperation in the [FV−METH] rule. This is



necessary because all abstract program states in our systemcontain both unprimed and primed
variables, where primed variables denote the latest valuesof program variables and unprimed
variables denote either initial values of program variables or values of logical variables. The
abstract state(2) is obtained by unfolding the predicatex′::sortl〈n, mi, ma〉 and then distribut-
ing the formulavn′::node〈v, 〉∧v≤mi over the two disjunctions obtained by unfolding. Note
that v≤mi is obtained from the if-condition. The rule [UNFOLDING] replaces the predicate
x′::sortl〈n, mi, ma〉 by its definition.

The effect of the field updatevn.next := x; is recorded in state(3) by changing the heap
nodevn′::node〈v, 〉 to vn′::node〈v, x′〉 using the [FV−FIELD−UPDATE] rule. By the [FV−VAR]
rule, the effect of the last expressionvn in the branch is recorded in state(4) using the formula
res=vn′. The verification of this branch finishes by proving that state (4) entails the postcon-
dition (5) according to the [FV−METH] rule. The rule [FOLDING] used in this last step folds a
formula which matches with a predicate’s definition back to the predicate. In this case, it folds
state(4) to state(5).

5. Soundness

In this section we formalize the soundness properties for both the forward verifier and the
entailment prover.

5.1. Semantic Model
The semantics of our separation heap formula is similar to the model given for separation

logic [51], except that we have extensions to handle our user-defined shape predicates.
To define the model we assume setsLocof locations (positive integer values),Val of primitive

values, with0 ∈ Val denotingnull, Var of variables (program and logical variables), and
ObjValof object values stored in the heap, withc[f1 7→ν1, .., fn 7→νn] denoting an object value of
data typec whereν1, .., νn are current values of the corresponding fieldsf1, .., fn. Let s, h |= Φ
denote the model relation, i.e. the stacks and heaph satisfy the constraintΦ, with h, s from the
following concrete domains:

h ∈ Heaps=df Loc⇀fin ObjVal
s ∈ Stacks=df Var → Val∪Loc

Note that each heaph is a finite partial mapping while each stacks is a total mapping, as in the
classical separation logic [51,25]. Functiondom(f) returns the domain of functionf . Note that
we use7→ to denote mappings, not the points-to assertion in separation logic, which has been
replaced byp::c〈v∗〉 in our notation. The model relation for separation heap formulas is defined
below. The model relation for pure formulas |= π denotes that the formulaπ evaluates totrue
in s.



Definition 5.1 [Model for Separation Constraint]

s, h |=Φ1∨Φ2 iff s, h |= Φ1 or s, h |= Φ2

s, h |=∃v1..n·κ∧π iff (∃ν1..n·s[v1 7→ν1, .., vn 7→νn], h |= κ) and(s[v1 7→ν1, .., vn 7→νn] |= π)
s, h |=κ1∗κ2 iff ∃h1, h2 · h1 # h2 andh = h1·h2 and

s, h1 |= κ1 ands, h2 |= κ2

s, h |=emp iff dom(h) = ∅
s, h |=p::c〈v1..n〉 iff data c {t1 f1, .., tn fn}∈P, h=[s(p) 7→r],

andr=c[f1 7→s(v1), .., fn 7→s(vn)]
or (c〈v1..n〉≡Φ inv π)∈P ands, h |= [p/root]Φ

Note thath1#h2 indicatesh1 andh2 are domain-disjoint, i.e.dom(h1)∩dom(h2)=∅. h1·h2

denotes the union of disjoint heapsh1 andh2. The definition fors, h |= p::c〈v∗〉 is split into two
cases: (1)c is a data node defined in the programP; (2) c is a shape predicate defined in the
programP. In the first case,h has to be a singleton heap. In the second case, the shape predicate
c may be inductively defined. Note that the semantics for an inductively defined shape predicate
denotes an implicit notion of the least fixpoint for the set ofstates (s, h) satisfying the predicate
[54]. The monotonic nature of our shape predicate definitionguarantees the existence of the
descending chain of unfoldings, thus the existence of the least solution.

The heap abstractionβ ::= ((
∨
(∃v∗·π)∗) | (ex i · β)) given in last section has the following

model:

Definition 5.2 (Model for Heap Approximation)

s, h |=
∨
(∃v∗·π)∗ iff s |=

∨
(∃v∗·π)∗

s, h |=ex i · β iff (p=i∧i>0)∈β and s, h−{s(p)}|=[p/i]β

Furthermore, we may soundly relate a separation formulaΦ and its abstractionβ by the
(semantic entailment) relationΦ |= β defined as follows :

∀s, h · (s, h |=Φ =⇒ s, h |= β)

5.2. Soundness of Verification
The soundness of our verification rules is defined with respect to a small-step operational

semantics, which is defined using the transition relation〈s, h, e〉→֒〈s1, h1, e1〉, which means if
e is evaluated in stacks, heaph, thene reduces in one step toe1 and generates new stacks1
and new heaph1. Full definition of the relation can be found in the Appendix A. We use the
relation→֒∗ to denote the transitive closure of the transition relation→֒. We also need to extract
the post-state of a heap constraint by:

Definition 5.3 (Poststate)Given a constraint∆, Post(∆) captures the relation between primed
variables of∆. That is :

Post(∆) =df ρ (∃V·∆), where
V = {v1, .., vn} denotes all unprimed program variables in∆
ρ = [v1/v

′
1, .., vn/v

′
n]

For example, given∆ = x′::node〈3, null〉∧y=5∧y′>y+1, Post(∆) = x::node〈3, null〉∧y>6.



Theorem 5.1 (Preservation)If

⊢ {∆} e {∆2} s, h |= Post(∆) 〈s, h, e〉→֒〈s1, h1, e1〉

Then there exists∆1, such thats1, h1 |= Post(∆1) and ⊢ {∆1} e1 {∆2}.

Proof: By structural induction one. Details are in the Appendix.

Theorem 5.2 (Progress)If ⊢ {∆} e {∆2}, ands, h |= Post(∆), then eithere is a value, or
there exists1, h1, ande1, such that 〈s, h, e〉→֒〈s1, h1, e1〉.

Proof: By structural induction one. Details are in the Appendix.

Theorem 5.3 (Safety)Consider a closed terme (i.e. a term with no free variables6) in which
all methods have been successfully verified. Assuming unlimited stack/heap spaces and that
⊢ {true} e {∆}, then either〈[], [], e〉→֒∗〈[], h, v〉 terminates with a valuev that is subsumed
by the postcondition∆, or it diverges (i.e. never terminates)〈[], [], e〉6֒→∗.

Proof: Follows from Theorems 5.2 and 5.1 and an auxiliary lemma given in the appendix
(Lemma B.1). Details are in the Appendix.

5.3. Soundness of Entailment
The following theorems state that our entailment proving procedure (given in Sec. 4) is sound

and always terminates. Proofs are given in the Appendix.

Theorem 5.4 (Soundness)If entailment check∆1⊢∆2 ∗∆ succeeds, we have: for alls, h, if
s, h |= ∆1 thens, h |= ∆2 ∗∆.

Proof: Given in the Appendix.

Theorem 5.5 (Termination) The entailment check∆1⊢∆2 ∗∆ always terminates.

Proof: Given in the Appendix.
The soundness of the heap approximation procedureXPuren is formalized as follows:

Definition 5.4 (Sound Invariant) Given a shape predicatec〈v∗〉 ≡ Φ inv π, the invariantπ is
soundif XPure0(Φ) =⇒ [0/null]π.

Lemma 5.6 (Sound Abstraction) Given a separation constraintΦ where the invariants of the
predicates appearing inΦ are sound, we haveΦ ⊢ XPuren(Φ).

