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Despite their popularity and importance, pointer-basedjams remain a major challenge
for program verification. In recent years, separation lbgis emerged as a contender for formal
reasoning of pointer-based programs. Recent works haveddoon specialized provers that
are mostly based on fixed sets of predicates. In this paperep®wse an automated verification
system for ensuring the safety of pointer-based prograieraspecifications handled are con-
cise, precise and expressive. Our approachusesdefinabl@redicates to allow programmers
to describe a wide range of data structures with their agtmtshape sizeandbag (multi-set)
properties. To support automatic verification, we desigewa antailment checking procedure
that can handlevell-foundedoredicates (that may be recursively defined) usinfpld/foldrea-
soning. We have proven the soundness and termination ofesification system and built a
prototype system to demonstrate the viability of our appinoa

1. Introduction

Separation logic supports reasoning about shared mutalbée sructures, i.e., structures
where an updatable field can be referenced from more than @né pJsing it, the specifi-
cation of heap memory operations and pointer manipulatiamsbe made more precise (with
the help of must-aliases) and concise (with the help of fraomelitions). While the foundations
of separation logic have been laid in seminal papers by Rdgrbll] and Ishtiag and O’Hearn
[25], new automated reasoning tools based on separatian[d9] have gradually appeared.
Several recent works [3,16] have designed specialise@sotiiat work for a fixed set of pred-
icates (e.g. the predicaleeg to describe a segment of linked-list nodes). This paperdesu
on an automated reasoner that works for user-defined ptedica

When designing a static reasoning mechanism for progranoskeéy issues that we need to
consider areautomationandexpressivity Automation comes in two main flavors based either
on automatederificationor on automatethference In automated verification for imperative
programs, pre/post conditions are typically specified &mhemethod/procedure (and an invari-
ant given for each loop) before the reasoning system autcatigiichecks if each given program
code is correct with respect to the given pre/post/invadamotations. In automated inference
[53], these annotations are expected to be derived by tlemesy system. Intraprocedural

*This paper is an expanded version of our VMCAI'07 and ICEQIZYapers.
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inference is expected to derive loop invariants, whilerjmtecedural inference is also expected
to derive pre/post conditions for methods/procedures. &ihfierence can be said to be more
useful in general, it must be said that automated verifinaoof great importance too, and
it can complement inference in several ways. Firstly, pragners’ insights may be captured
via annotations to handle difficult examples that inferesggtem may be unable to handle.
Secondly, the verification system may act as an independeaker on the inference system.
Thirdly, the verification system plays a useful role withifpaoof-carrying code” system [42],
where annotations of untrusted components must alwaysrbeegeorior to their actual execu-
tion. Furthermore, an automated verification system allasv explore the boundary of what
is achievable in software verification which has been idiedtias a Grand Challenge [23,27]
for computing research.

Expressivity is another major issue for automated reagpaystems. By allowing more
properties to be easily captured, where possible, our eatifin tool can support better safety
and give higher assurance on program correctness. This'pameEn goal is to raise the level
of expressivity that is possible with an automated veriftcasystem based on separation logic,
S0 as to support the specification and verification of shape and bag properties of imperative
programs. We make the following technical contributionsauals this overall goal:

e We provide auser-specifiegpredicate specification mechanism that can capture a wide
range of data structures with different kinds of shapes. Bapsh, we mean the ex-
pected forms of some linked data structures, such as cistic doubly-linked list or even
height-balanced trees and sorted lists/trees. Moreowepravide a novel mechanism to
soundly approximate each predicate describing a datatgteuby a heap-independent
pure formula which plays an important role in entailmentimg. This allows our proof
obligations to be eventually discharged by classical pggveuch as Omega or Isabelle
(Secs 2 and 4).

There are data structures that are beyond the capabiliheafurrent system. This is due
to the fact that, in our approach, references between trectsbpf a data structure are
captured by passing object references and fields as parametgredicate invocations.
Consequently, our predicates cannot precisely capturesttaiztures with non-local ref-

erences, which do not have a direct relationship with fieldsuorounding objects, but

rather are determined by some global constraint.

e We improve the expressiveness of our automated verificedamrby allowing it to capture
shape, size and bag properties from each predicate thahig bsed to define some data
structure. The size properties may capture sophisticadéal gtructure invariants, such
as orderedness (for sorted list/trees) and also balanaghtlpgoperties (for AVL-trees).
The bag constraints enable expressing reachability ptiepeias they can capture the
nodes (or values) reachable inside a heap predicate. Ranags our specification can
capture all elements of a list, our verification system camtprove the preservation of
the elements inside the list after sorting. These abstragtgpties are important as they
are easily specified by users, but are not automatically Iledray existing verification
systems based on separation logic (Sec 3).

e We design a new procedure to prove entailment of separatiap bonstraints. This pro-
cedure usesinfold/foldreasoning to deal with predicate definitions that descrdraes



data structures with sophisticated shapes/properties.leviie unfold/fold mechanism
may not be totally new, we have identified sufficient condisidor soundness and termi-
nation of the procedure in the presence of user-definedsimeysredicates (Sec 4).

¢ \We have implemented a prototype verification system withalhave features and have
also proven both its soundness and termination (Secs 5 and 6)

We briefly survey the state-of-the-art on research thatdeswn using separation logic for
either program analysis or verification. The general franrévof separation logic [51,25] is
highly expressive but undecidable. In the search for a adbidfragment of separation logic
for automated verification, Berdine et al. [3] support onlyraited set of predicatewithout
size properties, disjunctions and existential quantifimnilarly, Jia and Walker [26] postpone
the handling of recursive predicates in their recent workaatomated reasoning of pointer
programs. Our approach is more pragmatic as we aim for a sanohterminating formulation
of automated verification via separation logic, but do not ir completeness in the expressive
fragment that we handle. In VMCAI'07 [44], we present the egl for a verification system
that supports user-defined predicates with size propertire$CECCS’07 [9], we extend the
proposal with a bag/set specification mechanism. The cupaper is a journal version of
these two papers. We have added clarification regardingotbeand mechanism of implicit vs
explicit instantiation, and provided proofs on the soursdnaf our verification system.

On the inference front, Lee et al. [38] conduct an intrapdocal analysis for loop invariants
using grammar approximation under separation logic. Téealysis can handle a wide range
of shape predicates with local sharing but is restrictedréalipates with two parameters and
without size properties. Gotsman et al. [19] also formuéatenterprocedural shape inference
which is restricted to just the list segment shape predicaitas [54] extends separation logic
with fixpoint connectives and postpones substitution taesprecursively defined formulae to
model the analysis of while-loops. However, it is uncleawho check for entailment in their
extended separation logic. While our work does not addressterence/analysis challenge,
we have succeeded in providing direct support for automegegification via an expressive
specification mechanism through user-specified prediegtbshape, size and bag properties.
In the following sections, we provide some details on thelsyic mechanisms used to provide
automated program verification for a procedural languagk support for pointers to heap-
based data structures.

This work is organized in eight sections. After the introtiliie, Sec 2 presents the language
and specifications. Sec 3 and Sec 4 describe the forwardcatioin and entailment rules,
respectively, whereas their soundness is proved in Sec 66 Sammarizes the experimental
results, Sec 7 reviews some related works, and Sec 8 comsctudevork. The proofs for our
soundness rules are given in the Appendix.

2. Language and Specifications

In this section, we first introduce a core imperative languagd then depict our specification
language which supports user-defined shape predicateshiéfie, size and bag properties.

2.1. Language
We provide a simple imperative language in Figure 1. A progcamprises a list of type
declarationstflecl’) and a list of method declarationséth). We use the supscriptto help



P ::= tdecl meth
tdecl ::= datat| spred
datat ::= data c { field" }

field ::=typev

type ==c|7T

T ::=int | bool | float | void

meth ::= type mn((ref typev)*, (typev)*) where mspec{e}
e c=null | k7 |v|v.f|vi=e]|v.f:=vy | new c(v*)

| e1;eq | typev; e | mn(v*) | if v then e; else ey

Figure 1. A Core Imperative Language

denote a list of items, for exampd& denotes a list of variables;,, .., v,,. With regard to the used
terminals denotes the name of a user-defined data typg, v, stand for variable names;n
represents a method nanteis a numeric constant, anfildenotes a field name. For simplicity,
we shall assume that programs and specification formulasserare well-typed. To simplify
the presentation but without loss of expressiveness, we/alhly one-level field access likef
(rather thanv. f;. f5...), and we allow only boolean variables (but not expressitmbg used as
the test conditions for conditionals. (for brevity, we uke variablev in the test condition for
conditionals to denote a boolean variable). The languagpasts data type declaration via
datat and shape predicatéefinition viaspred The syntax for shape predicates is given in the
next subsection.

The following data node declarations can be expressed itaoguage and will be used as
examples throughout the paper. Note that they are recudsitae declarations with different
numbers of fields.

data node { int val; node next }
data node2 { int val; node2 prev; node2 next }
datanode3 { int val; node3 left; node3 right; node3 parent }

Each methodnethis associated with a pre/post specificatmospe¢ the syntax of which will
be given in the next subsection. For simplicity, we assurae\riable names declared inside
each method are all distinct.

Pass-by-referencparameters are marked witlkf. For formalization convenience, they are
grouped together. This pass-by-reference mechanismfisl isesupporting reference param-
eters of languages such as @s an example of pass-by-reference parameters, the foljpw
function allows the actual parameters{af y} to be swapped at its callers’ sites.

void swap(ref node2 x, ref node2 y) where --- { node2 z:=x; x:=y; y:=2z }

Furthermore, these parameters allow each iterative lobp tirectly converted to an equiv-
alent tail-recursive method, where mutation on paramets¥samade visible to the caller via
pass-by-reference. This technique of translating awaggtite loops is standard and is helpful
in further minimising our core language.

3Shape predicates are predicates specifying data strighiapes. Our shape predicates can also specify size and
bag properties of data structures.



The standard insertion sort algorithm can be written in angliage as follows:

node insert(node x, node vn) where - - - node insertion sort(node y)
{ if (vn.val<x.val) where - - -
then { vn.next:=x; vn } { if (y.next=null) theny
else if (x.next=null) then else {
{ x.next:=vn; vn.next:=null; x } y.next:=insertion sort(y.next);
else { x.next:=insert(x.next,vn); x }} insert(y.next,y)}}

The insert method takes a sorted listand a nodern that is to be inserted in the correct
location of its sorted list. Thensertion _sort method recursively applies itself (sorting) to
the tail of its input list, namely.next, before inserting the first node, namelyinto its now
sorted tail. Note that we use an expression-oriented lagguéere the last subexpression (e.g.
e, from ey;e;) denotes the result of an expression. The missing methatfigpdions (to be
filled in the place of - - ), denoted bynspec, are described in the next section.

2.2. The Specification Language

Separation logic [51,25] extends Hoare logic [21] to suppsaisoning about shared mutable
data structures. One connective that it adds to classiga is separation conjunction The
separation formula; * p, means that the heap can be split into two disjoint parts irckvhi
andp, hold, respectively. Our work will make use of this conneetim our specifications. In
our approach, the verifier takes as input a command and amgditiom. It then derives the
strongest postcondition upon termination of the commartticliecks if the strongest postcon-
dition implies the declared postcondition.

We propose a mechanism based on predicates (that may besivegudefined) to allow
user specification of data structure shapes with size archabdity properties. Our shape
specification is based on separation logic with supportigjudctive heap states. Furthermore,
each shape predicate may have pointer, integer or bag ptane capture relevant properties
of data structures.

Separation logic [51,25] uses the notatiento denote singleton heaps, e.g. the formula
p—[val : 3,next : 1] represents a singleton heap referred tgppwhere|val : 3, next : 1]
is a data record containing fieldal andnext. On the other hand, separation logic also uses
predicate formulas to denote more complicated shapesl &g(p, q) represents list segments
starting from the head pointgrand containing all the data nodes until thpointer is reached.
In our system, we unify these two different representatiotcsone form:p::c(v*). Whenc is
a data type namey::c(v*) stands for a singleton heap-|[(f:v)*] wheref* are fields of data
declarationc. Whenc is a predicate name;:c(v*) stands for the predicate formutép, v*) .
The reason we distinguish the first parameter from the reéisatseach predicate has an implicit
parameterroot as its first parameter. Effectively, this is a “root” pointer the specified
data structure that guides data traversal and facilitaesgléfinition ofwell-foundedoredicates
(given later in this section). As an example, an acycliceakist (that terminates with a1l
reference) can be described by:

root :: 11(n) = (root=nullAn=0)V
(3i,m,q-root:mode(i, q)*q::11(m) An=m+1)
invn>0



The parameten captures aerivedvalue that denotes the length of the acyclic list starting
from root pointer. The above definition asserts thatlanlist can be empty (the base case
root=null) or consists of a head data node (specifieddxyt::node(i, q)) and a separate tail
data structure which is also an list (q::11(m)). Thex connector ensures that the head node
and the tail reside in disjoint heaps. We also specify a digfarariantn>0 that holds for allL1
lists. (This invariant can be verified by checking that eaisjudctive branch of the predicate
definition always implies its stated invariant. In the cak&lopredicate, the disjunctive branch
with n = 0 implies the given invariant>0. Similarly, then = m + 1 branch together with
m>0 from the invariant of::11(m) also implies the given invariamt>0.) Our predicate uses
existential quantifiers for local values and pointers, sash, m,q. The syntax for inductive
shape predicates is given in Figure 2. For each shape dafispired the heap-independent
invariantm over the parametefgoot, v*} holds for each instance of the predicate. Types need
not be given in our specification as we have an inference ithgoto automatically infer non-
empty types for specifications that are well-typed. Forlth@redicate, our type inference can
determine thah, n, i are ofint type, whileroot, q are of thenode type. As the construction
of type inference algorithm is quite standard for a languaghout polymorphism [47], its
description is omitted in the current paper. Note that eabjtrecursive shape relation can lead
to non-termination in our reasoning. We avoid this probleympboposing a notion of well-
founded shape predicates, which will be discussed latéremrctirrent section.

