
Certified Reasoning with Infinity

Asankhaya Sharma∗ Shengyi Wang∗ Andreea Costea∗

Aquinas Hobor†,∗ Wei-Ngan Chin∗

{asankhs, shengyi, andreeac, hobor, chinwn}@comp.nus.edu.sg
∗School of Computing and †Yale-NUS College, National University of Singapore

Abstract. We demonstrate how infinities improve the expressivity, power, read-
ability, conciseness, and compositionality of a program logic. We prove that adding
infinities to Presburger arithmetic enables these improvements without sacrific-
ing decidability. We develop Omega++, a Coq-certified decision procedure for
Presburger arithmetic with infinity and benchmark its performance. Both the pro-
gram and proof of Omega++ are parameterized over user-selected semantics for
the indeterminate terms (such as 0 *∞).

1 Introduction

Formal software analysis and verification frameworks benefit from expressive, compo-
sitional, decidable, and readable specification mechanisms. Of course, these goals often
conflict with each other: for example, it is easy to add expressivity if one is willing to
give up decidability! Happily, we have found a free lunch: by adding the notion of “in-
finity” to the specification language we can usefully add to the expressivity, readability,
and compositionality of our specifications while maintaining their decidability.

Specifically, we start from the well-established domains of separation logic [25] and
Presburger arithmetic [24] and add two abstract/fictitious/ghost symbols ∞ and −∞,
for which we support a precise, well-defined semantics. Although a seeming-minor
addition, these symbols add significantly to the expressivity and power of our logic.

In section 2.3, we use infinities to increase the compositionality of our logic by
showing that “lists” and “bounded lists” are equivalent when the bound is∞. Moreover,
in section 2.4, we use∞ to mix notions of partial and total correctness within a logic.

Infinities also add to our specification framework’s readability and conciseness. For
example, we will see in section 2.2 that∞ allows us to drop disjuncts in the specifica-
tion for code that manipulates a sorted linked list.

Finally, infinities enable some interesting applications. In section 2.5, we apply the
notion of quantifier elimination in Presburger arithmetic with infinities to infer pure
(non-heap) properties of programs.

All of the previous gains are worthy in their own right, but our major technical
advance is the development of Omega++, a sound and complete decision procedure for
Presburger arithmetic with infinities (including arbitrary quantifier use). In other words,
we do not sacrifice any of the computational advantage normally gained by restricting
ourselves to Presburger arithmetic, despite the addition of infinities. We call our tool
“Omega++” both to acknowledge the importance of the underlying Presburger solver
Omega [9] and because we believe we have modestly incremented its utility.

2 Asankhaya Sharma et al.

Omega++ is written in Gallina, the specification language of Coq [1], allowing us
to formally certify it (modulo the correctness of Omega itself, which we utilize as our
backend). We extract our performance-tuned Gallina into OCaml and package it as a
library, which we have benchmarked using the HIP/SLEEK verification toolset [5].

One notable technical feature of Omega++ is that it can handle several seman-
tic variants of Presburger arithmetic with infinity. For example, Presburger arithmetic
usually admits multiplication by a constant as a notational convenience, e.g. 3 · x def

=
x + x + x. This obvious-seeming convenience becomes a little less obvious when one
adds infinities: what is 0·∞? Mathematical sophisticates can—and do—disagree: some
prefer 0 as a convention in certain contexts (including, reasonably, ours) [19], while oth-
ers prefer the result to be undefined due to the indeterminate status of the corresponding
limit forms [10]. When possible, Omega++ takes an agnostic approach to such disagree-
ments by allowing the user to specify the semantics of some subtle cases. Omega++ is
thus a certified compiler from a set of related source languages (Presburger arithmetics
with infinities) to a fixed, well-understood target (vanilla Presburger).

Omega++ is available for download and experimentation here:
http://loris-7.ddns.comp.nus.edu.sg/˜project/SLPAInf/

2 Motivation

In this section, we highlight the benefits of augmenting a specification logic with infini-
ties. For consistency we focus on separation logic [6,25] but other specification mecha-
nisms which rely on Presburger arithmetic can enjoy similar benefits.

2.1 Orientation

Our flavor of separation logic has its grounds in the HIP/SLEEK system [5], thus offer-
ing the convenience to test and benchmark with a state-of-the-art verification toolchain.
Methods are specified with a pair of pre- and postcondition (Φpr, Φpo), with the keyword
res consistently used in the Φpo to refer to the return value. We have enhanced the logic
to allow the symbols ∞ and −∞ where it would normally require integers; we also
allow quantification over infinities.