Proof: Given in the Appendix.
Lemma 5.6 ensures that if sound invariants are given, it is safe to approximate an antecedent

by usingXPuren. It also allows the possibility of obtaining a more precise invariant by applying
XPureone or more times (i.e. usingXPuren+1 instead ofXPuren).



Programs LOC No Omega Isabelle MONA Isabelle MONA
size/bag Calculator Prover Prover Prover Prover

Linked List size/length bag/set
delete 9 0.02 0.06 17.23 0.12 16.56 0.12
reverse 13 0.02 0.09 13.27 0.1 12.1 0.11
Circular List size + cyclic structure bag/set + cyclic structure
delete (first) 13 0.01 0.06 14.71 0.12 17.96 0.17
count 29 0.04 0.15 31.94 0.22 39.16 0.29
Double List size + double links bag/set + double links
append 22 0.05 0.1 23.35 0.22 22.33 0.12
flatten (from tree) 32 0.08 0.5 87.3 11.85 54.23 0.47
Sorted List size + min + max + sortedness bag/set+ sortedness
delete 20 0.02 0.19 34.09 1.01 13.12 0.25
insertionsort 32 0.07 0.31 80.9 5.22 27.3 0.21
selectionsort 45 0.10 0.46 135.1 1.5 35.17 0.39
bubblesort 37 0.16 0.78 127.7 1.16 65.37 0.82
mergesort 78 0.11 0.61 142.9 8.63 72.53 1.3
quick sort 70 0.19 0.84 14.8 15.92 28.43 0.71
Binary Search Tree min + max + sortedness bag/set + sortedness
insert 22 0.08 0.37 72.82 11.92 24.37 0.54
delete 48 0.06 0.53 97.5 11.62 24.39 0.7
Priority Queue size+ height+ max-heap bag/set+ size+ max-heap

insert 39 0.15 0.45 192.8 2.69 39.59 2.93
deletemax 104 0.55 11.09 648.3 642 77.57 failed

AVL Tree height+ height-balanced bag/set+ height
+ height-balanced

insert 114 2.77 15.25 85.47 15.05 119.14 29.96
delete 239 2.48 14 106.1 14.24 failed 53.22
Red-Black Tree size + black-height bag/set+ black-height

+ height-balanced + height-balanced
insert 161 0.97 1.64 307 4.51 211.56 8.63
delete 278 0.95 7.72 653.3 26.62 309.3 7.51

Figure 7. Verification Times (in seconds) for Data Structures with Arithmetic and Bag/Set
Constraints

6. Implementation

We have built a prototype system using Objective Caml. The proof obligations generated
by our verification are discharged using either a constraintsolver or a theorem prover. This is
organised as an option in our system and currently covers automatic provers, such as Omega
Calculator [49], Isabelle [45], and MONA [30].

Figure 7 summarizes a suite of programs tested. Tests were performed on an Intel Pentium D

6In other words, it indicates that all variables ine are locally declared ine.



3.00 GHz. For each example we report:

• the number of code lines (the second column)

• the timings for verifying pointer safety, where only separation/shape information is taken
into account, but not size or bag properties (the third column). These timings reveal how
much of the verification time is due to the entailment provingof pure formulas.

• the time taken by the verification process when considering separation/shape and size
properties. The pure proof obligations were discharged with either Omega (the fourth
column), Isabelle (the fifth column), or MONA (the sixth column). Verification time of a
function includes the time to verify all functions that it calls.

• the time taken by the verification process when considering separation/shape properties
and the bag/set of reachable values inside the data structures. The pure proof obligations
were discharged with either Isabelle (the seventh column),or MONA (the eighth column).

The average annotation cost (lines of annotations/lines ofcode ratio) for our examples is
around 7%. Regarding the properties we capture for each data structure, they are summarized
below:

• For single-linked list, circular list anddoubly-linked list , the specifications capture the
sizeof the list (the total number of nodes). Additionally, for circular list and doubly-linked
list, they also capture thecyclic structureand thedouble links, respectively. The last two
columns contain the verification timings when capturing theset of reachable values as a
bag/set.

• For sorted list, we track thesizeof the list, the minimum (min) and the maximum (max)
elements from the list. Thesortednessproperty is expressed using themin element, as
shown in Section 2.2. For the case when the specification contains the entirebag/setof
reachable values, we can directly express the sortedness property over thebag/set, without
explicitly capturing theminvalue (the sixth and seventh columns):

sortl3〈B〉 ≡ (root=null∧B={})
∨ (root::node〈v, q〉∗q::sortl3〈B1〉∧B=B1⊔{v} ∧ ∀ x∈B1·v≤x)

• Binary search tree requires the elements within the tree to be in sorted order (thesort-
ednessproperty). Our specification captures this property by tracking either themin/max
values within the tree (the third, fourth and fifth columns),or the entirebag/setof reach-
able values (the sixth and seventh columns).

• For the case ofpriority queue , we track thesize, theheightand the highest priority of the
elements inside the heap,max-heap. The last two columns contain the timings obtained
when the specification captures thebag/setof reachable values.

• The specification for theAVL tree tracks the total number of nodes in the tree, denoted
by the sizeproperty, and itsheight. Additionally, it has an invariant that ensures the
height-balancedproperty, meaning that the left and right subtrees are nearly balanced,



as illustrated earlier in Sec 2.2. When tracking the reachable values inside the tree with
bag/set(the sixth and seventh column), in order to maintain theheight-balancedinvariant,
we still need to track theheightof the AVL tree.

• For thered-black tree, we track thesize(the total number of nodes) and theblack-height
(the height when considering only the black nodes). The specification also ensures the
height-balancedproperty, meaning that for all the nodes, each pair of left and right sub-
trees have the same black-height. In the last two columns we capture the set of reachable
values as abag/set.

Next, we summarize our experience regarding the verification of arithmetic constraints and
bag/set constraints, respectively. Regardingarithmetic constraints, the time required for shape
and size verification is mostly within a couple of seconds when using the Omega Calculator to
discharge the proof obligations (the fourth column). In order to have a reference point for
the Omega timings, we tried solving the same constraints with two other theorem provers :
Isabelle (the fifth column) and MONA (the sixth column). For the former, we only use an
automatic but incomplete tactic of the prover. The latter isan implementation of the weak
monadic second-order logics WS1S and WS2S ([17]). Therefore,first-order variables can be
compared and be subjected only to addition with constants. As Presburger arithmetic ([50])
allows the addition of arbitrary linear arithmetic terms, we converted its formulas into WS1S by
encoding naturals as Base-2 bit strings. From our experiments we conclude that the verification
process is dominated by entailment proving of pure formulas, which is faster with a specialised
solvers, such as Omega Presburger constraints. The timingsfor verifying shapes only (without
size/bag proving) are benign, as reflected in the third column.

With concern tobag/set constraints, bag constraints were solved using the multiset theory of
Isabelle (the seventh column), while weak monadic second-order theory of 1 successor WS1S
from MONA was used to handle set constraints (the eighth column). Due to the incompleteness
of the automatic prover that we used from Isabelle, the prooffor thedelete method from the
avl tree failed. On the other hand, as Mona translates WS1S formulas into minimum DFAs
(Deterministic Finite Automata), the translation may cause a state-space explosion. In our case,
we confronted such a problem when verifying the method for deleting the root of a priority
heap,delete max, for which the size of the corresponding automaton exceededthe available
memory space. From the experiments we can conclude that, when the verification succeeds, it
is faster with Mona than with Isabelle.