The use of separation logic enables more precise and caraisening for heap memory, as it
can easily support must-aliasing and local reasoning. legamust-aliasing, when we specify
that x::mode(3, y)*y::node(5,x) to be a precondition of some method, we can immediately
determine thak, y are non-aliased, nameky#y due to the use of the separation conjunction,
while x.next = y andy.next = x are must-aliases for the two fields from the heap formula.
In contrast, if we had used the formutanode(3, y)Ay::node(5,x), we may not be able to
determine ifx,y are aliased with each other, or not. Regarding local reagcaiiout heap-
allocated data structures [16,46], it means that reasaddogit a command concerns only the
part of the heap that the command reads or writes, i.e. thenaomds footprint. Note that local
reasoning is also present in the original formulation of tédagic [21] with the substitution
treatment of assignment, but is lost if heap-based datetstre) and thus aliasing, is introduced
to the programming language. This loss of locality is notedlee pointer swing problem
by Hoare and He [22]. Due to local reasoning, in our systenreagndition guarantees the
existence of all memory locations that the procedure aesesslence, we can assume that
only the heap memory specified in the precondition of each methay e modified by the
method’s body. This makes specifications using separatigic shorter by omitting the need
to write modifiesclauses that are necessary in traditional specificatiayulages, such as JML
[37] or Speé€[1].

A more complex shape, doubly linked-list with lengthis described by:

dll(p,n) = (root=nullAn=0)V(root:mode2(_,p,q)*q:dll(root,n—1))
invn>0

The d11 shape predicate has a parameidhat represents thegrev field of the first node of
the doubly linked-list. It captures a chain of nodes thattarbe traversed via theext field

starting from the current nodsrot. The nodes accessible via theev field of theroot node
are not part of thel1l list. This example also highlights some shortcuts we maytoseake



shape specifications shorter. We use undersctoedenote an anonymous variable. All the
variables (including anonymous variables) in the RHS of thepe definition, which are not
parameters of the given predicate, suchyaare existentially quantified. Furthermore, terms
may be directly written as arguments of shape predicatetarrdade, while theoot parameter
on the LHS can be omitted as it is an implicit parameter thastrbe present for each of our
predicate definitions.

User-definable shape predicates provide us with more fléyithan some recent automated
reasoning systems [3,5] that are designed to work with oslyall set of fixed predicates. Fur-
thermore, our shape predicates can describe not onlshitygeof data structures, but also their
sizeandbag properties. (Examples with bag properties will be descrilager in Sec 2.2.1.)
This capability enables many applications, including eéheequiring the support for data struc-
tures with more complex invariants. For example, we may defimon-empty sorted list as
below. The predicate also tracks the length, the minimumnaaximum elements of the list.

sortl(n,min, max) = (root:node(min,null) A min=max A n=1)
V (root:mode(min, q) * q::sortl(n—1,k max) A min<k)
inv min<max A n>1
The constrainhin<k guarantees that sortedness property is adhered betweén@aygjacent

nodes in the list. We may now specify (and then verify) thertisn sort algorithm mentioned
earlier (see Sec 2.1 for the code) :

node insert(node x, node vn) where node insertion sort(node y)
x::sortl(n,mi,ma) % vn:node(v, ) % where y::11(n) An>0 %
res:sortl(n+1,min(v,mi), max(v, ma)) res:sortl(n, _, )

Note that we useb, +— @, to capture a preconditio,, and a postconditior®,, of a
method, as an abbreviation of the standard representadipnires ®,; ensures Py, [1,37].

A special identifierres is used in the postcondition to denote the result of the niethater
in the verification system, we also use it to denote the valukeolatest expression. The pre-
condition ofinsertion_sort ensures thag points to a non-empty singly linked list (the fact
that the list is non-empty is given by the constraint0), whereas the postcondition shows that
the output list is sorted and has the same number of nades, the input list. Regarding the
insert method, the precondition assumes that the method takeseal $ist of sizen pointed
by x, and a nodern that is to be inserted in the correct location in the sortsd [The post-
condition asserts that the method returns a pointer to adbst of sizen+1, whose minimum
stored value is the minimum between the smallest value bdifierinsertionni, and the newly
inserted valuey. Similarly, the maximum stored value is the maximum betw#enlargest
value before the insertiona, and the newly inserted value,

The separation formulas we use are in a disjunctive nornal {eg. ®, @, ®,, in Figure 2).
Each disjunct consists ofsaseparated heap constrait)treferred to avieap part and a heap-
independent formula, referred to apure part The pure part does not contain any heap nodes
and is presently restricted to pointer equality/disedquali Presburger arithmetig, ¢ ([49])
and bag constrainp, . Furthermore A denotes a composite formula that could always be
safely translated into th@ form which captures a disjunct of heap states, denoted, liigat
are in separation conjunctiofi.A will be used in the rest of the paper for denoting an abstract

4This translation is elaborated later in Figure 5.



spred :=c(v*)=®inv 7

mspec ::= Py Ppg

o =\ (Fv*rAT)*

T n=YAQ

v = v;=vy | v=null | vF#vy | vF#null | Y1 AV

K = emp | v:C(V*) | Ky * Ko

A m=0 | AjVAy | AAT | ApxAy | Fu-A

¢ n=plblal gings | g1V [ =d | Fv-d | Vo ¢
a n=81=589 | $1<59

b i=true | false |v | b;=by

s = KT o | B Xs | s1+se | —s | maxX(sy,s2) | min(sy,ss) | |B]
© n=vEB | B1=By | BiL By | YvEB-¢ | VEB-®
B = Bl|_|B2 ‘ Bll_lBQ ‘ Bl—BQ | {} ‘ {U}

Figure 2. The Specifications

state. The constraint domaigsfor properties are currently chosen, due to the availghilit
the corresponding solvers. However, we envisage the us@d complex constraint domains
in the future, with the adoption of new constraint solversyers in our system. In the rest of
the paper, we will use the following bag operators [55]: bagun LI, bag intersectionl, bag
subsumptiorC, and bag cardinalityB|.

As we have already seen, separation formulas are used popt&bnditions and shape defi-
nitions. In order to handle them correctly without runningpiunmatched residual heap nodes,
we require each separation constraint taMedl-formed as given by the following definitions:

Definition 2.1 (Accessible)A variable isaccessibld it is a method parameter, or it is a special
variable, eitherroot or res.

Definition 2.2 (Reachable)Given a heap constraint and a pointer constraint,, the heap
nodes inx that are reachable from a set of pointe&¥san be computed by the following function.

reach(k,7,8) =4 puc(v)xreach(k—(p:c(v*)),v,SU{v|v € {v*},IsPtr(v)})
if 3q € 8- (y = p=q) A puc(v¥) €k

reach(k,7,8) =4 emp, otherwise

Note thatk—(p::c(v*)) removes a ternp::c(v*) from x, while IsPti(v) determines ifv is of
pointer type.

For illustration, consider the example given below:

reach(p::node(_, q)*q::11(n), true,{p}) =4 p:node(_, q)*reach(q::11(n), true,{p,q})
=4 p:node(_, q)*q::11(n)

Definition 2.3 (Well-Formed Formulas) A separation formula is well-formed if



e itisin adisjunctive normal forny/(3v* - k; A v; A ¢;)* wheres; is for heap formula, and
~i A\ ¢; is for pure, i.e. heap-independent, formula, and

e all occurrences of heap nodes are reachable from its acbkssgariabless. That is, we
haveYi - k; = reach(k;, s, S), modulo associativity and commutativity of the separation
conjunctions.

For example, consider the separation formplanode(_, null)s*p,::node(_,null) and the
set of accessible variablés-{p, }. The formula is not well-formed gs, is not reachable from
P1.

reach(p;::node(_,null)*p,:node(_,null), true,{p1}) =4 pi:node(_,null)

In our specifications, we allowoot to appear only in predicate bodies, argk in post-
conditions. The primary significance of theell-formedcondition is that all heap nodes of a
heap constraint are reachable from accessible variableis. allows the entailment checking
procedure to correctly match nodes from the consequentneitdes from the antecedent of an
entailment relation.

Arbitrary recursive shape relations can lead to non-teation in unfold/fold reasoning. To
avoid that problem, we propose to use owgll-foundedshape predicates in our framework.

Definition 2.4 (Well-Founded Predicates)A shape predicate is said to leell-foundedif it
satisfies the following conditions:

e its body is a well-formed formula,

o for all heap nodeg::c(v*) occurring in the bodys is a data type name iff = root.

Note that the definitions above are syntactic and can easilgriforced. An example of
well-founded shape predicatesaigl - binary tree with near balanced heights, as follows :
avl(n,h) = (root=null A n=0 A h=0)
V (root::node2(_, p,q) * p::avl(ny, hy)*q::avl(n,, hy)
An=1+n;+n,A h=1+4max(hs,hy) A —1<h;—h,<1) invn,h>0
In contrast, the following three shape definitions arewel-founded.

foo(n) = root:foo(m) An=m+1
goo() = root:node(.,_) * q::goo()
too() = root:node(., q)*q:node(_,_)

For foo, theroot identifier is bound to a shape predicate. Eos, the heap node pointed lay

is notreachable from variableoot. Fortoo, an extra data node is bound to a naivt vari-
able. The first example may cause infinite unfolding, whike second example captures an
unreachable (junk) heap that cannot be located by our er@atiprocedure. The last example
illustrates the syntactic restriction imposed to fadiétéermination of proof reasoning, which
can be easily overcome by introducing intermediate préelicdor example, we may use:

too() = root:node(_,q) * q:tmp()
tmp() = root:node(_, )
wheretmp is the intermediate predicate added to satisfy our weliftma condition.

Our specification language allows bag/multiset propettodse specified in shape predicates
and method specifications. This extra expressivity willlhesirated next by some examples.



2.2.1. Bag of Values/Addresses

The earlier specification of sorting captures neither thsittn reuse of memory cells nor
the fact that all the elements of the list are preserved biyngprThe reason is that the shape
predicate captures only pointers and numbers but does ptutreahe set of reachable nodes in
a heap predicate. A possible solution to this problem is terekour specification mechanism
to capture either a set or a bag of values. For generality enplisity, we propose to only
use the bag (or multi-set) notation that permits duplicatiesugh set notation could also be
supported. The shape specifications from the previousoseate revised as follows:

112(n,B) = (root=nullAn=0AB={})
V(root:node(_, q)*q::112(n—1,B;) AB=B;LI{root}) inv n>0A|B|=n

sortl2(B,mi,ma) = (root:node(mi,null)Ami=maAB={root})
V (root:node(mi, q)*q::sort12(By, k,ma) AB=B;LI{root} A mi<k)
inv mi<ma A B#{}

Each predicate of the form12(n, B) or sort12(B,mi, ma) now captures a bag of addresses
B for all the data nodes of its data structure (or heap presglicawith this extension, we can
provide a more comprehensive specification for in-situisgyias follows :

node insert(node x, node vn) where
x::s0rt12(B,mi, ma) * vn::node(v, ) #—
res:sortl2(BU{vn}, min(v,mi),max(v,ma)) {---}
node insertion sort(node y) where
y::112(n, B) AB#{} %= res:sortl2(B,_, ) {---}

The precondition oinsert assumes that the method takes a sorted list pointechiogl a node
vn that is to be inserted in the correct location in the sorted [The addresses of all nodes
stored in the list pointed by are contained in the b&) whereas the minimum and maximum
values are represented hy andma, respectively. The postcondition asserts that the method
returns a pointer to a sorted list containing all nodes frbaninitial list, B, union with the new
node insertedyn. In the resulted list, the minimum value stored is the mimmigetween the
smallest value before the insertiari,, and the newly inserted value, Similarly, the maximum
value stored is the maximum between the largest value b#fermsertionma, and the newly
inserted valuey. The precondition ofinsertion _sort ensures thag points to a non-empty
singly linked list (the fact that the list is non-empty is givby the constrairg+#{}), whereas
the postcondition shows that the output list is sorted amdagons the same nod@sas the input
list. We stress that this bag mechanism to capture the rbbchades in a shape predicate is
quite general. For example, instead of heap addresses, walstarevise our linked list view
to capture a bag of reachable values, and its length, asvillo

113(n,B) = (root=nullAn=0AB={})V
(root:node(a, q)*q::113(n—1,B;)AB=B;I{a}) invn>0A |B|=n

Capturing a bag of values allows us to reason about the doltect values in a data structure,
and permits relevant properties to be specified and autoafigtiverified (when equipped with



an appropriate constraint solver), as highlighted by twemeples below:

data pair{node v1;node v2}
pair partition(node x, int p) where
x::113(n, A) *— res:pair(ry, ry) * ry::113(ny, By)*ry::113(ny, By)
AA=B;LIBy A n=n; + n, A (Va€B;-a<p)A(VaEBy-a>p)
{ if (x=null) then new pair(null,null)
else { pair t; t:=partition(x.next,p);
if (x.val<p) then { x.next:=t.vl; t.vl:=x}
else { x.next:=t.v2; t.v2:=x };
t}}

bool allPos(node x) where

x::113(n, B) #—»x::113(n,B) A ((Va€B-a>0)Ares V (Ja€B-a<0)A-res)
{ if (x=null) then true

else if (x.val<O0) then false else allPos(x.next) }

Note that both universal and existential properties ovgshzan be expressed. The first ex-
ample returns a pair of lists that have been partitioned facsingle input list according to an
integer pivot. This partition function and its pre/postafieation can be used to prove the total
correctness of the quicksort algorithm. The second exanmmg@e existentially and universally
quantified formulae to determine if at least one negativelyents present in an input list, or not.
Note that the postcondition afl 1Pos preserves the fact thats still pointing to a singly-linked
list with the lengthn and the bag/set of valu@s x::113(n, B). These expressive specifications
can be handled by our separation logic prover in conjuncigh relevant classical provers,
such as MONA [45] and Isabelle [30].

3. Automated Verification

An overview of our automated ver-
ification system is given in Figure 3.
The front-end of the system is a stan-
dard Hoare-style forward verifier, which
invokes the entailment prover. In this
section, we present the forward verifier
which comprises a set of forward ver- |
ification rules to systematically check ! Hoare-style — | Entaiment
that the precondition is satisfied at each | ~[Fervardvenner Crover
call site, and that the declared postcon- -
dition is successfully verified (assuming Figure 3: Our Approach to Verification
the given precondition) for each method
definition. Note that we allow the precondition of a methob&ofalse. The body of any
such method can always be successfully verified. Howeveh aumethod must not be invoked
by a program at locations that are possibly reachable, &wite such program can never be
verified. This relaxation does not affect the soundness o¥erification system. The back-end
entailment prover will be given in Sec 4.