From a systems perspective, our setup is sketched in figure 1. First, entailment be-
tween separation logic formulae with infinities in HIP/SLEEK is reduced (à la Chin et
al. [5]) to entailment between numeric formulae in Presburger arithmetic with infinities
(PAInf). Next, we translate PAInf to vanilla Presburger arithmetic (PA). We emphasize
on this phase as being our main contribution and detail it in section 4.

SL + Inf. PA + Inf. PA

OmegaOmega++HIP/SLEEK

Fig. 1. Our setup: SL + Inf to PA

Finally, we discharge PA proof obli-
gations with Omega. There are other
combinations of separation logic with ex-
tensions of PA (such as sets/multisets)
that can be used to enhance the specifi-
cation. We discuss them in section 7 as
related work.

http://loris-7.ddns.comp.nus.edu.sg/~project/SLPAInf/

Certified Reasoning with Infinity 3

2.2 Infinities enable Concise Specifications

Let’s start to see what infinities can buy us! Consider a simple program which inserts a
new node into a sorted linked list, whose nodes are defined as follows:

data node {int val; node next; }

The data field val stores numerical information and the pointer field next points to the
subsequent node in the structure. Consider the next two alternative inductive predicates
which characterize sortedness using only a single numeric parameter1 describing the
list’s minimum value:

Scenario 1 - no infinity enhancement:

sorted ll〈root, min〉 ≡ root7→node〈min, null〉
∨ ∃ q, mtail · (root 7→node〈min, q〉 ∗ sorted ll〈q, mtail〉 ∧ min≤mtail)

Scenario 2 - with infinity enhancement:

sorted ll〈root, min〉 ≡ (root=null ∧ min=∞)
∨ ∃ q, mtail · (root 7→node〈min, q〉 ∗ sorted ll〈q, mtail〉 ∧ min≤mtail)

The base case of Scenario 1 denotes a singleton, while its inductive case describes
a linked list of length at least two. Though useable, this definition has a frustrating
shortcoming: it cannot handle empty linked lists, since such lists do not have a finite
minimum value. In contrast, Scenario 2 handles the empty list gracefully since the
minimum of an empty list can be defined to be just∞! We could similarly use −∞ to
build a predicate which captures the maximum property of a linked list.

The code for insert is in figure 2. Parameter x points to a sorted linked list, while y
is the data node we wish to insert (preserving sortedness). Notice that the pre/post spec-
ifications in Scenario 1 require disjunctions to separate the cases when x is empty and
nonempty, whereas Scenario 2 handles both cases uniformly. Infinities thus enable more
concise and readable (easy to maintain) specifications.

node insert(node x, node y){
if (x == null) return y;
else {
if (y.val <= x.val){
y.next = x;
return y;
} else {
x.next = insert(x.next, y);
return x;

} } }

Scenario 1 :
Φpr : y7→node〈v, null〉 ∧ x=null

∨ sorted ll〈x, a〉 ∗ y 7→node〈v, null〉
Φpo : sorted ll〈res, b〉 ∧ x=null ∧ b=v

∨ sorted ll〈res, b〉 ∧ b=min(a, v)

Scenario 2 :
Φpr : sorted ll〈x, a〉 ∗ y 7→node〈v, null〉
Φpo : sorted ll〈res, b〉 ∧ b=min(a, v)

Fig. 2. Two pre-/post-specifications for insertion into a sorted linked list .

1 Note that there are other ways of specifying sortedness, such as through the use of multi-set,
that may also capture stronger properties, such as content preservation. However, they may
require more complex provers in their reasoning.

4 Asankhaya Sharma et al.

2.3 Infinities increase Compositionality

Consider this definition for an n-node linked list whose values are bounded by b:

llB〈root, n, b〉 ≡ (root=null ∧ n = 0)
∨(∃ q, v · root7→node〈v, q〉 ∗ llB〈q, n− 1, b〉 ∧ v ≤ b)

Suppose we have a function f which uses this definition in its precondition:

Φpr : llB〈x, n, m〉 ∗ . . .

where x points to a linked list bounded by m. Next, suppose we call f from a program
point where the only available information involves the shape and length of a linked
list x (that is, we have no information about its bound), e.g. we satisfy the predicate
ll〈x, n〉 as defined below:

ll〈root, n〉 ≡ (root=null ∧ n=0)∨ ∃ q · (root7→node〈 , q〉 ∗ ll〈q, n− 1〉)

With infinities this is easy: just instantiate m to∞ since

ll〈x, n〉 ↔ llB〈x, n,∞〉

Without infinities, however, this is not so easy since we must first determine an appro-
priate bound for x’s values. Thus, infinities increase the compositionality of our logic,
which in turn improves the reusability and conciseness of our specifications.