One remark regarding the verification of bag/set constraints is that, when using Mona for
discharging the proof obligations, the properties verifiedare less precise than with Isabelle.
This is due to the fact that from Isabelle we employ the bag (multiset) theory, whereas in Mona
we can only use WS1S for set constraints. For illustration, let us consider the specification of
theinsert method for a singly-linked list:

root :: ll〈B〉 ≡ (root=null∧B={})∨
(root::node〈v, q〉∗q::ll〈B1〉∧B=B1⊔{v})

void insert(node x, int a) where
x::ll〈B〉 ∗→ x::ll〈B1〉 ∧ B1=B⊔{a}



For the predicatell〈B〉, B denotes the bag/list of values stored inside the corresponding list.
When verifying the method using Isabelle, the constraintB1=B⊔{a} specifies that only one
new node with valuea was inserted into the list. However, after verifying the same method
using Mona, we can only conclude that at least one node with the valuea was inserted into the
list.

To speed up the verification process, we have undertaken someperformance engineering and
rerun the tests. One direction was motivated by the observation that the verification process is
dominated by the entailment proving of pure formulas. Consequently, in order to speed up the
verification process, we have to speed up the calls to the external solvers. One technique of
simplifying these calls, is to replace a single such call with multiple calls corresponding to each
disjunct from the antecedent and each conjunct from the consequent, respectively. Following
from the[ENT−LHS−OR] rule in Section 4 for handling disjunction on the LHS during the en-
tailment of separation logic formulas, we have applied the same idea for entailments between
pure formulas. Our experiments have showed that performingmultiple calls to the solvers with
smaller formulas is faster than performing only one call with a bigger formula to be discharged.

Apart from the aforementioned speeding up technique, an important future work is to design a
safe decomposition strategy for breaking larger predicates, into a number of smaller orthogonal
predicates for modular verification. We expectcode modularity, decomposed shape viewsand
multi-core parallelismto be important techniques for performance engineering of automated
verification system.

The programs we have tested are written using data structures with sophisticated shape, size
and bag properties, such as sorted lists, sorted trees, priority queues, balanced trees. Our ap-
proach is general enough to handle such interesting data structure properties in an uniform way.
Note that our system currently cannot handle map, sequence or non-linear properties as such
properties would require specific provers for them. The examples we have tested so far in our ex-
periments are small to medium size programs. The success in verifying such programs confirms
the viability of our approach, and allows us to use our systemto verify data structure libraries.
For large-size programs, significant effort would be required, e.g. in providing user-annotations
on method specifications and loop invariants. We envisage that inference mechanisms would be
useful to help reduce user-annotations and improve level ofautomation.

There are also data structures that are beyond the capability of the current system. Since the
references between the objects of a data structure are captured by passing object references and
fields as parameters to predicate invocations, our predicates cannot precisely capture data struc-
tures with non-local references. For instance, certain data structures with fields described by
field constraints [59], or those with probabilistically determined fields, such as skip lists [48]
are currently not captured by our predicates. These data structures have a common property:
certain pointer fields of the objects are non-local in that they do not have a direct relationship
with fields of surrounding objects, but rather are determined by some global constraint.

7. Related Work

7.1. Formalisms for Shape Checking/Analysis
Many formalisms for shape analysis are proposed for checking user programs’ intricate ma-

nipulations of shapely data structures. One well-known work is thePointer Assertion Logic
[41] by Moeller and Schwartzbach, which is a highly expressive mechanism to describe in-



variants of graph types [31]. ThePointer Assertion Logic Engine (PALE) uses Monadic
Second-Order Logic over Strings and Trees as the underlyinglogic and the tool MONA [30] as
the prover. PALE invariants are not designed to handle arithmetic, hence it is not possible to
encode height-balanced priority queue in PALE. Moreover, PALE is unsound in handling pro-
cedure calls [41], whereas we would like to have a sound verifier. Harwood et al. [20] describe
a UTP theory for objects and sharing in languages like Java or C++. Their work focuses on
a denotational model meant to provide a semantical foundation for refinement-based reason-
ing or Hoare-style axiomatic reasoning. Our work focuses more on practical verification for
heap-manipulating programs.

In an object-oriented setting, theDafny language[39] uses dynamic frames (introduced by
Kassios [28]) in its specifications. The term frame refers toa set of memory locations, and an
expression denoting a frame is dynamic in the sense that as the program executes, the set of
locations denoted by the frame can change. A dynamic frame isthus denoted by a set-valued
expression (in particular, a set of object references), andthis set is idiomatically stored in a field.
Methods in Dafny use modifies and reads clauses, which frame the modifications of methods
and dependencies of functions. By comparison, separation logic provides a reasoning logic that
hides the explicit representation of dynamic frames.

For shape inference, Sagiv et al. [53] present a parameterized framework, calledTVLA ,
using 3-valued logic formulae and abstract interpretation. Based on the properties expected of
data structures, programmers must supply a set of predicates to the framework which are then
used to analyse that certain shape invariants are maintained.

However, most of these techniques are focused on analysing shape invariants, and do not
attempt to track the size and bag properties of complex data structures. An exception is the
quantitative shape analysis of Rugina [52] where a data flow analysis is proposed to compute
quantitative information for programs with destructive updates. By tracking unique points-to
reference and its height property, their algorithm is able to handle AVL-like tree structures.
Even then, the author acknowledge the lack of a general specification mechanism for handling
arbitrary shape/size properties.

7.2. Size Properties
In another direction of research, size properties are mostly explored for declarative languages

[24,60,10] as the immutability property makes their data structures easier to analyse statically.
Size analysis is also extended to object-based programs [11] but is restricted to tracking either
size-immutable objects that can be aliased and size-mutable objects that are unaliased, with no
support for complex shapes.

The Applied Type System (ATS)[8] is proposed for combining programs with proofs. In
ATS, dependent types for capturing program invariants are extremely expressive and can cap-
ture many program properties with the help of accompanying proofs. Using linear logic, ATS
may also handle mutable data structures with sharing in a precise manner. However, users must
supply all expected properties, and precisely state where they are to be applied, with ATS play-
ing the role of a proof-checker. In comparison, we use a more limited class of constraint for
shape, size and bag analysis but support automated modular verification.

7.3. Set/Bag Properties
Set-based analysis is proposed to verify data structure consistency properties in the work of

Kuncak et al. [34], where a decision procedure is given for a first order theory that combines



set and Presburger arithmetic. This result may be used to build a specialised mixed constraint
solver but it currently has high algorithmic complexity.

Lahiri and Qadeer [35] report an intra-procedural reachability analysis for well-founded
linked lists using first-order axiomatization. Reachability analysis is related to set/bag prop-
erty that we capture but implemented by transitive closure at the predicate level.

7.4. Unfold/Fold Mechanism
Unfold/fold techniques are originally used for program transformation [6] on purely func-

tional programs. A similar technique called unroll/roll islater used in alias types [58] tomanu-
ally witness the isomorphism between a recursive type and its unfolding. Here, each unroll/roll
step must be manually specified by programmer, in contrast toour approach which applies these
steps automatically during entailment checking.

An automated procedure that uses unroll/roll is given by Berdine et al. [3], but it is hardwired
to work for only lseg and tree predicates. Furthermore, it performs rolling by unfolding
a predicate in the consequent which may miss bindings on freevariables. Our unfold/fold
mechanism is general, automatic and terminates for heap entailment checking.

7.5. Classical Verifiers
Program verifiers that are based on Hoare-style logic have been around longer than those

based on separation logic. We describe some major efforts inthis direction.
ESC/Java. Extended Static Checking for Java (ESC/Java) [18], developedat Compaq Sys-

tems Research Center, aims to detect more errors than “traditional” static checking tools, such
as type checkers, but is not designed to be a program verification system. The stated goals of
ESC/Java are scalability and usability. For that, it forgoessoundness for the potential benefits of
more automation and faster verification time. Hence, ESC/Java suffers from both false negatives
(programs that pass the check may still contain errors that ESC/Java is designed to handle), and
false positives (programs flagged as erroneous are in fact correct programs). On the contrary,
our verifier is a sound program verifier as it does not suffer from false negatives: if a program
is verified, it is guaranteed to meet its specifications for all possible program executions.