Shape
Predicates

Automated Verification System




[FV-IF [FV-CONST
F{AAV'}er {A1}  F{AA'}es {Ag} Ay = (ANeq,(res,k))
F{A}if v thene; else ea {A1VAs} F{A}ET {A1}
[FV-LOCAL] [FV-sEQ]
F{A}e{Ad} F{Ater{Ai} F{Ai}er{Ag}
F{A}{tv; e} {Fv,v" A1} F{A}er;ea {A2}
FV-VAR [FV—ASSIGN] [FV-NEW
Aj=(AAres=v") F{A}e{A1} Ag=Tres:(A1A(,)v'=res) A1=(Axres:c(v),..,v)))
F{A}v{A} F{A}vi=e{As} F{A} new c(v1,..,v,) {A1}
[FV—FIELD—READ)] [FV—FIELD-UPDATE]
type(v) = c(f1, -, fn) type(v) = c(f1, -, fn)
AFv' vy, .. vn) * Ay freshoy..u, AFv'e{vy, ., vp) x Ay freshoy.oy,
Ay = Fuy..v,- (A1 %0 :c(vy, .., vy ) ATes=u;) Ag = Fuy..vp-(Ay 0" [v) fvi]c(vi, .., vp))
F{A}ov.fi {As} F{A}v.fir=v0 {As}

Figure 4. Some Forward Verification Rules

3.1. Forward Verifier

We useP to denote the program being checked. With pre/post comditteclared for each
method inP, we can apply modular verification to a method’s body usin@utdestyle triples
F{A;} e{Ay}. These aréorward verificationrules that expec,; to be given before comput-
ing As. Note that in our system, each abstract state (&.9.A>) may contain both unprimed
and primed versions of program variables (exgx’), where unprimed versiorx) denotes the
initial value and primed versiorx() represents the latest value of the variable. Auxiliarydag
variables only appear as unprimed.

We now explain the operators/functions used in our veribcatules. We first define eom-
position with updateperator. Given a stat;, a state changé,, and a set of variables to be
updatedX={x, ..., z,}, the composition operatap y is defined as:

Ay opy Ay =g Fr1.m - (p1 A1) Op (p2 A2)
where rq, ..., r, are fresh variablesp; = [r; /2|7 ; pa = [ri/ x|,

Note thatp; andp, are substitutions that link each latest value/ah A; with the corresponding
initial valuex; in A, via a fresh variable;. The binary operatasp is eitherA or x. To illustrate
the operator, consider the following example. Supposebbgk is initialized by a program to
1, which is represented by

x=1A%x=1
The program executes the assignmertx+2. The updated state is computed by

(x=1AX'=1) Ay (x'=%42) = Fry.x=1 Ar;=1 Ax'=r14+2) = (x=1 N x'=3)



which correctly reflects both the initial state and the updatate. Instances of this operator will
be used in the verification rule for assignmentfas in [rv-assiaN]) and in the verification
rule for method invocation (as, in [Fv-caALL)).

An equality operatoeq, (to be used in the rule for constant expressions-const]) con-
verts boolean constants andl1 to their corresponding integer values, but ignores floating
point constants. The functigerime(V) returns the primed form of all variablesin The func-
tion nochangéV’) returns a formula asserting that the unprimed and primesiores of each
variable inV" are equal. These two functions will be used in the verificatide for a method
declaration (fv-meTH]). The notationje* /v*] used in a few rules represents substitutions of
v* by e*. A special case if)/null], which denotes replacement nfll by 0. We will use
the variableP later in the verification rule for method invocation-{{-cawrr]) to denote the
entire program and it is used primarily to retrieve methodlaations. As mentioned in last
section, we use the special identifters to denote the value of the latest expression during the
verification.

Normalization rules for separation formulae are given igufeé 5. Note that the separation
conjunction operatox is commutative, associative, and distributive over disfiom. In sepa-
ration logic, the separation conjunction between a fornamd a pure (i.e. heap independent)
formula is logically equivalent to a normal conjunctio®.jA « 7 = A A 7 [51]. This justifies
the third translation rule.

(A1 V Ag) AT ~ (AL AT)V (A2 A ) (Fz-A)Amw ~ Jy - ([y/z]A A T)
(A1 VA A ~ (A1 x A)V (Ag x A) where variable; is fresh not present in
( 1/\7T1) (HQ/\WQ) (/{1*%2) (7T1/\7T2) (Hl"Al)*AQ ~ Jy - ([y/x}Al *Ag)
(V1AD1) A (72Ad2)  ~ (71AY2) A (P1AP2) where variable; is fresh not present i,
(R1A7T1) (7‘1’2) ~ I€1/\(7T1/\7T2)

Figure 5. Normalization Rules to thie-form

A part of the forward verification rules are given in Figure Bhey are used to track heap
states as precisely as possible using path-sensitivaéc(hditional rulefv-1r]), flow-sensitivity
(the sequencing rule{—seq]), and context sensitivity (the method invocation rule [cari]).

Methods are verified using the rutevf-meTH], given below.
[FV-METH
V={vp..v,} W=primg(V') A=P,AnochangéV’) + {A}e{A;} (FW-A))FPpox A,
- to mn(ref ¢y vy, ..,ref 1 V1, tm U, .., ty U,) Where Opr s Py {e}

In order to verify a method’s body, the verifier assumes théhows precondition. Further-
more, thenochangefunction initializes the current values of parameters w@irtimitial (un-
primed) values, since each abstract state in our verificases primed variables to denote the
latest (current) values of program variables and the pwition ¢, is given only in terms of
unprimed variables. The initial assumptidnis then propagated through the bodyf the
procedure. At the end of the procedure, the current (prireatlles of the pass-by-value pa-
rameters are existentially quantified from the poststateso that their values are not visible
by the postcondition, hence by callers of the procedure. #atepostcondition may capture



only part of the heap at the end of the method, leaving someteheap nodes i, if any.
For the case of a programming language with garbage cot]eébtse leaked memory nodes do
not pose any problem, as they can be automatically recoanathtime. For a programming
language without garbage collector, the information cioetzin the formulal; would be use-
ful for memory leaks detection, which, as an orthogonalagsithe properties we verify in this
paper, has not been incorporated into our current systencawelisallow such memory leaks
by requiring the heap part of the formulg, to beemp.

When a procedure is called, the rutev|-cary] ensures that its precondition is satisfied at
the call site. The pass-by-value paramet®fsare equated to their initial values through the
nochangdunction, as their final values are not visible to the methadillers. Afterwards, the
residual heap statéy,, from checking procedure’s precondition is composed wglpostcon-
dition to become the poststat&;, of the procedure call.

[FV—CALL
t mn(ref (t; v;)y", (t; v;)1_,,) where Op s> Ppo {e} €P V={uv,,.0,}
W={v1..v;m1} p=[v./veli_; AFpPprx Ay As=((A; A nochangéV)) svuw Ppo)
F{A}mn(vy, .., U1, U, o, U) {2}
For each shape definitiorg¥-PrED] checks that its given invariant is a consequence of the
well-founded heap formula.

[FV-PRED
XPurg)(®) = [0/null](m)

Fe(vt) =P inv

As it will be explained in Sec 4, the entailment between sajgam formulae is reduced
to entailment between pure formulae by successively remgolieap nodes from the conse-
gquent. When the consequent is pure, the heap formula in tleeeddnt can be soundly ap-
proximated by functiorXPure,, which translates a given separation formula to its purereou
terpart. By an extra unfolding of its predicate§ure, ; function could give a more pre-
cise approximation thadXPure,. The formalization forXPure, will be presented in Sec 4
(Fig. 6). For illustration, we explain howr{—-PrED] rule is used to justify the invariant
n>0 for the predicatell given in Sec 2. Letb be the body of thal predicate, i.e.® =
(root=nullAn=0) V (root:mode(_, r)xr::11(n—1)). Briefly, forn=0, XPure, uses the defi-
nition of thell predicate, replaces all occurrencesiail by 0 (so that the implication check
can be passed to a pure logic solver):

XPurg(®) =4 exj-(root=0An=0)V(root=jAj>0 A XPurg(r::11(n—1)))

ex j - (root=0An=0)V(root=jAj>0An—1>0)

Note that the construetx j captures a symbolic addresshat has been abstracted from the
heap nodeoot::node(_, r). Now, that we computedPure (P), we can check that the invariant
is a consequence of the heap formula.

(XPurg(®)= [0/nulljn>0)
= (exj - ((root=0An=0)V (root=jAj>0An—1>0))= n>0)

The soundness of the forward verification is formulated io e



4. Entailment Prover

Proof obligations generated by software verification systare typically discharged by a
theorem prover, or a combination of theorem provers. Foamte, ESC/Java [18] uses Simplify
[15]; Speé [1] is compiled to Boogie [1], which in turn uses Simplify anécently, Z3 [14];
Jahob [32,33] uses combinations of multiple theorem pmoligiits own combination approach.

Verification conditions generated by software verifiersidggfly involve multiple theories.
There are a number of different approaches to processingaldgrmulas involving multiple
theories. Nelson-Oppen is a well-known approach for compiguantifier-free formulas in
stably infinite theories over disjoint signatures (thepnet sharing function or predicate sym-
bols) [43]. Simplify [15] and CVC [56] are two widely used ingwhentations of the approach.
Another approach is Satisfiability Modulo Theories (SMT). [Zhis approach tries to decide
whether a formulap is satisfiable with respect to background theories for wisiglcialized
decision procedures exist. Z3 is an efficient implementati@sed on this approach [14].

Our formulas are a combination of separation logic and hedpgpendent logics. None of
the popular existing approaches is tailored for combimatimvolving separation logic. Our
approach is designed to effectively handle an importargnfient of the combined logic that
commonly arises in practical software verification prolders shown in the verification rules
in Sec 3, our verification system generates the entailmdatior of formulas, abbreviated as
heap entailmentof the form

(41) AA l_l‘i/ AC*AR
which is shortcut for
(4.2) kxAaFIV(kxAg)*xAgr

Our entailment prover deals with such heap entailments.r@eepthe heap entailment (4.1)
is to check whether heap nodes in the antecedenare sufficiently precise to cover all nodes
from the consequemh\., and (in case they are) to computeesidual heap staté\ (also
known as “frame” in the frame inference [7]), which reprasemhat was not consumed from
the antecedent after matching up with the formula from thsequentx is the history of nodes
from the antecedent that have been used to match nodes feoootisequenty is the list of
existentially quantified variables from the consequentteNbatx andV are derived during
the entailment proof. The entailment checking procedunatislly invoked with x = emp and
V = (). The entailment proving rules are explained in the rest efstbction. In Section 5, we
will show that our entailment checking proceduresaaind in the sense that, if we can find a
proof (and a residual heap stale;) for (4.1), then the LHS of (4.2) semantically entails the
RHS of (4.2), that is, all models of the LHS are also models of RB\& heap entailment may
fail in that it can not find a residual heap statg for (4.1) after trying all possible entailment
proving rules. In many cases, this will indicate that thevesinot existA z such that LHS of
(4.2) semantically entails RHS of (4.2). However, since tbmpgleteness of our entailment
prover is open, we cannot rule out the possibility that thersuchA; but our prover cannot
discover it using the current set of rules. This will be addeal in future work.

We now briefly discuss the key steps that we may use in suchtaitreent proof. Firstly, we
present the reduction from entailment between disjundétiuaulas with existential quantifiers
to entailment between quantifier-free conjunctive forraula



Disjunction

An entailment with a disjunctive antecedent succeeds H bagjuncts entail the consequent.
On the other hand, entailment with disjunctive consequeoteeds if either of the disjuncts
succeeds.

ENT-LHS—OR| [ENT-RHS—OR|
All_@Ag * A4 AQF@Ag * A5 All_@Al * Afé . 93
ANV AL % (AVA) AT (AVAL) * AﬁZE{ 3}

Existential Quantifiers

Existentially quantified variables from the antecedentsamgly lifted out of the entailment
relation by replacing them with fresh variables. On the ottend, we keep track of the exis-
tential variables coming from the consequent by adding tteevh

[ENT-RHS—EX| [ENT-LHS-EX|
Aﬂ—@u{w}([w/v}Ag)*A [w/U]Aﬂ_I‘Q/AQ*A
freshw freshw
All_"jv(HUAg)*A ElUAll_I‘Q/AQ*A

Next, we now present reduction of entailment between twotjier-free conjunctive for-
mulae to entailment between two pure formulae.

Consequent with Empty Heap

The base case for our entailment checker occurs when theaqoast is a pure formula, in
which case thegnT-EmP] rule is applied. The rule first approximates the antecedétite
entailment, including the heap formulae that have beenmedtpreviously and kept in. It
then invokes an off-the-shelf theorem prover to check ifapproximation of the antecedent
implies the heap-independent consequent. This stratégssafs the flexibility to use different
logics for the pure part.

[ENT-EMP
p=[0/null]
XPure, (k1xk)Apmi=—=p3V-1o

Iil/\ﬂ'll_l‘f/ﬂ'g * (Kjl/\ﬂ'l)

Matching up heap nodes from the antecedent and the consequent
The rule EnT-MmaTcH] works by successively matching up heap nodes that can hempro
aliased.

ENT-MATCH
XPure, (py::c{v}) sk xm )J=—=p1=ps  p=[v] V3]
riATiNfreeEqrip, V)Fg*f};;§v1>p(n2Aw2) * A

prc(Uiy kR AT ET (paiie(Vs ) kKo ATry) % A

XPure, (py::c{v])*k1*m )=—>p1=p2 checks ifp; andp, can be proved to be aliased based on
information in the antecedent of an entailment. If two astomic heap formulas have the
same name, which means they are two objects of the same typeo instances of the same
predicate, we require their components to be the same. Tifieation of the two aliased heap



formula is accomplished by the application of substitujido the remaining of the consequent.
We also remove;, from the set of existentially quantified variables sincaalalesv; have been
substituted away.

When a match occurs and an argument of the heap node comingHfeoconsequent is free,
the entailment procedure binds the argument to the comelsipg variable from the antecedent
and moves the equality to the antecedent. In our systemyémegbles in consequent are vari-
ables from method preconditions. These bindings play tlhe @b parameter instantiations
during forward reasoning, and can be accumulated into ttecadent to allow the subsequent
program state (from residual heap state) to be aware ofitistantiated values. This process is
formalized by the functiofreeEqn whereV is the set of existentially quantified variables:

freeEqri[u;/v;]’_,, V) =4 let m; = (if v;€V then true else v;=u;) in \_, m;

For soundness, we perform a preprocessing step to enstivatiales appearing as arguments
of heap nodes and predicates are i) distinct and ii) if theyfege, they do not appear in the
antecedent by adding (existentially quantified) freshaldlas and equalities. This guarantees
that the formula generated ngeEqndoes not introduce any additional constraints over exjstin
variables in the antecedent, as one side of each equatiesmadb@ppear anywhere else in the
antecedent.