ESC/Java2.The ESC/Java effort is continued with ESC/Java2 [13], which adds support for
current versions of Java, and also verifies more JML [37] constructs. One significant addition
is the support for model fields and method calls within annotations [12]. Since ESC/Java2 con-
tinues to use Simplify [15] as its underlying theorem proverwhich does not support transitive
closure operations, it may have difficulties in verifying properties of heap-based data struc-
tures that require reachability properties, such as collections of values stored in container data
structures.

Spec♯. Spec♯ [1] is a programming system developed at Microsoft Research.It is an attempt
at verifying programs written for the C♯ programming language. It adds constructs tailored to
program verification, such as pre- and post-conditions, frame conditions, non-null types, model
fields and object invariants. Spec♯ programs are verified by the Boogie verifier [1], which uses
Z3 [14] to discharge its proof obligations. Spec♯ also supports runtime assertion checking.

Spec♯ supports object invariants but leaves the decision of when to enforce/assume object
invariants to the user. In order to verify object invariant modularly, Spec♯ employs an ownership
scheme that allows an objecto to own its representation – objects that are reachable fromo and
are part ofo’s abstract state. The ownership scheme in Spec♯ forces a top-down unpacking of
the objects for updates, and a bottom-up packing for re-establishing the object invariant. The



packing and unpacking of objects are done explicitly by having programmers writing special
commands in method bodies.

In our system, instead of using special fields in method contracts to indicate whether an
invariant should be enforced, users directly use predicates. Hence, there is no need for explicitly
packing and unpacking the objects in the method body. Consequently, users are shielded from
the details of the verification methodology, which are largely irrelevant, from a user’s point of
view.

Jahob. The main focus of Jahob [32,33] is on reasoning techniques for data structure verifica-
tion that combines multiple theorem provers to reason aboutexpressive logical formulas. Jahob
uses a subset of the Isabelle/HOL [45] language as its specification language, and works on
instantiatable data structures, as opposed to global data structures used in its predecessor, Hob
[36]. Like SPEC♯, Jahob supports ghost variables and specification assignments which places
onus on programmers to help in the verification process by providing suitable instantiations of
these specification variables.

EVE Proofs. EVE Proofs [57] is an automatic verifier for Eiffel [40]. The tool translates
Eiffel programs to Boogie [1]. EVE Proofs is integrated in theEiffel Verification Environment.
The authors acknowledge the importance of frame conditionsin modular verification. When a
routine is called, the verifier is invalidating all knowledge about the locations which may have
changed. Therefore it is essential to constrain the effect aroutine has on the system to preserve
as much information as possible. As Eiffel does not offer a way to specify the frame condition,
the authors introduced an automatic extraction of modifies clauses. Their approach uses the
postcondition to extract a list of locations which constitute the modifies clause.

Although the approach uses the dynamic type for the pre- and postcondition of a routine call,
it uses the static type for the frame condition. This can leadto unsoundness in the system. As
opposed to EVE Proofs, our approach does not have to infer frame conditions, courtesy to the
frame rule of separation logic [51]. The crucial power of theframe rule is that it allows a global
property to be derived from a local one, without looking at other parts of the program.

Another restriction of EVE Proofs regards the methodology for invariants, which has to take
into account that objects can temporarily violate the invariant, but also that an object can call
other objects while being in an inconsistent state. As this is not considered at the moment, the
current implementation of invariants can introduce unsoundness in the system.

As a comparison, we shall discuss some features in our current verification system that differ
from those used in traditional verifiers. Our use of user-defined predicates, which capture the
properties to be analysed, removes the need for model fields and having object invariants tied
to class/type declarations. Regarding ghost specification variables, they are not required since
we provide support for automatically instantiating the predicates’ parameters. Furthermore, we
make use of unfold/fold reasoning to handle the properties of recursive data structures. This
obviates the need for specifyingtransitive closurerelations that are used by classical verifier,
such as Jahob, when tracking recursive properties. Lastly,as separation logic employs local
reasoning via a frame rule, our approach does not require a separatemodifies clause to be
prescribed.



8. Conclusion

We have presented in this paper an automated approach to verifying heap-manipulating im-
perative programs. Compared with other separation logic based automated verification systems
[3,16,19,38], our approach has made the following advances: (1) other systems mainly focus on
only the separation domain, while we work on a combined domain where not only separation
properties (defining the shape of data structures), but alsoother properties (such as size and
bag) can be specified; (2) other systems support only a few built-in predicates over the sepa-
ration domain, while we allow arbitrary user-specified (inductive) predicates over the domain
combined with shape, size and bag properties, which greatlyimproves the expressiveness of
our specification mechanism; (3) most existing systems focus on the verification of the pointer
safety, while our approach can verify, in addition to the pointer safety, other properties that
require the presence of numerical information such as size and bag. Our approach is built on
well-founded shape relations and well-formed separation constraints from which we have de-
signed a novel sound procedure for entailment proofs in the combined domain. Our automated
deduction mechanism is based on the unfold/fold reasoning of user-definable predicates and has
been proven to be sound and terminating.

While this paper is focused on automated verification, we shall also look into automated
inference, in order to allow our system to work for substantial sizable software. Automated
inference aims to automatically derive program annotations such as method pre/post-conditions
and loop invariants, rather than reply on programmers/users to manually supply. Recently,
there has been noticeable advance on automated inference for the separation domain [61,7].
However, it is open how to systematically infer pre/post-conditions and loop invariants for the
domain combined with shape, size and bag information and in the presence of user-specified
inductive predicates. This remains our main future work.
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A. Dynamic Semantics

This section presents a small-step operational semantics for our language given in Fig. 1.
The machine configuration is represented by〈s, h, e〉, wheres denotes the current stack,h
denotes the current heap, ande denotes the current program code. Each reduction step is for-
malized as a transition of the form:〈s, h, e〉→֒〈s1, h1, e1〉. The full set of transitions is given in
Fig. 8. We have introduced an intermediate constructret(v∗, e) to model the outcome of call
invocation, wheree denotes the residual code of the call. It is also used to handle local blocks.
The forward verification rule for this intermediate construct is given as follows:

[FV−RET]

⊢ {∆} e {∆2} ∆1 = (∃v′∗ ·∆2)

⊢ {∆} ret(v∗, e) {∆1}

Note that whenever the evaluation yields a value, we assume this value is stored in a special
logical variableres, although we do not explicitly putres in the stacks.

We also have the following postcondition weakening rule:

[FV−POST−WEAKENING]

⊢ {∆} e {∆1} ∆1≈>∆2

⊢ {∆} e {∆2}

where∆1≈>∆2 =df ∀s, h · s, h |= Post(∆1) =⇒ s, h |= Post(∆2). As discussed earlier, we
can view∆1 and∆2 as binary relations (as far as only program variables are concerned). There-
fore, we usePost(∆) here to refer to the postcondition(i.e. the set of post-states) specified by
∆. Note also that∆1 and∆2 share the same set of initial states (in whiche start to execute).

We now explain the notations used in the operational semantics. We usek to denote a con-
stant,⊥ to denote an undefined value, and() to denote the empty expression (program). Note
that the runtime stacks is viewed as a ‘stackable’ mapping, where a variablev may occur several
times, ands(v) always refers to the value of the variablev that was popped in most recently.7

The operation[v 7→ν]+s “pushes” the variablev to s with the valueν, and([v 7→ν]+s)(v) = ν.
The operations−{v∗} “pops out” variablesv∗ from the stacks. The operations[v 7→ν] changes
the value of the most recentv in stacks to ν. The mappingh[ι 7→r] is the same ash except that
it mapsι to r. The mappingh+[ι 7→r] extends the domain ofh with ι and mapsι to r.

B. Proofs

B.1. Theorem 5.1 – Preservation
Proof: By structural induction one.

7We can give a more formal definition fors, where different occurrences of the same variable can be labeled with
different ‘frame’ numbers. We omit the details here.



〈s, h, v〉→֒〈s, h, s(v)〉 〈s, h, k〉→֒〈s, h, k〉 〈s, h, v.f〉→֒〈s, h, h(s(v))(f)〉

〈s, h, v:=k〉→֒〈s[v 7→k], h, ()〉 〈s, h, (); e〉→֒〈s, h, e〉

〈s, h, e1〉→֒〈s1, h1, e3〉

〈s, h, e1; e2〉→֒〈s1, h1, e3; e2〉

〈s, h, e〉→֒〈s1, h1, e1〉

〈s, h, v:=e〉→֒〈s1, h1, v:=e1〉

s(v)=true

〈s, h, if v then e1 else e2〉→֒〈s, h, e1〉

s(v)=false

〈s, h, if v then e1 else e2〉→֒〈s, h, e2〉

〈s, h, {t v; e}〉→֒〈[v 7→⊥]+s, h, ret(v, e)〉 〈s, h, ret(v∗, k)〉→֒〈s−{v∗}, h, k〉

〈s, h, e〉→֒〈s1, h1, e1〉

〈s, h, ret(v∗, e)〉→֒〈s1, h1, ret(v∗, e1)〉

r=h(s(v1))[f 7→s(v2)] h1=h[s(v1) 7→r]

〈s, h, v1.f := v2〉→֒〈s, h1, ()〉

data c {t1 f1, .., tn fn}∈P ι/∈dom(h) r=c[f1 7→s(v1), .., fn 7→s(vn)]

〈s, h, new c(v1···n)〉→֒〈s, h+[ι 7→ r], ι〉

s1=[wi 7→s(vi)]
n
i=m+s t0 mn((ref ti wi)

m−1
i=1 , (ti wi)

n
i=m) {e}

〈s, h,mn(v1···n)〉→֒〈s1, h, ret({wi}ni=m, [vi/wi]
m−1
i=1 e)〉

Figure 8. Small-Step Operational Semantics

• Casev := e. There are two cases according to the dynamic semantics:

– e is not a value. From dynamic rules, there ise1 s.t. 〈s, h, e〉→֒〈s1, h1, e1〉, and
〈s, h, v:=e〉→֒〈s1, h1, v:=e1〉. From verification rule[FV−ASSIGN], ⊢ {∆}e{∆0},
and∆2=∃res·∆0∧{v}v

′=res. By induction hypothesis, there exists∆1, such that
s1, h1 |= Post(∆1) and⊢ {∆1}e1{∆2}. It concludes from the rule[FV−ASSIGN] that
⊢ {∆1} v:=e1 {∆2}.

– e is a value. Straightforward.

• Casev1.f := v2. Take∆1 = ∆. It concludes from rule[FV−FIELD−UPDATE] and the
dynamic rule.

• Casenew c(v1···n). From verification rule[FV−NEW], we have⊢ {∆}new c(v1···n){∆2},
where∆2 = ∆∗res::c〈v′1, .., v

′
n〉. Let∆1 = ∆2. From the dynamic semantics, we have

〈s, h, new c(v1···n)〉→֒〈s, h+[ι 7→ r], ι〉, whereι /∈ dom(h). Froms, h |= Post(∆), we have
s, h+[ι 7→ r] |= Post(∆1). Moreover,⊢ {∆1}ι{∆2}.

• Casee1; e2. We consider the case wheree1 is not a value (otherwise it is straightfor-
ward). From the dynamic semantics, we have〈s, h, e1〉→֒〈s1, h1, e3〉. From verification
rule [FV−SEQ], we have⊢ {∆}e1{∆3}. By induction hypothesis, there exists∆1 s.t.
s1, h1 |= Post(∆1), and⊢ {∆1}e3{∆3}. By rule [FV−SEQ], we have⊢ {∆1}e3; e2{∆2}.

• Caseif v then e1 else e2. There are two possibilities in the dynamic semantics:

– s(v)=true. We have〈s, h, if v then e1 else e2〉→֒〈s, h, e1〉. Let ∆1 = (∆∧v′).
It is obvious thats, h |= Post(∆1). By the rule[FV−IF], we have⊢ {∆∧v′} e1 {∆

1}.



By the rule [FV−POST−WEAKENING], we have⊢ {∆∧v′} e1 {∆
1∨∆2}. That is,

⊢ {∆1} e1 {∆2}.

– s(v) = false. Analogous to the above.

• Caset v; e. Let ∆1 = ∆, we conclude immediately from the assumption and the rules
[FV−LOCAL] and[FV−RET].

• Casemn(v1..n). From rule[FV−CALL], we know∆⊢ρΦpr ∗∆0. Take∆1 = ρΦpr∗∆0.
From the dynamic rule and the above heap entailment, we haves1, h1 |= Post(∆1). From
rule [FV−METH], we have⊢ {ρΦpr∗∆0} e1 {∆0∗Φpo} which concludes.

• Caseret(v∗, e). There are two cases:

– e is a valuek. Let∆1 = ∃v′∗ ·∆. It concludes immediately.

– e is not a value.〈s, h, ret(v∗, e)〉→֒〈s1, h1, ret(v
∗, e1)〉. By [FV−RET] and induc-

tion hypothesis, there exists∆1 s.t. s1, h1 |= Post(∆1) and⊢ {∆1} e1 {∆3}, and
∆2 = ∃v′∗·∆3. By rule [FV−RET] again, we have⊢ {∆1} ret(v

∗, e1) {∆2}.

• Casenull | k | v | v.f . Straightforward.

B.2. Theorem 5.2 – Progress
Proof: By structural induction one.

• Casev := e. There are two cases:

– e is a valuek. Let s1 = s[v 7→k], h1 = h, ande1 = (). We conclude.

– e is not a value. By[FV−ASSIGN], we have⊢ {∆} e {∆1}. By induction hypothe-
sis, there exists1, h1, e1, such that〈s, h, e〉→֒〈s1, h1, e1〉. We conclude immediately
from the dynamic semantics.

• Casev1.f := v2. Takee1 = (), s1 = s, andh1 = h[s(v1) 7→r], where
r = h(s(v1))[f 7→s(v2)]. It concludes immediately.

• Casenew c(v1···n). Let ι be a fresh location,r denotes the object value
c[f1 7→s(v1), .., fn 7→s(vn)]. Takes1 = s, h1 = h+[ι 7→r], ande1 = ι. We conclude.

• Casee1; e2. If e1 is a value(), we conclude immediately by takings1 = s, h1 = h. Oth-
erwise, by induction hypothesis, there exists1, h1, e3 s.t. 〈s, h, e1〉→֒〈s1, h1, e3〉. We then
have〈s, h, e1; e2〉→֒〈s1, h1, e3; e2〉 from the dynamic semantics.

• Caseif v then e1 else e2. It concludes immediately from a case analysis (based on
value ofv) and the induction hypothesis.

• Caset v; e. Let s1 = [v 7→⊥]+s, h1 = h, ande1 = ret(v, e). We conclude immediately.

• Casemn(v1..n). Supposev1, .., vm are pass-by-reference, while others are not. Take
s1 = [wi 7→s(vi)]

n
i=m+s, h1 = h, ande1 = ret({wi}

n
i=m, [vi/wi]

m−1
i=1 e), wherewi are from

method specificationt0 mn((ref ti wi)
m−1
i=1 , (ti wi)

n
i=m) {e}. We conclude by the dy-

namic semantics.



• Caseret(v∗, e). If e is a valuek, let s1 = s− {v∗}, h1 = h, ande1 = k, we conclude.
Otherwise, by induction hypothesis, there exists1, h1, e1 s.t.
〈s, h, e〉→֒〈s1, h1, e1〉. We then have〈s, h, ret(v∗, e)〉→֒〈s1, h1, ret(v

∗, e1)〉.

• Casenull | k | v | v.f . Straightforward.