As the matching process is incremental, we keep the suctiyssfatched nodes from an-
tecedent in: for better precision. For example, consider the followingggment proof:

(((p=null An=0) V (p#null An>0))An>0 Am=n) = p#null (input XPure)
(XPurg (p::11(n)) An>0 Am=n = p#null) Az = (n>0 Am=n) (by [ENT-EMP])
n>0 Am=n FP*1® pLnull * Ay (by [ENT-MATCH])

p::11(n) An>0F p::11(m) A p#null * Ay

Had the predicatg::11(n) not been kept and used, the proof would not have succeedsivse:
require this predicate and>0 to determine thap#null. Such an entailment would be useful
when, for example, a list with positive lengthis used as input for a function that requires a
non-empty list. Note the transfer af=n to the antecedent (and subsequently to the residual
heap stat@g).

Apart from the matching operation, two other essential af@ns that may be required in an
entailment proof are (1) unfolding a shape predicate anéb(@ng some data nodes back to a
shape predicate.

Unfolding a shape predicate in the antecedent

If a predicate instance in the antecedent is aliased witlbgetbin the consequent, we unfold
it. Unfolding basically replaces the predicate instancéspredicate definition, normalizes the
resulting formula, and resumes entailment checking.

Each unfolding either exposes an object that matches tleetohjthe consequent, or reduces
the atomic heap formula in the antecedentc, (v]) to a pure formula. The former case results
in a reduction of the consequent by usinginir-maTcH]. In the latter case, the entailment
either (i) fails immediately since the checker is unablerd fn aliased heap node or, (i) if the
resulted pure formula reveals additional aliasing infarorg the entailment checker continues
with a new aliased heap node from the antecedent. If the rnaseal heap node is an object, a
match occurs and thus a reduction of the consequent. Oeawew unfolding is called on.



This process cannot go forever as every time it happens, i@akécpte from the antecedent is
removed and no new predicate instance is generated. Quaratermination of the entailment
checking procedure is not compromised, as we prove in Thebrb.

[ENT-UNFOLD|
XPure, (py::cq (v])xkyxm )=—>p1=p2  ISPred ¢, )AlsData(c,)
unfold(p;::cy (v])) sk AT (Paiica (V3) %Ko AT ) % A
priicy (V) kRIATEY (poiica (V5 ) kkaATg) % A

[UNFOLDING]
c(v)=® invrw € P
unfold(p::c(v*)) =4 [p/root|d

The functionlsPred¢) (resp. IsData(c)) returnstrue if ¢ is a shape predicate (resp. a data
node). For illustration, consider the following example.

x::113(n,ByAn>2 F (Jr-x:mode(r,y)Ay#nullAr € B)* Ay

where A captures the residual heap state of entailment (to be cadpulNote that a predi-
catex::113(n, B) from the antecedent and a data nodeode(r,y) from the consequent are
co-related via the same variabte For the entailment to succeed, we would first unfold the
113(n, B) predicate in the antecedent{{r-unroLD]):

3q1, v -x::node(v, g;)*q;::113(n—1, B; ) An>2AB=B; L {v}
F (Jr-x:mode(r,y)Ay#null Ar € B) x Ay

After removing the existential quantifierssfT-rus-oRr], [ENT-LHS-OR]), We obtain:

x:mode(v,qy)*q;::113(n—1,B;)An>2 A B=B, Ll {v}
F (x:node(r,y)Ay#null Ar € B) x Ay

The data node in the consequent is then matchedayar(MaTcH]), giving:
q:1::113(n—1,B;)An>2AB=B; U {v}Aqi=y F (q:#null Av € B) x Ay

Folding against a shape predicate in the consequent
If a predicate instance in the consequent does not have dimgforedicate instance in the
antecedent, we attempt to generate one by folding the ateate

[ENT-FOLD|
IsPred cy)AlsData(cy) (A", k", ") efold™ (py::cqy (V) k1 ATy, paiiea(V3))
XPure, (py::c1 (v} ) kK1 )=>p1=D2 (W“,WC):Splityz}(wr) AT AT (kg AT ATC) % A
pric1 (V) kR AT (paiica (V) kKo ATrg) % A

[FOLDING]|
c(v) =P invr € P W;=V,—{v*, p}
/i/\ﬂ'f_?l;’v*} [p/root|® x { (A, ki, Vi, m) }iy
fOId“/(li/\ﬂ,p::c(v*)) =ar {(Ai, ki, AW,m) Fiy




When a fold against a predicape::co(v3) is performed, the constraints related to variables
v3 are significant. Thesplit function projects these constraints out and differendidtese
constraints based on free variables. These constrainteewdriables can be transferred to the
antecedent to support the variables’ instantiations.

Splitévg}(/\ m) = letnd, wf=if FV(x ) N = () then (true, true)
i=1 else if FV(7}) NV = () then (7], true) else (true, n})
in (AL 7 il Wi)

A formal definition of folding is specified by the rule#¢rpinc]. Some heap nodes from
x are removed by the entailment procedure so as to match vatheébp formula of the pred-
icatep::c(v*). This requires a special version of entailment that rettiinse extra things: (i)
consumed heap nodes, (ii) existential variables used,ignfin@l consequent. The final con-
sequent is used to return a constraintfot} via 3 1W;-m;. A set of answers is returned by the
fold step as we allow it to explore multiple ways of matchinwaith its disjunctive heap state.
Our entailment also handles empty predicates correctly avitouple of specialised rules.

For illustration consider the following example.

x:mode(1, qs)*q;::node(2, null)*y:mode(3,null) - (x::113(n,B)An>1A1 € B) x Ay

The data node::node(1, q;) from the antecedent and the predicaté@ 13(n, B) from the con-
sequent are co-related by the variabldn this case, we apply the folding operation to the first
two nodes from the antecedent against the shape predicatetifie consequent. After that, a
matching operation is invoked since the folded predicate matches with the predicate in the
consequent.

The fold step may be recursively applied but is guaranteetgriminate for well-founded
predicates as it will reduce a data node in the antecedemaithn recursive invocation. This
reduction in the antecedent cannot go on forever. Furtherntize fold operation may introduce
bindings for the parameters of the folded predicate. In bowve, we obtaifin,, n, - n=n;+1 A
n;=n,+1 A n,=0 and 3B,, B, - B=B;U{2} A B;={1}UB, A B,={}, wheren,,n,,B,,B, are
existential variables introduced by the folding processl are subsequently eliminated. These
binding formulae may be transferred to the antecedentahdB are free (for instantiation).
Otherwise, they will be kept in the consequent. SiacandB are indeed free, our folding
operation would finally derive:

y:node(3,null) An=2AB= {12} (n>1A1€B)xh

The effects of folding may seem similar to unfolding the pecatke in the consequent. How-
ever, there is a subtle difference in their handling of bigdifor free derived variables. If we
choose to use unfolding on the consequent instead, thedmbgsgmay not be transferred to the
antecedent. Consider the example below wheassfree :

z=null F z:113(n,B) An>—1x%A
By unfolding the predicat@13(n) in the consequent, we obtain :

z=null - (z=nullAn=0AB = {}An>—1)
V(3q, v-z::node(v, q)*q::113(n—1,B;)AB = By U {v}An>—1) * Ay



There are now two disjuncts in the consequent. The entatlfags for the second one because
it mismatches. The first one matches but the entailmentfaili$l as the derived binding=0
was not transferred to the antecedent.

XPure,(\/(Fv*-kAT)*) =4 \ (Fv*-XPure,(k)A[0/null]mr)*

XPurg,(emp) =4 true
XPure, (k1 * ky) =g XPUre, (k1) A XPure,(x2)

IsPredc) freshi*
IsData(c) freshi Inv,, (p::c(v*)) = ex j* - \/(Fu*-m)*
XPure,(p:c(v)) =4 exi-(p=iNi>0) XPure,(p:c(v*)) =q4 exi* - [1*/5*] \/ (Fur-m)*

Figure 6.XPure: Translating to Pure Form

Approximating separation formula by pure formula

In our entailment proof, the entailment between separdtionulae is reduced to entailment
between pure formulae by successively removing heap nodesthe consequent until only a
pure formula remains. When this happens, the heap formulzeiantecedent can be soundly
approximated by functiodPure,. The indexn is a parameter that indicates how precise the
caller wants the approximation to be. A related functiort #Rure, uses is thénv,, function.
This function, along withiXPure,, computes and updates shape predicate invariants with more
precise invariants. The definition biv,, is given by the following rules:

(c(v*) = @ inv m) € P (c(v*) = ®inv m) € P
Invg (p::c(v*)) =4 [p/root,0/null|m, Inv,, (p::c(v*)) =4 [p/root|XPureg,_;(P)

In the base case, when= 0, Inv,, returns the user-supplied invariant. All occurrences of
null are replaced by 0 so that we can pass the returned formulaucedqmic solver. Param-
eters of the predicates are replaced by the correspondtnglsac When: > 0, Inv,, invokes
XPure,_; to compute a more precise invariant based on the body of #uqate.

The functionXPure,(®), whose definition is given in Fig 6, returns a sound approXiona
of ® as a formula of the forms ::= ((\/(3v*-7)*) | (ex i - 3)) °, whereex i construct is being
used to capture a distinct symbolic addredbat has been abstracted from a heap node or
predicated. XPuredifferentiates between symbolic addresses coming frojoidtgegions of
the heap described by formulas conjoined by the separabingiigction: :

XPure, (k1 * ky) =g XPure, (k1) A XPure,(x2)
whereA is further normalized as follows:

(exI-gr)A(exJ ¢2) ~ exIUJ - o1 ApaANicpjcsi# 7

SHeref is defined as eitheéy/ (Jv*-7)* or recursively agx i - 3.



We illustrate how the approximation functions work by cortipg XPure (p::11(n)). Let
be the body of thel predicate, i.eP = (root=nullAn=0) V (root:node(_, r)*r::11(n—1)).

Invo(p::11(n)) =4 n>0

XPure (P) =4 €xX j-(root=0An=0)V(root=jAj>0 A Invy(r::11(n—1)))
= exj-(root=0An=0)V(root=jAj>0An—1>0)

Inv; (p::11(n)) =4 [p/root|XPure(P)

= exj-(p=0An=0)V (p=jAj>0An—1>0)
XPure (p::11(n)) =4 exi-[i/j]Invi(p::11(n))
= exi-(p=0An=0)V (p=iAi>0An—1>0)

The following normalization rules are also used to propagatto the leftmost :

(ex I-¢1)V(ex J-¢py) ~ ex [UJ - (P1 V ¢9)
Jv-(ex]-¢) ~ex[-(Fv-¢)

Theex i* construct is converted to:* when the formula is used as a pure formula. For instance,
the aboveXPure (p::11(n)) is converted tali - (p=0An=0) V (p=iAi>0An—1>0), which is
further reduced tdp=0An=0)V(p>0An—1>0).

The soundness of the heap approximation (given in the netibs¢ ensures that it is safe
to approximate an antecedent by uskRure starting from a given sound invariant (checked
by [rv-PrED] in Sec 3). The heap approximation also allows the possikati obtaining a
more precise invariant by unfolding the definition of a poadé one or more times, prior to
applying theXPure, approximation with the predicate’s invariant. For exampiden given
a pure invarianth>0 for the predicatell(n), the XPure, approximation is simply the pure
invariantn>0 itself. However, theXPurg approximation would invoke a single unfold before
the XPure, approximation is applied, yieldingx i-(root=0An=0V root=iAi>0An—1>0),
which is sound and more precise than0, since the former can relate the nullness ofithet
pointer with the size of the list.

The invariants associated with shape predicates play aortarg role in our system. Without
the knowledgen>0, the proof search for the entailmentnode(_, y) * y::11(m) F x::11(n) A
n>1 would not have succeeded (failing to establish1). Without a more precisely derived
invariant usingXPurg on predicatell, the proof search for the entailmentll(n) A n>0 -
x#null would not have succeeded either.

Implicit vs Explicit Instantiations

In the preceding subsections, we have presented a techfugdee implicit instantiation
of free variables during the matching and the folding operat This technique allows the
bindings of free variables to be transferred to the antetedering entailment proving, but
kept the substitutions for existential variables withie ttonsequent itself. This dual treatment
of free and existential variables is meant to restrict trstantiation mechanism to only those
which are strictly required for entailment proving.

In this subsection, we shall provide an alternative tealaifipr theexplicit instantiation of
free variables. Our main purpose is to clarify the role of ittetantiation mechanism and to
provide a justification for the implicit instantiation teglque being used in our current version
of entailment proving. To clarify the instantiation tectjne, let us consider a simple data type



which carries a pair of integer values:
data pair { int x; int y}

Let us also provide a simple method which checks if the surhefwo fields from the given
pair is positive, before returning the second field as théhous result.

int foo(pair p) where
Ja-pupair(a,b) Aa+b>0 «—>res =b
{if (p.x + p.y)<O0 then error() else p.y}

If the expected precondition does not hold, the above methisés an error by calling a
specialerror() primitive. Furthermore, we shall assume that the pair dhgdeaked (or
garbage collected for some programming languages) aftekimg this method. Take note
that logical variables (other than program variables) #rat used byboth precondition and
postcondition shall be marked as free variables, whiledltbat are used in either precondition
or postcondition alone, shall be existentially bound. For example, logical variable is
free since it is used in both precondition and postcondition. dntrast, logical variable is
existentiallypboundsince it is only used in the precondition. Our entailmenvpralistinguishes
free from bound variables in order to decide which bindings/ ine propagated to the residual
heap state. Let us re-visit our earlier implicit instantiattechnique by examining the following
entailment proof.

(c=2Ab=3 = da-a=cAat+b>0) M= (c=2Ab=3)
c=2Ab=3 I—?;faira’?’) (a=cAat+b>0)x Ay (by [ENT-EMP])
p:pair(c,3) Ac=2F Ja-p:pair(a,b) A at+b>0* A
(by [ENT-RHS-OR/|, [ENT-MATCH] )

During matching of theair data nodes, the binding= 3 is moved to the antecedent due to
free variableb, while the bindinga = ¢ for bound variable: is kept in the consequent. Hence,
only the instantiation ob = 3 is propagated to the residual heap state which can thenks=llin
with the postconditiomres = b.