B.3. Theorem 5.3 – Safety
Before we present the proof for Theorem 5.3, we state and provethe following lemma:

Lemma B.1 For any s, h, e, if 〈s, h, e〉→֒∗〈ŝ, ĥ, ν〉 for someŝ, ĥ, ν, whereν is a value, and
all free variables ofe are already in the domain of the stacks, i.e. free-vars(e)⊆dom(s), then
dom(ŝ) = dom(s).

Proof: By structural induction overe.
Basic cases:e is null | k | v | v.f | v.f = v1. The conclusion is obvious as the stack remains

unchanged during the evaluation ofe.
Inductive cases:

• e is v := e1. By the operational semantics, we know that〈s, h, e1〉→֒
∗〈s1, h1, ν1〉 for some

s1, h1, ν1, and〈s1, h1, v := ν1〉→֒〈ŝ, ĥ, ν〉. Note thatfree-vars(e1)⊆free-vars(e)⊆dom(s),
by induction hypothesis, we havedom(s1) = dom(s). The conclusion follows since
dom(ŝ) = dom(s1).

• e is e1; e2. By the operational semantics, there ares1, h1 such that〈s, h, e1〉→֒∗〈s1, h1, ()〉,
〈s1, h1, (); e2〉→֒〈s1, h1, e2〉, 〈s1, h1, e2〉→֒

∗〈ŝ, ĥ, ν〉. Note that, fori=1, 2, we have
free-vars(ei)⊆free-vars(e)⊆dom(s). By induction hypothesis, we have
dom(ŝ) = dom(s1) = dom(s).

• e is t v; e1. By the operational semantics, we have〈s, h, e〉→֒〈[v 7→ ]+s, h, ret(v, e1)〉,
and〈[v 7→ ]+s, h, e1〉→֒

∗〈s1, h1, ν〉 for somes1, h1, and〈s1, h1, ret(v, ν)〉→֒〈ŝ, ĥ, ν〉, where
ŝ = s1−{v}. Note thatfree-vars(e1)⊆dom([v 7→ ]+s), by induction hypothesis, we have
dom(s1) = dom([v 7→ ]+s). Sodom(ŝ) = dom(s1)−{v} = dom([v 7→ ]+s)−{v} = dom(s).

• e is mn(u∗; v∗), wherev∗ are arguments for call-by-value parametersw∗. By the opera-
tional semantics, we have (1)〈s, h, e〉→֒〈[w∗ 7→v∗]+s, h, ret(w∗, emn)〉, whereemn is the
body of the methodmn, and (2)〈[w∗ 7→v∗]+s, h, emn〉→֒

∗〈s1, h1, ν〉 for somes1, h1, and
(3) 〈s1, h1, ret(w

∗, ν)〉→֒〈ŝ, ĥ, ν〉, whereŝ = s1−{w∗}. Note also that we have
free-vars(emn)⊆dom([w∗ 7→v∗]+s), by induction hypothesis, we have
dom(s1) = dom([w∗ 7→v∗]+s). Sodom(ŝ) = dom(s1)−{w∗} = dom(s). 2

Proof of Theorem 5.3:If the evaluation ofe does not diverge (is not infinite), it will terminate
in a finite number of steps (sayn): 〈[], [], e〉→֒〈s1, h1, e1〉→֒· · ·→֒〈sn, hn, en〉, and there are no
further reductions possible. By Theorem 5.1, there exist∆1, ..,∆n such that,si, hi |= Post(∆i),
and⊢ {∆i} ei {∆}. By Theorem 5.2, The final resulten must be some valuev (or it will make
another reduction). The conclusion that the stacksn in the final state is empty is drawn from
Lemma B.1 in the above. 2



B.4. Soundness and Termination of Heap Entailment
Definition B.1 (length) We define thelengthof a separation constraint inductively as follows:

length(emp) = 0
length(p::c〈v∗〉) = 1
length(κ1∗κ2) = length(κ1)+length(κ2)
length(∃v∗·κ∧γ∧φ) = length(κ)
length(Φ1∨Φ2) = length(Φ1)+length(Φ2)

Definition B.2 (Entailment Transition) A transition of the formE1 → E2 is called an entail-
ment transition whereEi is either an entailment of the form∆1⊢

κ
V∆2 ∗∆ or a fold operation

foldκ(∆, p::c〈v∗〉). The set of possible entailment transitions are specified inductively by the
entailment rules and the fold operation defined in Section 4.

• Rule[ENT−MATCH]: There is one possible transition:

(p1::c〈v
∗
1〉∗κ1)∧π1⊢

κ
V ((p2::c〈v

∗
2〉∗κ2)∧π2) ∗∆

→

κ1∧(π1∧freeEqn(ρ, V ))⊢
κ∗p1::c〈v∗1〉

V−dom(ρ) ρ(κ2∧π2) ∗∆

• Rule[ENT−EMP]: There is no entailment transition.

• Rule[ENT−UNFOLD]: There is one transition:

(p1::c1〈v
∗
1〉∗κ1)∧π1⊢

κ
V ((p2::c2〈v

∗
2〉∗κ2)∧π2) ∗∆

→
unfold(p1::c1〈v∗1〉)∗κ1∧π1⊢

κ
V ((p2::c2〈v

∗
2〉∗κ2)∧π2) ∗∆

• Rule[ENT−FOLD]: There are 2 possible transitions:

(p1::c1〈v
∗
1〉∗κ1)∧π1⊢

κ
V ((p2::c2〈v

∗
2〉∗κ2)∧π2) ∗∆

→
foldκ((p1::c1〈v

∗
1〉∗κ1)∧π1, p1::c2〈v

∗
2〉)

and (p1::c1〈v
∗
1〉∗κ1)∧π1⊢

κ
V ((p2::c2〈v

∗
2〉∗κ2)∧π2) ∗∆

→

∆i∧π
a
i ⊢

κr

i

V κ2∧(π2∧π
c
i ) ∗∆ for somei∈1, .., n

• Rule[ENT−LHS−OR]: There are two possible transitions:

∆1∨∆2⊢
κ
V∆3 ∗ (∆4∨∆5) → ∆1⊢

κ
V∆3 ∗∆4

∆1∨∆2⊢
κ
V∆3 ∗ (∆4∨∆5) → ∆2⊢

κ
V∆3 ∗∆5

• Rule[ENT−RHS−OR]: There are two possible transitions:

∆1⊢
κ
V (∆2∨∆3) ∗∆

R
i → ∆1⊢

κ
V∆2 ∗∆

R
2

∆1⊢
κ
V (∆2∨∆3) ∗∆

R
i → ∆1⊢

κ
V∆3 ∗∆

R
3



• Rule[ENT−RHS−EX]: There is one possible transition:

∆1⊢
κ
V (∃v ·∆2) ∗∆ → ∆1⊢

κ
V ∪{w}([w/v]∆2) ∗∆3

• Rule[ENT−LHS−EX]: There is one possible transition:

∃v ·∆1⊢
κ
V∆2 ∗∆ → [w/v]∆1⊢

κ
V∆2 ∗∆

• Rule[FOLDING]: There is one possible transition:

foldκ′

(κ∧π, p::c〈v∗〉) → κ∧π⊢κ′

{v∗}[p/root]Φ ∗ {(∆i, κi, Vi, πi)}
n
i=1

Definition B.3 (Entailment Search Tree) An entailment search tree forE ≡ ∆1⊢
κ
V∆2 ∗∆

is a tree formed as follows:

• The nodes of the tree are either entailment relations or foldoperations (of the form
foldκ(∆, p::c〈v∗〉)).

• The root of the tree isE .

• The edges from parent nodes to their children nodes are entailment transitions defined in
Definition B.2.