We shall now propose an alternative technique for the itistizon of free variables. To do
that, we introduce a new notatidav:Z - A) that explicitly marksv as a variable to be instan-
tiated. This new notation is meant for each consequent tsablken taken from a method’s
precondition for entailment proving. For our earlier metisgprecondition, we can mark the
free variableo, as follows:(Jadb:Z - p::pair(a,b) A a+b>0).

With this new notation, free variables are being treatedxastential variables, except that
their bindings in the consequent may be transferred to thidual heap state. To incorporate
this effect, we modify the rule fosmp consequent of entailment prover to:

[ENT-EMP|
p=[0/null] (XPure,(ki*k)A\pm=—=pIV-my) B =V—{vjv:Z €V} 7= (3IB-m)
/€1A7Tl|_l‘€/v7T2 * (/ﬂ)l/\(ﬂ'l/\ﬂ'j:»




Note that the residual heap state will now explicitly capttire bindings for free variables
that have been generated in the consequentyiadJsing this modified rule, we can perform
entailment proving for our earlier example, as follows:

(c=2 = da,b-a=cAb=3ANa+b>0) 7= ((Ja-(a=cAb=3Aa+tb>0))
Mg =(c=2A(b=3Ac>-3))
c=2 ,_?a})(?;ﬁS) (a=cAb=3Aa+b>0)x* Ay (by [ENT-EMP'|)
p::pair(c,3) Ac =2+t Jadb:Z - p:pair(a,b) A a+b>0 x Ay
(by [ENT-RHS-OR/|, [ENT-MATCH])

This technique allowsny free variables to be explicitly instantiated, and is sligimore
general than the implicit technique which can only instaetifree variables that are present as
arguments of data nodes or predicates. Nevertheless, daithitjues have a similar objective
of performing parameter instantiation for the preconditad each method call. Our current
implementation uses implicit instantiation which is sierphnd incremental, but is slightly less
general than the explicit instantiation technique. As areitvork, we will implement also the
explicit instantiation technique and compare both teanesgn more detail.

4.1. Forward Verification Example

We present the detailed verification of the first branch of ithgert method from Sec 2.
While code is in bold face, program states are ingi¢le Note that program variables appear
primed in formulae to denote the latest values, whereasdbgariables are always unprimed.

(1). {x/::sortl(n,mi,ma) *x vo'::node(v, )} // [Fv-mETH](initialize precondition
if (vn.val < x.val) then {
(2). {(¥"::node(mi, null) % vn'::node(v, ) Ami=ma A n=1A v<mi)
V (3q,k - x"::node(mi, q)*q::sortl(n—1, k, ma)*vn’::mode(v, _)
Ami<k Ami<ma An>2 Av<mi)} // [FV-IF|, [UNFOLDING]
vn.next := x;
(3). {(x¥'::node(mi, null) % vn'::node(v, x’) Ami=ma A n=1A v<mi)
V (dq,k - ¥'::node(mi, q) * q::sortl(n—1,k, ma)+vn'::node(v, x’)
Ami<k Ami<ma An>2 Av<mi)} // [FV-FIELD-UPDATE]
vn
(4). {(x'::node(mi,null) * vn':mode(v, x’) Ami=ma A n=1A v<mi A res=vn’)
V (3q,k - x"::node(mi, q)* q::sortl(n—1,k, ma) * vn'::node(v,x’)
Ami<k Ami<maAn>2 A v<mi A res=vn’)} // [FV-VAR]

}
(5). {res:sortl(n+1,min(v,mi), max(v,ma))}
// [Fv-METH|(checking postcondition[FoLpING]

To facilitate the illustration, we label the abstract ssatg (1), .., (5). The statg1) is obtained
by initialising the precondition using theochangeoperation in thegv-meTH] rule. This is



necessary because all abstract program states in our sgstgain both unprimed and primed
variables, where primed variables denote the latest vaitipsogram variables and unprimed
variables denote either initial values of program varialde values of logical variables. The
abstract stat€2) is obtained by unfolding the predicaté:sort1(n,mi, ma) and then distribut-
ing the formulavn’::node(v, )Av<mi over the two disjunctions obtained by unfolding. Note
that v<mi is obtained from the if-condition. The rulerfroLping] replaces the predicate
x"::sortl(n,mi, ma) by its definition.

The effect of the field updaten.next := x; is recorded in staté3) by changing the heap
nodevn’::node(v, ) to vn'::node(v, x’) using the fv-rieLp-upDATE] rule. By the Fv-var]
rule, the effect of the last expression in the branch is recorded in stgi) using the formula
res=vn’. The verification of this branch finishes by proving thatestat entails the postcon-
dition (5) according to thegv-mEeTH] rule. The rule foLping] used in this last step folds a
formula which matches with a predicate’s definition backh® predicate. In this case, it folds
state(4) to state(s).

5. Soundness

In this section we formalize the soundness properties fti bwe forward verifier and the
entailment prover.

5.1. Semantic Model

The semantics of our separation heap formula is similar eontledel given for separation
logic [51], except that we have extensions to handle ourdséned shape predicates.

To define the model we assume dats of locations (positive integer valuedjal of primitive
values, with0 € Val denotingnull, Var of variables (program and logical variables), and
ObjVal of object values stored in the heap, wilf,—v1, .., f,—1,] denoting an object value of
data type- wherev, .., v, are current values of the corresponding fiefds., f,,. Lets,h = @
denote the model relation, i.e. the stacknd heap satisfy the constraind, with ., s from the
following concrete domains:

h € Heaps=4 Loc—, ObjVal
s € Stacks=, Var— ValULoc

Note that each headpis a finite partial mapping while each stacks a total mapping, as in the
classical separation logic [51,25]. Functidom( f) returns the domain of functiofi Note that
we use— to denote mappings, not the points-to assertion in separligic, which has been
replaced by::c(v*) in our notation. The model relation for separation heap tdais defined
below. The model relation for pure formutg= 7 denotes that the formulaevaluates tarue

in s.



Definition 5.1 [Model for Separation Constraint]

S,h’:(Plv(PQ i ff s,h)szlors,h):q)g
s,hlEJuy kAT T EE (T gesloi—vn, o o=, b = k) and (s[vp—u, . v, =)
S, h |= Kykkg i ff  3Jhy,ho- hy # he andh = hy-h, and
s, hi = Ry ands, hy = ko
s, h =emp i ff domh)=10

s,h Ep:cluy ) 1ff datac{t fi,..,tn [n}EP, h=[s(p)—r],
andr=c[fi—s(v1), .., far>s(v,)]
or (¢(vy.,)=® inv 7)eP ands, h |= [p/root|®

Note thath,#h, indicatesh,; andh, are domain-disjoint, i.edom(h;)Ndom(hs)=0. hi-hso
denotes the union of disjoint heafpsandh,. The definition fors, A = p::c(v*) is split into two
cases: (1) is a data node defined in the progr&n(2) c is a shape predicate defined in the
programP. In the first case has to be a singleton heap. In the second case, the shapegpeedi
¢ may be inductively defined. Note that the semantics for andtidely defined shape predicate
denotes an implicit notion of the least fixpoint for the sestaites §, ) satisfying the predicate
[54]. The monotonic nature of our shape predicate definigjoarantees the existence of the
descending chain of unfoldings, thus the existence of thst ksolution.

The heap abstractiof ::= ((\/(Fv*-7)*) | (ex ¢ - 5)) given in last section has the following
model:

Definition 5.2 (Model for Heap Approximation)

s,h EV(Foom)* i ff s =\ (Fv*n)*
s,hiEexi- i ff (p=iNi>0)ep and s, h—{s(p) }=[p/i|p

Furthermore, we may soundly relate a separation forrdukand its abstractiomw by the
(semantic entailment) relatioh = 5 defined as follows :

Vs,h-(s,hE® = s,h=[)

5.2. Soundness of Verification

The soundness of our verification rules is defined with resfmea small-step operational
semantics, which is defined using the transition relatiom, e)— (s, hq, e1), which means if
e is evaluated in stack, heaph, thene reduces in one step tg and generates new stagk
and new heap,. Full definition of the relation can be found in the Appendix AVe use the
relation—* to denote the transitive closure of the transition relation\We also need to extract
the post-state of a heap constraint by:

Definition 5.3 (Poststate) Given a constraint\, PostA) captures the relation between primed
variables ofA. Thatis :

PostA) =4 p (IV-A), where
V = {vy,..,v,} denotes all unprimed program variablesin
p=[v1/v, .., vn/vp)]

For example, given = x"::node(3,null) Ay=5Ay’>y+1, POS{A) = x::node(3,null)Ay>6.



Theorem 5.1 (Preservation)If

F{A}e{As} s,h=PostA) (s, h,e)—(s1,hi,e1)
Then there exists\, such thats;, h; = Pos{A;) and - {A;} e; {As}.
Proof: By structural induction om. Details are in the Appendix.

Theorem 5.2 (Progress)If = {A} e {Ay}, ands, h = Pos{A), then eithere is a value, or
there exists;, hy, andey, such that (s, h, )< (s1, hi, e1).

Proof: By structural induction om. Details are in the Appendix.

Theorem 5.3 (Safety) Consider a closed term(i.e. a term with no free variabled in which

all methods have been successfully verified. Assuming itetdirstack/heap spaces and that
- {true} e {A}, then either([],[],e)—*([], h,v) terminates with a value that is subsumed
by the postconditiod\, or it diverges (i.e. never terminate§), [|, e)%~*.

Proof: Follows from Theorems 5.2 and 5.1 and an auxiliary lemma&miin the appendix
(Lemma B.1). Details are in the Appendix.

5.3. Soundness of Entailment
The following theorems state that our entailment provirgcpdure (given in Sec. 4) is sound
and always terminates. Proofs are given in the Appendix.

Theorem 5.4 (Soundness])f entailment check\-A, « A succeeds, we have: for all h, if
s,h = Ay thens, h = Ay x A.

Proof: Given in the Appendix.
Theorem 5.5 (Termination) The entailment check;-A, x A always terminates.

Proof: Given in the Appendix.
The soundness of the heap approximation procedauge, is formalized as follows:

Definition 5.4 (Sound Invariant) Given a shape predicatév*) = ® inv 7, the invariantr is
soundif XPure,(®) = [0/null]r.

Lemma 5.6 (Sound Abstraction) Given a separation constraidt where the invariants of the
predicates appearing i are sound, we havé + XPure, ().

Proof: Given in the Appendix.

Lemma 5.6 ensures that if sound invariants are given, itfesteeapproximate an antecedent
by usingXPure,. It also allows the possibility of obtaining a more preciseairiant by applying
XPureone or more times (i.e. using?ure, , , instead ofXPure,).



Programs LOC No Omega |Isabelle] MONA | Isabelle MONA
size/bag|| Calculator| Prover| Prover | Prover Prover
Linked List sizel/length bag/set
delete 9 0.02 0.06 17.23 0.12 16.56 0.12
reverse 13 0.02 0.09 13.27 0.1 12.1 0.11
Circular List size + cyclic structure bag/set + cyclic structure
delete (first) 13 0.01 0.06 14.71 0.12 17.96 0.17
count 29 0.04 0.15 31.94 0.22 39.16 0.29
Double List size + double links bag/set + double links
append 22 0.05 0.1 23.35 0.22 22.33 0.12
flatten (from tree) 32 0.08 0.5 87.3 11.85 54.23 0.47
Sorted List size + min + max + sortedness bag/set+ sortedness
delete 20 0.02 0.19 34.09 1.01 13.12 0.25
insertionsort 32 0.07 0.31 80.9 5.22 27.3 0.21
selectionsort 45 0.10 0.46 135.1 15 35.17 0.39
bubblesort 37 0.16 0.78 127.7 1.16 65.37 0.82
mergesort 78 0.11 0.61 142.9 8.63 72.53 1.3
quick sort 70 0.19 0.84 14.8 15.92 28.43 0.71
Binary Search Tree min + max + sortedness bag/set + sortedness
insert 22 0.08 0.37 72.82 | 11.92 | 24.37 0.54
delete 48 0.06 0.53 97.5 11.62 || 24.39 0.7
Priority Queue size+ height+ max-heap bag/set+ size+ max-hea
insert 39 0.15 0.45 192.8 2.69 39.59 2.93
deletemax 104 0.55 11.09 648.3 642 77.57 failed
AVL Tree height+ height-balanced bag/set+ height
+ height-balanced
insert 114 2.77 15.25 85.47 15.05 || 119.14 29.96
delete 239 2.48 14 106.1 14.24 failed 53.22
Red-Black Tree size + black-height bag/set+ black-height
+ height-balanced + height-balanced
insert 161 0.97 1.64 307 4.51 211.56 8.63
delete 278 0.95 7.72 653.3 | 26.62 | 309.3 7.51

Figure 7. Verification Times (in seconds) for Data Strucsunaéth Arithmetic and Bag/Set

Constraints

6. Implementation

We have built a prototype system using Objective Caml. Thefpobligations generated
by our verification are discharged using either a constishter or a theorem prover. This is
organised as an option in our system and currently covemyatic provers, such as Omega

Calculator [49], Isabelle [45], and MONA [30].

Figure 7 summarizes a suite of programs tested. Tests wdmgmped on an Intel Pentium D

6In other words, it indicates that all variablesdmre locally declared in.




3.00 GHz. For each example we report:
e the number of code lines (the second column)

e the timings for verifying pointer safety, where only sepena/shape information is taken
into account, but not size or bag properties (the third colunihese timings reveal how
much of the verification time is due to the entailment prowhgure formulas.

¢ the time taken by the verification process when consideregamation/shape and size
properties. The pure proof obligations were dischargeti either Omega (the fourth
column), Isabelle (the fifth column), or MONA (the sixth coin). Verification time of a
function includes the time to verify all functions that itlsa

¢ the time taken by the verification process when considempgation/shape properties
and the bag/set of reachable values inside the data stescfline pure proof obligations
were discharged with either Isabelle (the seventh colummylONA (the eighth column).