B.5. Theorem 5.4 – Soundness of Heap Entailment
Proof: We need to show that ifE0 ≡ ∆1⊢

κ
V∆2 ∗∆3 succeeds ands, h |=∆1, thens, h |=∆2∗∆3.

Note that the entailment rule[ENT−MATCH] in Sec. 4 denotes a match of two nodes/shape pred-
icates between the antecedent and the consequent. We apply induction on the number of such
matches for each path in the entailment search tree forE0.

Base case. The entailment search succeeds requiring no matches. It can only be the case
where rule [ENT−EMP] is applied. It is straightforward to conclude.

Inductive case. Suppose a sequence of transitionsE0 → · · · → En where no match transitions
(due to rule[ENT−MATCH]) are involved in this sequence butEn will perform a match transition.
These transitions can only be generated by the following rules: [ENT−UNFOLD], [ENT−FOLD],
[ENT−LHS−OR], [ENT−RHS−OR], [ENT−LHS−EX], and[ENT−RHS−EX]. A case analysis on these
rules shows that the following properties hold:

s, h |= LHS(Ei) =⇒ s, h |= LHS(Ei+1)
s, h |=RHS(Ei+1) =⇒ s, h |=RHS(Ei)

(†)

Suppose the match node forEn ≡ ∆a⊢
κ
V∆c ∗∆r is p::c〈v∗〉, andEn becomes

∆′
a⊢

κ∗p::c〈v∗〉
V ∆′

c ∗∆r for some∆′
a, ∆

′
c. By induction, we have

∀s, h · s, h |=∆′
a =⇒ s, h |=∆′

c∗∆r (‡)

From the entailment process, we have∆a = p::c〈v∗〉∗∆′
a, and∆c = p::c〈v∗〉∗∆′

c. Suppose
s, h |=∆a, then there existh0, h1, such thath = h0∗h1, s, h0 |= p::c〈v∗〉, ands, h1 |=∆′

a. From
(‡), we haves, h1 |=∆′

c∗∆r, which immediately yields
s, h |=∆c∗∆r. We then conclude from(†). 2

Before we prove the termination theorem, we state and prove two lemmas.



Lemma B.2 For any ∆1 and ∆2, the entailment search tree forE ≡ ∆1⊢
κ
V∆2 ∗∆ has only

finite number of fold nodes.

Proof sketch: Suppose the first rule applied in the search tree forE is [ENT−FOLD] (the only
rule that generates fold nodes). By Definition B.2, there aren+1 childrenE0, · · · , En for the
root nodeE , for somen, whereE0 is a fold node. Note that the length of the consequent inEi is
strictly smaller than that inE . On the other hand, nodeE0 will perform a transition (due to rule
[FOLDING]), yielding a nodeE ′:

(p1::c1〈v
∗
1〉∗κ1)∧π1⊢

κ′

{v∗
2
}[p1/root]Φ ∗ {· · · }

This nodeE ′ performs some transitions which do not change the antecedent before it performs
a transition due to rule[ENT−MATCH], yielding a new nodeE ′

0:

κ1∧π1⊢
κ′∗p1::c1〈v∗1〉

V−dom(ρ) ∆4 ∗∆
′

Note that the length of the antecedent in this node is one smaller than that in the root nodeE .
Moreover, it is not possible forE ′

0 to perform an unfold operation as the only data node inΦ has
been consumed by the match transition. This guarantees the strict decreasing of the length of
the antecedent.

In a nutshell, any paths that involve a chain of fold operations will keep the length of the
antecedent decreasing, while other paths keep the length ofthe consequent decreasing. By
induction, we can conclude that the number of fold operations is finite. 2

Lemma B.3 For any entailment relationE ≡ ∆1⊢
κ
V∆2 ∗∆, its entailment search tree is finite

branching and has finite depth.

Proof: Let li = length(∆i) for i = 1, 2. Obviously we havel1≥0, l2≥0. Let f denote the
number of fold operations that have appeared in the entailment search tree.

Due to the well-foundedness of separation constraints, there are finite possible entailment
transitions starting from any entailment relation (thus finite possible children for it). This en-
sures finite branching for each node. What we need to prove is the finite depth property.

To prove finite depth property, we can apply induction on the well-founded measure(f, l2, l1)
using the following lexicographic order:

(f ′, l′2, l
′
1) < (f, l2, l1) =df f ′<f ∨ f ′=f∧l′2<l2 ∨ f ′=f∧(l′2=l2∧l

′
1<l1)

(i). For the base case where the measure at root node is
(f=0, l2=0, l1=0). The only possible transition for the root node is from one ofthe following
rules [ENT−EMP], [ENT−RHS−EX], and[ENT−LHS−EX], as all other rules requirel1>0 or l2>0.
If the transition is due to rule [ENT−EMP], the finite depth is obvious due to Definition B.2.
If the transition is due to rule[ENT−RHS−EX] or [ENT−LHS−EX], the finite depth is guaranteed
as all paths of the tree are formed by finite number of transitions due to rule[ENT−RHS−EX] or
[ENT−LHS−EX] and then a transition due to rule[ENT−EMP]. This is because we only have
finite number of existential variables.
(ii). For the inductive case(f=m, l2=n, l1=k), wherem+n+k>0. Let us do a case analysis
on the rulethat we apply to the root nodeE to generate transitions:



(iia) Rule [ENT−EMP]. The finite depth property is trivial as discussed in (i).
(iib) Rule [ENT−MATCH]. There is only one possible transitionE → E1 (Definition B.2).

Let (f ′, l′2, l
′
1) denote the measure in the child nodeE1, immediately we havef ′=f , l′2=l2−1,

l′1=l1−1. Thus(f ′, l′2, l
′
1) < (f, l2, l1). By induction hypothesis, the finite depth property holds

for the subtree rooted atE1. So does the whole tree.
(iic) Rule [ENT−UNFOLD]. There is only one possible transitionE → E1 (Definition B.2).

Let (fa, l2a, l1a) denote the measure in the child nodeE1.We havefa = f , l2a = l2, andl1a≥l1.
The measure does not decrease. However, as a new match is generated after unfolding, the
only possible transition fromE1 is the one generated by rule[ENT−MATCH] which we denote
asE1 → E2. Let (fb, l2b, l1b) denote the measure in the nodeE2. From (iib), we knowfb=f ,
l2b=l2a−1, which yieldsl2b=l2−1<l2, thus(fb, l2b, l1b) < (f, l2, l1). By induction hypothesis,
the finite depth property holds.

(iid) Rule [ENT−FOLD]. There are 2 possible transitions. For the first transitionE → E1
whereE1 = foldκ(...), all nodes in the subtrees of nodeE1 have a decreased measure (number
of fold operations is decreased!), by induction hypothesisall subtrees ofE1 have finite depth,
so is the subtree rooted atE1. For the other transitionE → Ei (for somei∈2, ..., n+1), we also
see the decrease of the measure (the length of the consequence l2) in nodesEi. By induction
hypothesis again, subtrees rooted at nodesEi have finite depth. This concludes the whole tree
has finite depth.

(iie) Rule [ENT−LHS−OR] or [ENT−RHS−OR]. The corresponding measure in the only child
node is smaller than that inE . It concludes immediately by induction hypothesis.

(iif) Rule [ENT−RHS−EX] or [ENT−LHS−EX]. Starting fromE , after finite number of similar
transitions (due to[ENT−RHS−EX] or [ENT−LHS−EX]), a different transition (due to rules other
than[ENT−RHS−EX] or [ENT−LHS−EX]) will be taken. This then reduces the case to what we
have discussed above.

Thus it concludes that the entailment search tree has finite depth. 2

B.6. Theorem 5.5 – Termination of Heap Entailment
Proof: By Koenig’s lemma [29] and Lemma B.3, all paths are finite. This concludes that

the entailment checking terminates. 2

B.7. Lemma 5.6 – Sound Abstraction
Before we prove Lemma 5.6, we state and prove the following support lemma.