The average annotation cost (lines of annotations/linesodg ratio) for our examples is
around 7%. Regarding the properties we capture for each ttatdwse, they are summarized
below:

e Forsingle-linked list, circular list anddoubly-linked list, the specifications capture the
sizeof the list (the total number of nodes). Additionally, forailar list and doubly-linked
list, they also capture theyclic structureand thedouble links respectively. The last two
columns contain the verification timings when capturinggbeof reachable values as a
bag/set

e Forsorted list, we track thesizeof the list, the minimumrfin) and the maximumnax
elements from the list. Theortednesproperty is expressed using th@en element, as
shown in Section 2.2. For the case when the specificatioractnthe entirdag/setof
reachable values, we can directly express the sortedngssrpy over thdag/setwithout
explicitly capturing theminvalue (the sixth and seventh columns):

sortl3(B) = (root=nullAB={})
V (root:mode(v, q)*q::sort13(B;) AB=B;LI{v} A V x€B;-v<x)

e Binary search treerequires the elements within the tree to be in sorted orters(irt-
ednesgproperty). Our specification captures this property bykirag either themin/max
values within the tree (the third, fourth and fifth columrm)the entirebag/setof reach-
able values (the sixth and seventh columns).

e For the case gbriority queue, we track thesize theheightand the highest priority of the
elements inside the heamax-heap The last two columns contain the timings obtained
when the specification captures thag/setof reachable values.

e The specification for th@VL tree tracks the total number of nodes in the tree, denoted
by the size property, and itdheight Additionally, it has an invariant that ensures the
height-balancedroperty, meaning that the left and right subtrees are ynémilanced,



as illustrated earlier in Sec 2.2. When tracking the reaehadlues inside the tree with
bag/se{the sixth and seventh column), in order to maintainiteight-balancedvariant,
we still need to track thiaeightof the AVL tree.

e For thered-black tree, we track thesize(the total number of nodes) and thiack-height
(the height when considering only the black nodes). TheiSpaton also ensures the
height-balancegroperty, meaning that for all the nodes, each pair of ledt @ght sub-
trees have the same black-height. In the last two columnsapeice the set of reachable
values as dag/set

Next, we summarize our experience regarding the verifinagfcarithmetic constraints and
bag/set constraints, respectively. Regardinthmetic constraints, the time required for shape
and size verification is mostly within a couple of secondsmvhging the Omega Calculator to
discharge the proof obligations (the fourth column). Inesrtb have a reference point for
the Omega timings, we tried solving the same constraints b other theorem provers :
Isabelle (the fifth column) and MONA (the sixth column). Fbetformer, we only use an
automatic but incomplete tactic of the prover. The latteansimplementation of the weak
monadic second-order logics WS1S and WS2S ([17]). Therefioseorder variables can be
compared and be subjected only to addition with constants Piesburger arithmetic ([50])
allows the addition of arbitrary linear arithmetic terms @wonverted its formulas into WS1S by
encoding naturals as Base-2 bit strings. From our expersweatonclude that the verification
process is dominated by entailment proving of pure formuwiduch is faster with a specialised
solvers, such as Omega Presburger constraints. The tifongerifying shapes only (without
size/bag proving) are benign, as reflected in the third calum

With concern tdag/set constraints bag constraints were solved using the multiset theory of
Isabelle (the seventh column), while weak monadic secaddrdheory of 1 successor WS1S
from MONA was used to handle set constraints (the eighthreo)u Due to the incompleteness
of the automatic prover that we used from Isabelle, the pimothe delete method from the
avl tree failed. On the other hand, as Mona translates WSI8ufes into minimum DFAs
(Deterministic Finite Automata), the translation may @astate-space explosion. In our case,
we confronted such a problem when verifying the method féetdey the root of a priority
heap,delete max, for which the size of the corresponding automaton exceduedvailable
memory space. From the experiments we can conclude that thkeverification succeeds, it
is faster with Mona than with Isabelle.

One remark regarding the verification of bag/set consgasthat, when using Mona for
discharging the proof obligations, the properties verifaed less precise than with Isabelle.
This is due to the fact that from Isabelle we employ the bagt{sat) theory, whereas in Mona
we can only use WS1S for set constraints. For illustratianyseconsider the specification of
theinsert method for a singly-linked list:

root :: 11(B) = (root=nullAB={})V
(root:mode(v, q)*q::11(B;)AB=B;L{v})

void insert(node x, int a) where
x::11(B) #— x::11(B;) AB;=BlLl{a}



For the predicate1(B), B denotes the bag/list of values stored inside the correspgmidt.
When verifying the method using Isabelle, the constraintBLi{a} specifies that only one
new node with value was inserted into the list. However, after verifying the samethod
using Mona, we can only conclude that at least one node wétlvdluea was inserted into the
list.

To speed up the verification process, we have undertaken gerf@mance engineering and
rerun the tests. One direction was motivated by the obsenvtiat the verification process is
dominated by the entailment proving of pure formulas. Cousatly, in order to speed up the
verification process, we have to speed up the calls to themattsolvers. One technique of
simplifying these calls, is to replace a single such calhwitultiple calls corresponding to each
disjunct from the antecedent and each conjunct from theeprent, respectively. Following
from the[enT-LHS-OR] rule in Section 4 for handling disjunction on the LHS durihg &n-
tailment of separation logic formulas, we have applied e idea for entailments between
pure formulas. Our experiments have showed that performiigjple calls to the solvers with
smaller formulas is faster than performing only one calhvaitbigger formula to be discharged.

Apart from the aforementioned speeding up technique, anitapt future work is to design a
safe decomposition strategy for breaking larger predscanéo a number of smaller orthogonal
predicates for modular verification. We expeotdle modularitydecomposed shape viearsd
multi-core parallelismto be important techniques for performance engineeringutdraated
verification system.

The programs we have tested are written using data strgolitie sophisticated shape, size
and bag properties, such as sorted lists, sorted treesitypgoeues, balanced trees. Our ap-
proach is general enough to handle such interesting dai@ste properties in an uniform way.
Note that our system currently cannot handle map, sequencenslinear properties as such
properties would require specific provers for them. The gdaswe have tested so far in our ex-
periments are small to medium size programs. The successifging such programs confirms
the viability of our approach, and allows us to use our sydtenerify data structure libraries.
For large-size programs, significant effort would be reeglie.g. in providing user-annotations
on method specifications and loop invariants. We envisagjdriference mechanisms would be
useful to help reduce user-annotations and improve levalittfmation.

There are also data structures that are beyond the capalbithie current system. Since the
references between the objects of a data structure areredfiiy passing object references and
fields as parameters to predicate invocations, our predicannot precisely capture data struc-
tures with non-local references. For instance, certaia datctures with fields described by
field constraints [59], or those with probabilistically dehined fields, such as skip lists [48]
are currently not captured by our predicates. These datatstes have a common property:
certain pointer fields of the objects are non-local in thaytdo not have a direct relationship
with fields of surrounding objects, but rather are deterhioye some global constraint.

7. Related Work

7.1. Formalisms for Shape Checking/Analysis

Many formalisms for shape analysis are proposed for chgakser programs’ intricate ma-
nipulations of shapely data structures. One well-knownkwsithe Pointer Assertion Logic
[41] by Moeller and Schwartzbach, which is a highly expressnechanism to describe in-



variants of graph types [31]. Theointer Assertion Logic Engine (PALE) uses Monadic
Second-Order Logic over Strings and Trees as the underlygig and the tool MONA [30] as
the prover. PALE invariants are not designed to handle ragtit, hence it is not possible to
encode height-balanced priority queue in PALE. MoreovAL BPis unsound in handling pro-
cedure calls [41], whereas we would like to have a sound eeriflarwood et al. [20] describe
a UTP theory for objects and sharing in languages like Java or C++. Therkwacuses on
a denotational model meant to provide a semantical founlddr refinement-based reason-
ing or Hoare-style axiomatic reasoning. Our work focusesemm practical verification for
heap-manipulating programs.

In an object-oriented setting, tlzafny language[39] uses dynamic frames (introduced by
Kassios [28]) in its specifications. The term frame refera 8@t of memory locations, and an
expression denoting a frame is dynamic in the sense thateagrtigram executes, the set of
locations denoted by the frame can change. A dynamic frartteissdenoted by a set-valued
expression (in particular, a set of object references)tlasdet is idiomatically stored in a field.
Methods in Dafny use modifies and reads clauses, which framenbdifications of methods
and dependencies of functions. By comparison, separaty poovides a reasoning logic that
hides the explicit representation of dynamic frames.

For shape inference, Sagiv et al. [53] present a parameteframework, called VLA ,
using 3-valued logic formulae and abstract interpretat®ased on the properties expected of
data structures, programmers must supply a set of preditatbe framework which are then
used to analyse that certain shape invariants are maidtaine

However, most of these techniques are focused on analykeqgesinvariants, and do not
attempt to track the size and bag properties of complex daiatsres. An exception is the
guantitative shape analysis of Rugina [52] where a data flaalyais is proposed to compute
guantitative information for programs with destructivedages. By tracking unique points-to
reference and its height property, their algorithm is abldandle AVL-like tree structures.
Even then, the author acknowledge the lack of a generalfsgmn mechanism for handling
arbitrary shape/size properties.

7.2. Size Properties

In another direction of research, size properties are mesplored for declarative languages
[24,60,10] as the immutability property makes their datacttires easier to analyse statically.
Size analysis is also extended to object-based progranh$lit is restricted to tracking either
size-immutable objects that can be aliased and size-neutddpects that are unaliased, with no
support for complex shapes.

The Applied Type System (ATS)[8] is proposed for combining programs with proofs. In
ATS, dependent types for capturing program invariants aemely expressive and can cap-
ture many program properties with the help of accompanymogfs. Using linear logic, ATS
may also handle mutable data structures with sharing in@sgenanner. However, users must
supply all expected properties, and precisely state winenedre to be applied, with ATS play-
ing the role of a proof-checker. In comparison, we use a morged class of constraint for
shape, size and bag analysis but support automated moevitcation.

7.3. Set/Bag Properties
Set-based analysis is proposed to verify data structursistency properties in the work of
Kuncak et al. [34], where a decision procedure is given forst @rder theory that combines



set and Presburger arithmetic. This result may be used o d@pecialised mixed constraint
solver but it currently has high algorithmic complexity.

Lahiri and Qadeer [35] report an intra-procedural readhghbanalysis for well-founded
linked lists using first-order axiomatization. Reachaypifihalysis is related to set/bag prop-
erty that we capture but implemented by transitive clostutbepredicate level.

7.4. Unfold/Fold Mechanism

Unfold/fold techniques are originally used for progranng@mrmation [6] on purely func-
tional programs. A similar technique called unroll/rollager used in alias types [58] taanu-
ally witness the isomorphism between a recursive type and itdding. Here, each unroll/roll
step must be manually specified by programmer, in contrasttapproach which applies these
steps automatically during entailment checking.

An automated procedure that uses unroll/roll is given by Berdt al. [3], but it is hardwired
to work for only 1seg and tree predicates. Furthermore, it performs rolling by unfolding
a predicate in the consequent which may miss bindings onvaeables. Our unfold/fold
mechanism is general, automatic and terminates for heagraaht checking.

7.5. Classical Verifiers

Program verifiers that are based on Hoare-style logic haee beound longer than those
based on separation logic. We describe some major effottgsmlirection.

ESC/Java. Extended Static Checking for Java (ESC/Java) [18], develap&bmpaq Sys-
tems Research Center, aims to detect more errors than “traalitistatic checking tools, such
as type checkers, but is not designed to be a program vepficagstem. The stated goals of
ESC/Java are scalability and usability. For that, it forgamsdness for the potential benefits of
more automation and faster verification time. Hence, ES@/Jaffers from both false negatives
(programs that pass the check may still contain errors t8&/#ava is designed to handle), and
false positives (programs flagged as erroneous are in faatgprograms). On the contrary,
our verifier is a sound program verifier as it does not suffemffalse negatives: if a program
is verified, it is guaranteed to meet its specifications fopassible program executions.

ESC/Java2.The ESC/Java effort is continued with ESC/Java2 [13], whiaktsaipport for
current versions of Java, and also verifies more JML [37] taots. One significant addition
is the support for model fields and method calls within antnata [12]. Since ESC/Java2 con-
tinues to use Simplify [15] as its underlying theorem prowdiich does not support transitive
closure operations, it may have difficulties in verifyingoperties of heap-based data struc-
tures that require reachability properties, such as dudles of values stored in container data
structures.

Speé. Speé [1] is a programming system developed at Microsoft Resedtihan attempt
at verifying programs written for the*@rogramming language. It adds constructs tailored to
program verification, such as pre- and post-conditionsyéaonditions, non-null types, model
fields and object invariants. Spgarograms are verified by the Boogie verifier [1], which uses
Z3 [14] to discharge its proof obligations. Sped¢so supports runtime assertion checking.

Speé supports object invariants but leaves the decision of wheenforce/assume object
invariants to the user. In order to verify object invariamdularly, Spetemploys an ownership
scheme that allows an objecto own its representation — objects that are reachable éfrand
are part ofo’s abstract state. The ownership scheme in Sfeces a top-down unpacking of
the objects for updates, and a bottom-up packing for rebksktang the object invariant. The



packing and unpacking of objects are done explicitly by hgwyrogrammers writing special
commands in method bodies.

In our system, instead of using special fields in method egtdrto indicate whether an
invariant should be enforced, users directly use predicétence, there is no need for explicitly
packing and unpacking the objects in the method body. Comesgiguusers are shielded from
the details of the verification methodology, which are l&rgeelevant, from a user’s point of
view.

Jahob. The main focus of Jahob [32,33] is on reasoning techniquedafta structure verifica-
tion that combines multiple theorem provers to reason adqutessive logical formulas. Jahob
uses a subset of the Isabelle/HOL [45] language as its spetodin language, and works on
instantiatable data structures, as opposed to global ttatgiges used in its predecessor, Hob
[36]. Like SPEC, Jahob supports ghost variables and specification assigamich places
onus on programmers to help in the verification process byigirgy suitable instantiations of
these specification variables.

EVE Proofs. EVE Proofs [57] is an automatic verifier for Eiffel [40]. Thed translates
Eiffel programs to Boogie [1]. EVE Proofs is integrated in Ei#el Verification Environment.
The authors acknowledge the importance of frame condifionsodular verification. When a
routine is called, the verifier is invalidating all knowleslgbout the locations which may have
changed. Therefore it is essential to constrain the effeatiine has on the system to preserve
as much information as possible. As Eiffel does not offer & teespecify the frame condition,
the authors introduced an automatic extraction of modifiasses. Their approach uses the
postcondition to extract a list of locations which congétthe modifies clause.

Although the approach uses the dynamic type for the pre- asttpndition of a routine call,
it uses the static type for the frame condition. This can keaghsoundness in the system. As
opposed to EVE Proofs, our approach does not have to inferefionditions, courtesy to the
frame rule of separation logic [51]. The crucial power of tteane rule is that it allows a global
property to be derived from a local one, without looking dtestparts of the program.