Lemma B.4 Given a separation constraintΦ where the invariants of the predicates appearing
in Φ are sound, we have∀s, h · ( s, h |=Φ =⇒ s |=XPure0(Φ)).

Proof: By structural induction onΦ.

• Φ = Φ1

∨
Φ2.

s, h |=Φ
⇐⇒ s, h |=Φ1

∨
Φ2

⇐⇒ s, h |=Φ1

∨
s, h |=Φ2 (model for separation constraint - Def 5.1)

=⇒ s |=XPure0(Φ1)
∨

s |=XPure0(Φ2) (induction hypothesis)
⇐⇒ s |=XPure0(Φ1)

∨
XPure0(Φ2) (XPuren definition - Fig 6)

⇐⇒ s |=XPure0(Φ)



• Φ = ∃v1..n · κ∧π.

s, h |=Φ
⇐⇒ s, h |= ∃v1···n · κ ∧ π
⇐⇒ ∃ν1..n · s[(vi 7→νi)

n
i=1], h |=κ and s[(vi 7→νi)

n
i=1] |= π (model for sep. constraint - Def 5.1)

=⇒ ∃ν1..n · s[(vi 7→νi)
n
i=1] |=XPure0(κ) and s[(vi 7→νi)

n
i=1] |= [0/null]π

(induction hypothesis andXPure0 definition - Fig 6)
⇐⇒ ∃ν1..n · s[(vi 7→νi)

n
i=1] |=XPure0(κ) ∧ [0/null]π (model for sep. constraint - Def 5.1)

⇐⇒ ∃ν1..n · s[(vi 7→νi)
n
i=1] |=XPure0(κ ∧ π) (XPuren definition - Fig 6)

⇐⇒ ∃ν1..n · s |= ∃ v1..n · XPure0(κ ∧ π) (model for separation constraint - Def 5.1)
⇐⇒ ∃ν1..n · s |=XPure0(∃ v1..n · κ ∧ π) (XPuren definition - Fig 6)
⇐⇒ s |=XPure0(Φ)

• Φ = κ1∗κ2.

s, h |=Φ
⇐⇒ s, h |=κ1∗κ2

⇐⇒ s, h1 |=κ1 ∧ s, h2 |=κ2 ∧ h = h1∗h2

Let XPure0(κ1) = ∃I · φ1, XPure0(κ2) = ∃J · φ2 where
I andJ are composed of fresh symbolic addresses andI ∩ J = ∅

=⇒ s |= ∃I · φ1 ∧ s |=∃J · φ2 andI ∩ J = ∅ (induction hypothesis)
⇐⇒ s |=(∃I · φ1) ∧ (∃J · φ2)
⇐⇒ s |=XPure0(κ1∗κ2) (XPuren definition - Fig.6)
⇐⇒ s |=XPure0(Φ)

• Φ = emp. Straightforward.

• Φ = p::c〈v∗〉, andIsData(c).

s, h |=Φ
⇐⇒ s, h |= p::c〈v∗〉
=⇒ ∃ν · s(p) = ν ∧ ν 6= null (model for separation constraint - Def 5.1)
⇐⇒ s |= ∃i · p = i ∧ i 6= 0
⇐⇒ s |=XPure0(Φ) (XPuren definition - Fig.6)

• Φ = p::c〈v∗〉, andIsView(c).

s, h |=Φ
⇐⇒ s, h |= p::c〈v∗〉
⇐⇒ s, h |= [p/root]Φc (assumingc〈v∗〉 ≡ Φc inv π ∈ P )
=⇒ s |=XPure0([p/root]Φc) (induction hypothesis)
=⇒ s |= [p/root, 0/null]π ( all invariants of predicates inΦ are sound)
⇐⇒ s |=XPure0(Φ) (XPuren definition - Fig.6)

2

Now we present the proof for Lemma 5.6 in what follows.



Proof of Lemma 5.6: Given a separation constraintΦ where the invariants of the predicates
appearing inΦ are sound, we show that∀s, h · ( s, h |=Φ =⇒ s |=XPuren(Φ)) by induction on
n.

Base case:n = 0. It follows from Lemma B.4.

Inductive case:We show that for alls, h, s |=XPuren+1(Φ) if s, h |=Φ ands |=XPuren(Φ). To
prove this, we conduct a structural induction onΦ.

• Φ = Φ1

∨
Φ2.

s, h |=Φ
⇐⇒ s, h |=Φ1

∨
Φ2

⇐⇒ s, h |=Φ1

∨
s, h |=Φ2 (model for sep. constraint - Def 5.1)

=⇒ s |=XPuren+1(Φ1)
∨

s |=XPuren+1(Φ2) (hypothesis of structural induction)
⇐⇒ s |=XPuren+1(Φ1)

∨
XPuren+1(Φ2) (XPuren definition - Fig 6)

⇐⇒ s |=XPuren+1(Φ)

• Φ = ∃v1..m · κ∧π.

s, h |=Φ
⇐⇒ s, h |= ∃v1···m · κ ∧ π
⇐⇒ ∃ν1..m · s[(vi 7→νi)

m
i=1], h |=κ and s[(vi 7→νi)

m
i=1] |= π (model for sep. constraint - Def 5.1)

=⇒ ∃ν1..m · s[(vi 7→νi)
m
i=1] |=XPuren+1(κ) and s[(vi 7→νi)

m
i=1] |= [0/null]π (hypothesis of

structural induction andXPuren definition - Fig 6)
⇐⇒ ∃ν1..m · s[(vi 7→νi)

m
i=1] |=XPuren+1(κ) ∧ [0/null]π (model for sep. constraint - Def 5.1)

⇐⇒ ∃ν1..m · s[(vi 7→νi)
m
i=1] |=XPuren+1(κ ∧ π) (XPuren definition - Fig 6)

⇐⇒ ∃ν1..m · s |=∃ v1..m · XPuren+1(κ ∧ π) (model for sep. constraint - Def 5.1)
⇐⇒ ∃ν1..m · s |=XPuren+1(∃ v1..m · κ ∧ π) (XPuren definition - Fig 6)
⇐⇒ s |=XPuren+1(Φ)

• Φ = κ1∗κ2.

s, h |=Φ
⇐⇒ s, h |=κ1∗κ2

⇐⇒ s, h1 |=κ1 ∧ s, h2 |=κ2 ∧ h = h1∗h2

Let XPuren+1(κ1) = ∃I · φ1, XPuren+1(κ2) = ∃J · φ2 where
I andJ are composed of fresh symbolic addresses andI ∩ J = ∅

=⇒ s |= ∃I · φ1 ∧ s |=∃J · φ2 andI ∩ J = ∅ (hypothesis of structural induction)
⇐⇒ s |=(∃I · φ1) ∧ (∃J · φ2)
⇐⇒ s |=XPuren+1(κ1∗κ2) (XPuren definition - Fig.6)
⇐⇒ s |=XPuren+1(Φ)

• Φ = emp. Straightforward.



• Φ = p::c〈v∗〉, andIsData(c).

s, h |=Φ
⇐⇒ s, h |= p::c〈v∗〉
=⇒ ∃ν · s(p) = ν ∧ ν 6= null (model for separation constraint - Def 5.1)
⇐⇒ s |= ∃i · p = i ∧ i 6= 0
⇐⇒ s |=XPuren+1(Φ) (XPuren definition - Fig.6)

• Φ = p::c〈v∗〉, andIsView(c).

s, h |=Φ
⇐⇒ s, h |= p::c〈v∗〉
⇐⇒ s, h |= [p/root](Φc) (assumingc〈v∗〉 ≡ Φc inv π ∈ P )
=⇒ s |=XPuren([p/root]Φc) (hypothesis of induction overn)
⇐⇒ s |=XPuren+1(p::c〈v

∗〉) (XPuren definition - Fig.6)

2