Another restriction of EVE Proofs regards the methodolagyirivariants, which has to take
into account that objects can temporarily violate the iy but also that an object can call
other objects while being in an inconsistent state. As ghisot considered at the moment, the
current implementation of invariants can introduce unsim@ss in the system.

As a comparison, we shall discuss some features in our dweefication system that differ
from those used in traditional verifiers. Our use of userrdefipredicates, which capture the
properties to be analysed, removes the need for model fialiiéaving object invariants tied
to class/type declarations. Regarding ghost specificatwiales, they are not required since
we provide support for automatically instantiating thedacates’ parameters. Furthermore, we
make use of unfold/fold reasoning to handle the propertiggeaursive data structures. This
obviates the need for specifyinmansitive closurerelations that are used by classical verifier,
such as Jahob, when tracking recursive properties. Lastlgeparation logic employs local
reasoning via a frame rule, our approach does not requirpaaemodifies clause to be
prescribed.



8. Conclusion

We have presented in this paper an automated approach tpingteap-manipulating im-
perative programs. Compared with other separation logiedastomated verification systems
[3,16,19,38], our approach has made the following advar{@¢¢ether systems mainly focus on
only the separation domain, while we work on a combined domédiere not only separation
properties (defining the shape of data structures), butatlser properties (such as size and
bag) can be specified; (2) other systems support only a feltribypredicates over the sepa-
ration domain, while we allow arbitrary user-specified (intive) predicates over the domain
combined with shape, size and bag properties, which gr@afyoves the expressiveness of
our specification mechanism; (3) most existing systemsdacuthe verification of the pointer
safety, while our approach can verify, in addition to thenpei safety, other properties that
require the presence of numerical information such as sidebag. Our approach is built on
well-founded shape relations and well-formed separatamstaints from which we have de-
signed a novel sound procedure for entailment proofs in ¢tingbtned domain. Our automated
deduction mechanism is based on the unfold/fold reasoriingas-definable predicates and has
been proven to be sound and terminating.

While this paper is focused on automated verification, wel stiab look into automated
inference, in order to allow our system to work for substdrgizable software. Automated
inference aims to automatically derive program annotatgucth as method pre/post-conditions
and loop invariants, rather than reply on programmersgusemanually supply. Recently,
there has been noticeable advance on automated inferentegefeeparation domain [61,7].
However, it is open how to systematically infer pre/postditions and loop invariants for the
domain combined with shape, size and bag information antdrptesence of user-specified
inductive predicates. This remains our main future work.
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A. Dynamic Semantics

This section presents a small-step operational semamtiosuf language given in Fig. 1.
The machine configuration is represented(byh, ¢), where s denotes the current stack,
denotes the current heap, andenotes the current program code. Each reduction step-is for
malized as a transition of the fornfs, h, e)<— (s, hq, e1). The full set of transitions is given in
Fig. 8. We have introduced an intermediate constree{v*, ¢) to model the outcome of call
invocation, where: denotes the residual code of the call. It is also used to bdodal blocks.
The forward verification rule for this intermediate constris given as follows:

[FV-RET|
F{A}e{Ay} A= (F*-Ay)
F{A}ret(v*,e){A}

Note that whenever the evaluation yields a value, we asshivevdlue is stored in a special
logical variableres, although we do not explicitly putes in the stacks.
We also have the following postcondition weakening rule:

[FV-POST-WEAKENING]
F {A}G{Al} A1Q3>A2
F{A}e{As}

where Ajr=>Ay =4 Vs, h-s,h =Pos{A;) = s, h = PostA,). As discussed earlier, we
can viewA; andA, as binary relations (as far as only program variables arearoed). There-
fore, we useéPos{A) here to refer to the postcondition(i.e. the set of posesjaspecified by
A. Note also that\; andA, share the same set of initial states (in whic$tart to execute).

We now explain the notations used in the operational sexmniVe use: to denote a con-
stant, | to denote an undefined value, af)do denote the empty expression (program). Note
that the runtime stackis viewed as a ‘stackable’ mapping, where a variabigay occur several
times, ands(v) always refers to the value of the variabl¢hat was popped in most recently.
The operationu—v|+s “pushes” the variable to s with the valuev, and([v—v]+s)(v) = v.
The operatios—{v*} “pops out” variables* from the stacks. The operatiors[v—v| changes
the value of the most recentin stacks to ». The mappind:[.—r] is the same ak except that
it maps: to r. The mappingd:+[.—r] extends the domain &f with . and maps to r.

B. Proofs

B.1. Theorem 5.1 — Preservation
Proof: By structural induction om.

"We can give a more formal definition for where different occurrences of the same variable can ledddlwith
different ‘frame’ numbers. We omit the details here.



(s, h,v)=(s, h,s(v)) (s,h, k)= (s, h, k) (s, h,v.fy=(s,h,h(s(v))(f))
(s, h,v:=k)—(s[v—k|, h,()) (s,h,();e)=(s, h,e)

(s,h,e1)=(s1,h1,e3) (s,h,e)=(s1,h1,e1)
(s, h,eq;es)—(s1, hy,e3; €9) (s,h,v::e)%(sl,hl,v =eq)

s(v)=true s(v)=false

(s,h,if v then e; else ex)—(s, h,e1) (s,h,if v then e; else eg) (s, h, es)
(s,h,{tv; e})—=([v—L]+s, h,ret(v,e)) (s,h,ret(v*, k)= (s—{v*}, h, k)

(s,h,e)—(s1,hi,e1) r=h(s(vy))[fros(ve)]  hi=h[s(vq)—7]
(s, h, ret(v*,e)><—><sl,h1,ret(v e1)) (s,h,v1.f := vo)=(s, h1,())
datac{ty fi,...tn fu}€P gdomh) r=c[fi—=>s(v1),.., far>s(vn)]

(s, h,new c(vy..,)) (s, h+[t — 7], 1)
si=[wis(vy)|,,+s  to mn((ref t; w5t (4 wi),,) {e}
(s, h,mn(vy..,)) = (s1, h,ret ({w; }o, [vi/wi] 5 e))

Figure 8. Small-Step Operational Semantics

e Casev := e. There are two cases according to the dynamic semantics:

— e is not a value. From dynamic rules, thereeiss.t. (s, h,e)<—(s1,h1,e1), and
(s, h,vi=e)—(sy, hy,v:=e1). From verification rulgrv-assiaen|, - {A}e{Ao},
andA,=dres-AgAyv'=res. By induction hypothesis, there exists, such that
s1, h1 = Pos{A) and- {A; }e;{As}. It concludes from the rulpgv-assien] that
F {Al}v::el {AQ}

— eis avalue. Straightforward.

e Casev;.f :=vy. TakeA; = A. It concludes from ruldrv-rieLD-upPDATE| and the
dynamic rule.

e Casenew c(vy..,). From verification ruldrv-~ew], we have- {A}new c(vy..,){As},
whereA, = Asxres::c(v), .., v),). LetA; = A,. From the dynamic semantics, we have
(s, h,new c(v1..,)) = (s, h+[c — 7], 1), where. ¢ dom(h). Froms, h |= Pos{A), we have
s, h+[e — 7] = Pos{A;). Moreover;- {A;}i{As}.

e Caseey;e,. We consider the case where is not a value (otherwise it is straightfor-
ward). From the dynamic semantics, we haveh, e;)— (s1, hy, e3). From verification
rule [Fv-seq|, we have- {A}e;{A3}. By induction hypothesis, there exists; s.t.
S1, hq ): POS(Al), andr {Al}eg{Ag}. By rule [vasEQ], we have- {Al}eg; GQ{AQ}.

e Caseif v then e; else e;. There are two possibilities in the dynamic semantics:

— s(v)=true. We have(s, h,if v then e; else eg)—(s, h,e;1). Let A} = (AAY).
It is obvious that, i = Pos{A,). By the rule[ev-1r], we have- {AAv'} e; {Al}.



By the rule[rFv-posT-wEAKENING], We havet- {AAv'}e; {AVA?}. That s,
F {Al} €1 {AQ}
— s(v) = false. Analogous to the above.

e Caset v; e. Let Ay = A, we conclude immediately from the assumption and the rules
[Fv-LocaLr| and[FV-RET|.

e Casemn(v; ,,). From rule[rv-cacrr], we KnowAkp &, x Ag. Take Ay = p OprxA,.
From the dynamic rule and the above heap entailment, we hake = Pos{A;). From
rule [rv-MEeTH|, We have- {p PpxAg} e {AgxPpo} Which concludes.

e Caseret(v*, e). There are two cases:

— eisavaluek. Let A; = Fv™ - A. It concludes immediately.

— eis not avalue.(s, h,ret(v*, e))—(s1, h1,ret(v*, e;)). By [Fv-rET| and induc-
tion hypothesis, there exist§; s.t. s;,h; = Pos{A;) and- {A;} e; {As}, and
Ay = Fv"™*-As. By rule [Fv-reT| again, we have {A;} ret(v*, e;) {As}.

e Casenull | k| v | v.f. Straightforward.

B.2. Theorem 5.2 — Progress
Proof: By structural induction om.

e Casev := e. There are two cases:

— eisavaluek. Lets; = s[v—k], hy = h, ande; = (). We conclude.

— e is not a value. Byrv-assicn|, we have- {A} e {A;}. By induction hypothe-
sis, there existy, hq, e;, such that's, h, e)<—(sy, hy, e1). We conclude immediately
from the dynamic semantics.

e Casev,.f := vy. Takee; = (), s1 = s, andhy = h[s(vy)—r], where
r = h(s(v1))[fs(v2)]. It concludes immediately.

e Casenew c(v;..,). Let. be a fresh location; denotes the object value
clfirrs(vr), .., fu—>s(vy,)]. Takes; = s, hy = h+[v—r], ande; = «. We conclude.

e Caser;;e,. If ¢; is avalue(), we conclude immediately by taking = s, h; = h. Oth-
erwise, by induction hypothesis, there existhy, e3 S.t. (s, h, e1)—(s1, h1, e3). We then
have(s, h, eq; e)—(s1, hy, e3; e2) from the dynamic semantics.

e Caseif v then e; else ey. It concludes immediately from a case analysis (based on
value ofv) and the induction hypothesis.

e Casefv; e. Lets; = [v—_L]|+s, hy = h, ande; = ret(v, ¢). We conclude immediately.

e Casemn(v; ,). Supposev,..,v,, are pass-by-reference, while others are not. Take
s1 = [wi—s(vy)|,,+s, b = h, ande; = ret({w;}1,,, [vi/w;]'e), wherew; are from
method specificatiorty mn((ref t; w;)7 ", (t; w;),,) {e}. We conclude by the dy-
namic semantics.



e Caseret(v*,e). If eis a valuek, lets; = s — {v*}, hy = h, ande; = k, we conclude.
Otherwise, by induction hypothesis, there existhi, e; S.t.
(s, h,e)—(s1, hi,er). We then havés, h, ret(v*, e))—(s1, hy, ret(v*, eq)).

e Casenull | k| v |v.f. Straightforward.

B.3. Theorem 5.3 — Safety
Before we present the proof for Theorem 5.3, we state and phavillowing lemma:

Lemma B.1 For any s, h, e, if (s, h, e><—>*(§,ﬁ, v) for somes, h, v, wherev is a value, and
all free variables ok are already in the domain of the stagki.e. free-varge)Cdom(s), then

dom(s) = dom(s).

Proof: By structural induction over.

Basic cases:isnull | k| v | v.f | v.f = v;. The conclusion is obvious as the stack remains
unchanged during the evaluationeof

Inductive cases:

e cisv := e;. By the operational semantics, we know thath, e;)—*(s1, hq, 1) for some
s1, hy, vy, and(sy, hy, v := v1)—(8, h,v). Note thafree-varge; ) Cfree-varge) Cdom(s),
by induction hypothesis, we haw#om(s;) = dom(s). The conclusion follows since

dom(s) = dom(sy).

e cisey;e,. By the operational semantics, there argh,; such thats, h, e1)—*(s1, hy, (),
(s1,h1,(); e2)=(s1, hq,e2), (s1, hy,ea)—=*(3, h,v). Note that, fori=1, 2, we have
free-varge,;) Cfree-varge) Cdom(s). By induction hypothesis, we have

dom(s) = dom(s;) = dom(s).

e cistuv;e;. By the operational semantics, we haveh, e)—([v— |+s, h, ret(v, e1)),
and([v— _|+s, h, e1)—=*(s1, hy, v) for somesy, hy, and(sy, hy, ret(v, v))—(8, h,v), where
s = s;—{v}. Note thatfree-varge, ) Cdom[v—_|+s), by induction hypothesis, we have

dom(s;) = dom([v—_]+s). Sodom(s) = dom(s;)—{v} = dom([v—_]+s)—{v} = dom(s).

e cismn(u*;v*), wherev* are arguments for call-by-value parametets By the opera-
tional semantics, we have (19, , e)—{[w*—v*]+s, h, ret(w*, emn)), Whereenmy is the
body of the methodnn, and (2){[w*—v*|+s, h, emn)<—*(s1, h1, V) fOor somes,, h;, and
(3) (s1, by, ret(w*,v))—(3, h, ), wheres = s;—{w*}. Note also that we have
free-vargemn) Cdom[w*—v*]+s), by induction hypothesis, we have
dom(s;) = dom([w*—v*]+s). Sodoms) = dom(s;)—{w*} = dom(s). O

Proof of Theorem 5.3:If the evaluation ot does not diverge (is not infinite), it will terminate
in a finite number of steps (say: ([], [], e)<—(s1, h1, e1)—- - -—>(Sn, hn, €,,), and there are no
further reductions possible. By Theorem 5.1, there eXist., A,, such thats;, h; = Pos{A,),
and- {A;} e; {A}. By Theorem 5.2, The final result, must be some value (or it will make
another reduction). The conclusion that the stachn the final state is empty is drawn from
Lemma B.1 in the above. O



B.4. Soundness and Termination of Heap Entailment
Definition B.1 (length) We define théengthof a separation constraint inductively as follows:

length(emp) =0

length(p::c(v*)) =1

length(r ko) = length(x,)+length(x,)
length Fv*-kAYAQP) = lengthx)

length &,V ®,) = length(®, )+length(®,)

Definition B.2 (Entailment Transition) A transition of the forn€; — &, is called an entail-
ment transition wher€; is either an entailment of the form, -7, A, * A or a fold operation
fold®(A, p::c(v*)). The set of possible entailment transitions are specifieddtively by the
entailment rules and the fold operation defined in Section 4.

e Rule[eNnT-MmATCH]: There is one possible transition:

(prz:c{u)xky )ATIET ((p2i:c(vs ) xkg ) ATa) * A
%

ki A(miAfreeEqrip, V) v i plra ) + A
e Rule[enT-EMmP]: There is no entailment transition.
¢ Rule[enT-uNroLD|: There is one transition:

(prz:cr (Vi) sk )ATIEY ((p2iica (V) xKo) ATa) * A
%
unfold(p; ::c; (v7) ) kr1 AT ((paiica (V3) % ko) ATra) % A

e Rule[enT-FoLD|: There are 2 possible transitions:

(prz:cr (V) xk )ATLEY ((p2iica (V) xKo ) ATa) * A
%

fold®((py::c1(v]) k1) ATy, prica(vd))

and  (prcr (v]) k1 )ATIED ((paiica (V) % ko) ATra) ¥ A
%
AGATIRY Ko A(maATE) x A for somei€l, .., n

e Rule[enT-LHS-0OR]|: There are two possible transitions:
Al\/AQ'_’;/Az; * (A4\/A5) — A1|—6A3 * A4
Al\/Ag'_?/Ag * (A4\/A5) — AQPC’Ai& * A5

e Rule[enT-rRHS-OR]: There are two possible transitions:

A (AVA) x AR 5 AIFE A« AR
AFE(AVAS) « AR 5 AFEA« AR



e Rule[ENT-rRHS-EX]: There is one possible transition:

AFD(Fu- Ag)x A — All—"‘,u{w}([w/v]Ag) * As

e Rule[enT-LHs-EX]: There is one possible transition:

El’U'Aﬂ_l‘{/AQ*A — [w/v]Aﬂ—'{}AQ*A

e Rule[roLping]: There is one possible transition:

fOId”/(f@/\W,p::c@*)) — liAWf—’f;*}[p/root]CI)*{(Ai,mi,\/;,m)}?zl

Definition B.3 (Entailment Search Tree) An entailment search tree féf = A - Ay x A
is a tree formed as follows:

e The nodes of the tree are either entailment relations or fgdérations (of the form
fold™ (A, p::c(v*))).

e The root of the tree i§.

e The edges from parent nodes to their children nodes arelergat transitions defined in
Definition B.2.

B.5. Theorem 5.4 — Soundness of Heap Entailment

Proof: We need to show thatfy = A;F{ A, « Az succeeds and h = Ay, thens, h = Ag*xAj.
Note that the entailment rulenT-maTcH] in Sec. 4 denotes a match of two nodes/shape pred-
icates between the antecedent and the consequent. We agpbttion on the number of such
matches for each path in the entailment search tre&,for

Base case. The entailment search succeeds requiring noasatitilcan only be the case
where rule [EnT-EMP| is applied. Itis straightforward to conclude.

Inductive case. Suppose a sequence of transifigrs - - - — &,, where no match transitions
(due to ruldenT-MmAaTcH]) are involved in this sequence it will perform a match transition.
These transitions can only be generated by the followingstlitnT-UuNFOLD]|, [ENT-FOLD],
[ENT-LHS-OR|, [ENT-RHS-OR], [ENT-LHS-EX|, and[ENT-RHS-EX]. A case analysis on these
rules shows that the following properties hold:

s;h ELHS(E) = s, h|= LHS(Eiv1)
s,hERHSE 1) = s, h ERHSE) (1)

Suppose the match node By = A,F7 A x A, is pc(v*), and&,, becomes
AEEPEAI AL A, for someA!,, AL By induction, we have

Vs,h-s,h =N, = s, h=ALxA, (1)

From the entailment process, we ha%e = p:c(v*)xA!, and A, = p::c(v*)xAl. Suppose
s, h = A,, then there existy, hq, such that, = hgxhy, s, ho = p::c(v*), ands, hy = AL, From
(1), we haves, hy = ALxA,, which immediately yields

s, h = AA,.. We then conclude frort). O

Before we prove the termination theorem, we state and provéammas.



Lemma B.2 For any A; and A,, the entailment search tree fér = A7, Ay« A has only
finite number of fold nodes.

Proof sketch: Suppose the first rule applied in the search tree€fs [enT-roLD] (the only
rule that generates fold nodes). By Definition B.2, thereraré children&, - - - , &, for the
root nodef, for somen, where&, is a fold node. Note that the length of the conseque#t in
strictly smaller than that i&. On the other hand, nod#& will perform a transition (due to rule
[FoLDING]), yielding a nodes”:

(pr::cy (v}‘)*nl)Aﬂll—’f;g}[pl/root](I) w«{---}

This nodeg’ performs some transitions which do not change the antetéeééore it performs
a transition due to ruleeNnt-maTcH], yielding a new nodé:

RIAT T DA A

Note that the length of the antecedent in this node is onelenthhn that in the root nodé.
Moreover, it is not possible faf to perform an unfold operation as the only data nodé hras
been consumed by the match transition. This guaranteegrittedecreasing of the length of
the antecedent.

In a nutshell, any paths that involve a chain of fold operaiwill keep the length of the
antecedent decreasing, while other paths keep the lengtheatonsequent decreasing. By
induction, we can conclude that the number of fold operatistinite. O

Lemma B.3 For any entailment relatiod = A;Fj, A, = A, its entailment search tree is finite
branching and has finite depth.

Proof: Let!l; = lengthA;) for i = 1,2. Obviously we havé, >0, [,>0. Let f denote the
number of fold operations that have appeared in the entatlsearch tree.

Due to the well-foundedness of separation constraintsetaee finite possible entailment
transitions starting from any entailment relation (thugtd¢ipossible children for it). This en-
sures finite branching for each node. What we need to prove ifirtite depth property.

To prove finite depth property, we can apply induction on tlel<founded measurgf, s, ;)
using the following lexicographic order:

(F 1, 1) < (Filo,1h) =gt f/<fV Fl=fAL<lyV F'=FA(l=lAl<ly)

(). For the base case where the measure at root node is

(f=0,1,=0, 1;=0). The only possible transition for the root node is from on¢heffollowing
rules [ENT-EMP|, [ENT-RHS-EX|, and[ENT-LHS-EX], as all other rules requitig>0 or I, >0.

If the transition is due to rule [enT-Emp], the finite depth is obvious due to Definition B.2.
If the transition is due to rul&eNnT-rHS-EX] Or [ENT-LHS-EX]|, the finite depth is guaranteed
as all paths of the tree are formed by finite number of tramsstidue to ruléent-rHS-EX| Or
[EnT-LHS-EX| and then a transition due to ruléent-emp|. This is because we only have
finite number of existential variables.

(i)). For the inductive cas€f=m, ls=n, l1=Fk), wherem+n+k>0. Let us do a case analysis
onthe rulethat we apply to the root nod2to generate transitions:



(ila) Rule [enT-EMmP|. The finite depth property is trivial as discussed in (i).

(iib) Rule [exT-maTcH|. There is only one possible transitish— &; (Definition B.2).
Let (f’,15,1}) denote the measure in the child nafle immediately we havg’'=f, l;=[,—1,
li=li—1. Thus(f’,15,1}) < (f,ls,11). By induction hypothesis, the finite depth property holds
for the subtree rooted &Y. So does the whole tree.

(iic) Rule [exnT-uNFoLD|. There is only one possible transitiéh— &; (Definition B.2).
Let (fa, laa, l1,) denote the measure in the child natleWe havef, = f, lo, = lo, andly,>1;.
The measure does not decrease. However, as a new match ratgdrafter unfolding, the
only possible transition frord; is the one generated by rulent-marcH] which we denote
as& — &. Let(fy,lw,l1,) denote the measure in the nafle From (iib), we knowf,=f,
lop=I2,—1, Which yieldsly,=ls— 1<y, thus(fy, lop, l15) < (f,l2,11). By induction hypothesis,
the finite depth property holds.

(iid) Rule [enT-FoLD|. There are 2 possible transitions. For the first transiions &;
whereé&; = fold™(...), all nodes in the subtrees of nofiehave a decreased measure (number
of fold operations is decreased!), by induction hypotha#lisubtrees of; have finite depth,
so is the subtree rooted &t. For the other transitiof — &; (for somei€2, ..., n+1), we also
see the decrease of the measure (the length of the consequleimcnodese;. By induction
hypothesis again, subtrees rooted at nafdsave finite depth. This concludes the whole tree
has finite depth.

(iie) Rule [ENT-LHS-0OR]| Or [ENT-RHS-OR|. The corresponding measure in the only child
node is smaller than that . 1t concludes immediately by induction hypothesis.

(iif) Rule [ENT-RHS-EX] Or [ENT-LHS-EX]. Starting fromé&, after finite number of similar
transitions (due téenT-rRHS-EX| OF [ENT-LHS-EX]), a different transition (due to rules other
than [enT-rHs-EX| Or [ENT-LHS-EX]) Will be taken. This then reduces the case to what we
have discussed above.

Thus it concludes that the entailment search tree has fiagtd O

B.6. Theorem 5.5 — Termination of Heap Entailment
Proof: By Koenig's lemma [29] and Lemma B.3, all paths are finite. Tluaaudes that
the entailment checking terminates. O

B.7. Lemma 5.6 — Sound Abstraction
Before we prove Lemma 5.6, we state and prove the followingstpemma.

Lemma B.4 Given a separation constraidt where the invariants of the predicates appearing
in ® are sound, we haves, h- (s,h|=® — s = XPurg(d)).

Proof: By structural induction or.
[ ] (I) = (1)1 \/ (I)Q.

s,hj=®

= S, h ): P, \/ P,

< s,h=®,\/s,h =P, (model for separation constraint - Def 5.1
— sE=XPurg(P,)\/ s =XPurg(d,) (induction hypothesis

< s = XPurg(P,) \/ XPurg(P,) (XPure, definition - Fig 6

<= s|=XPurg(?)



e & =du, kKA.

s,hi=®
< s, hEJup kAT
< vy, - s[(vi—v)iy ], b= K oand s|(vi—y;)P ] |Em (model for sep. constraint - Def 5.1
— vy, - s[(viy) | = XPure (k) and s[(vi—v;)i ] E[0/null]r
(induction hypothesis and{Pure, definition - Fig 6
< Ty, - s[(vi )] EXPure (k) A [0/null]r  (model for sep. constraint - Def 5.1
< vy, - s[(vi—v)i | EXPuUre(k A ) (XPure, definition - Fig 6
< Jvy ,-sEJv ., - XPurg(k A7) (model for separation constraint - Def 5.1
< vy, - sEXPUrg(I vy, -k AT) (XPure, definition - Fig 6
< s = XPurg(P)

o & = KixKo.

s,hi=®
<= s, h = Ki*ko
<= s, hi | E K1 A S, ha =Ko A h = hyxhy
Let XPure (k) = 31 - ¢, XPure(kz) = 3J - o where
I and.J are composed of fresh symbolic addressesiand/ = ()
— skE3-p AsETJ-¢pandINJ = (induction hypothesis
= sk (3 ¢1) A (3T - d2)
<= s = XPure(kixky) (XPure, definition - Fig.6
<= s =XPurg(?)

e ® = emp. Straightforward.
e & = p:c(v*), andisData(c).

s,hi=®

< s, h Epuc(v®)

= dv-s(p) =vAv#null (model for separation constraint - Def 5.1
< skEJi-p=iNi#0

<= s=XPure(®) (XPure, definition - Fig.

e & = puc(v*), andisView(c).

s,hi=®

< s, h Epuc(v®)

< s,h=[p/root|®. (assuming:(v*) = &.invnw € P)

= s=XPurg([p/root]®.) (induction hypothesis

—> s|=[p/root,0/null]r ( allinvariants of predicates i# are sound
<= s=XPurg(P) (XPure, definition - Fig.g

Now we present the proof for Lemma 5.6 in what follows.



Proof of Lemma 5.6: Given a separation constraiftt where the invariants of the predicates
appearing inb are sound, we show the, h- (s, h|=® = s |=XPure,(P)) by induction on
n.

Base casen = 0. It follows from Lemma B.4.

Inductive case:We show that for alk, h, s=XPure,1(®) if s, h =P ands = XPure,(P). To
prove this, we conduct a structural induction®n

[ ] (I)I(I)lv(:[)g

s,hi=®

> s, h =01\ Py

< s,h=®,\/s,h =P, (model for sep. constraint - Def 5.1

— sEXPurg, () s EXPure,1(P,y) (hypothesis of structural inductipn
< sE=XPure, 1 (Py) \/ XPure, 1 (P2) (XPure, definition - Fig 6

<> sf=XPure,1(P)

e & = v ,, - KAT.

s,hi=®

< s,hEJpm KAT

< vy - S[(vi—v) ™), b Kk and s[(vi—v;) ] E7 (model for sep. constraint - Def 5.1
= I s[(vi=r) ] | XPUre, (k) and s[(vi—v;)™ ] = [0/null]r  (hypothesis of
structural induction andXPure, definition - Fig §

< 1 - S[(vi— ) EXPUre, 1 (k) A [0/null]r (model for sep. constraint - Def 5.1
<= vy - S[(vi—) | EXPUre, 1 (k A ) (XPure, definition - Fig 6

<= Ay - SEJ VL, - XPUre . (k Am)  (model for sep. constraint - Def 5.1

< vy - sEXPUG, 1 (Fvr -k AT)  (XPure, definition - Fig 6

< sE=XPure, 1 (P)

o & = R1*R9.

s,hi=®
<= s, h = Kixkqg
<> s,h1 E K1 A S, ha|= Ry A h = hyxhy
Let XPure,, (k1) = 31 - ¢y, XPure,, (ko) = 3J - ¢ Where
I and.J are composed of fresh symbolic addressesland/ = ()
= sEI[-p AsETJT-¢p,andI N J = (hypothesis of structural induction
= sE 3L d1) A (3T - ¢2)
< s|=XPure, 1 (k1xke) (XPure, definition - Fig.6
< s =XPure, 1 (P)

e & = emp. Straightforward.



o O = p:c(v*), andlsData(c).

s,h=®

< s, h E=puc(v®)

= dv-s(p) =v Av#null (model for separation constraint - Def 5.1
= sEJ-p=iNi#0

< sE=XPure,1(P) (XPure, definition - Fig.6

e & = p:c(v*), andisView(c).

s,h=®

< s, h Epuc(v®)

< s,h|=[p/root](®.) (assuming:(v*) = ®.invr € P)
= s=XPure,([p/root]®.) (hypothesis of induction over)
< sE=XPure, .1 (p::c(v*)) (XPure, definition - Fig.g