2.4 Infinities support Termination and Non-Termination Reasoning

Le et al. developed a technique to reason about termination and non-termination with
a resource constraint RC〈min, max〉 that tracks the minimum and maximum permitted
execution steps [14]. Using Presburger arithmetic with infinity, terminating programs
are modeled by RC〈 , max〉 ∧ max<∞, while non-terminating programs are captured by
RC〈∞,∞〉. Le et al. evaluated the semantics of non-termination reasoning with the help
of Omega++.

int length(node x){
if (x == null)

return 0;
else

return (1+ length(x.next));
}

Termination Spec :
Φpr : ls〈x, null, n〉 ∗ RC〈 , M〉 ∧ n<M ∧ M<∞
Φpo : ls〈x, null, n〉 ∗ RC〈 , M− (n+ 1)〉 ∧ res=n

Non-Termination Spec :
Φpr : cll〈x, n〉 ∗ RC〈∞,∞〉
Φpo : false

Fig. 3. Example 4: length terminates on proper lists and diverges on cyclic lists

Figure 3 demonstrates these resource constraints on a length function for linked
lists. We show two specifications: the first shows that length terminates on finite lists
ls, and the second shows that length diverges on circular lists cll, where ls and cll

are defined as below:

Certified Reasoning with Infinity 5

ls〈root, p, n〉 ≡ (root=p ∧ n=0)
∨ ∃ q · (root 7→node〈 , q〉 ∗ ls〈q, p, n− 1〉 ∧ root6=p)

cll〈root, n〉 ≡ ∃ q · (root 7→node〈 , q〉 ∗ ls〈q, root, n− 1〉)

2.5 Infinities support Analysis via Quantifier Elimination

Algorithmic quantifier elimination (QE) is a powerful technique for decision procedures
in symbolic logic [8]. Kapur et al. highlight the importance of geometric QE heuristics
for the case of generating program invariants [7]. While they exploit the structure of
verification conditions generated from numerical programs, our PAInf-based QE allows
us to generate inductive invariants (e.g. using octagonal constraints with infinity:−∞ ≤
±x± y ≤ ∞) for programs manipulating dynamically allocated data structures.

void append(node x, int a){
if (x.next == null)
x.next = new node(a, null);

else

insert(x.next, a);
}

Shape Spec :
Φpr : ll〈x, 〉∧x6=null

Φpo : ll〈x, 〉∧x 6=null

Spec with Inferred Pure :
Φpr : ll〈x, n〉 ∧ n>0
Φpo : ll〈x, n+ 1〉 ∧ n>0

Fig. 4. Pure Specification Inferred from PAInf QE

Consider for example the code in figure 4, which appends a node to the end of
an acyclic linked list. The Shape Spec does not express the strongest verifiable post-
condition as it does not account for the newly inserted node. It would be thus useful to
infer size properties as well. We can do so if the verification’s relational obligations are
discharged by QE over PAInf, leading to the specification with numeric properties.

3 Syntax and Parameterized Semantics

There are several benefits of adding the notion of infinity to a program logic. However,
due to the presence of certain terms like (∞−∞), it is an interesting problem to define
the correct (or rather desired) semantics. We will now proceed to a formal discussion of
Presburger arithmetic with infinity.

Our constraint language extends Presburger arithmetic with two abstract symbols
designating positive (∞) infinity and negative (−∞) infinity. The language is detailed
in figure 5. However, we would like to make some extra notes. First, we use a type
based approach to distinguish between the domain of variables. The notation w : τ
denotes that the variable w is of type τ ; thus there is a clear distinction between the
domain of variables. Second, for performance reasons that are explained in section 5
we do not aim for a minimal input constraint language. That is the reason why the
input language also supports min and max constraints over expressions. The min and
max constraints in the input language are translated to min= and max= (using π ;
[v/max(a1,a2)]π ∧max=(v, a1, a2) and π ; [v/min(a1,a2)]π ∧min=(v, a1, a2)).

6 Asankhaya Sharma et al.

π ::= β | ¬π | π1∧π2 | π1∨π2 | π1→π2 | ∃(w : τ)·π | ∀(w : τ)·π
β ::= true | false | a1<a2 | a1≤a2 | a1=a2 | a1 6=a2

| a1 ≥ a2 | a1 > a2
a ::= k | v | c×a | a1 + a2 | −a | a1 − a2 | max(a1,a2) | min(a1,a2)
k ::= c | ∞ | −∞

where v, w are variable names; c is an integer constant
Fig. 5. PAInf: Input Constraint Language

Next, we present the parameterized semantic model for PAInf and establish theo-
rems and lemmas that show the correctness of our decision procedure. All theorems and
lemmas in this paper are machine checked in Coq. Parameters are introduced to adapt
different possible ways of handling tricky parts of PAInf such as the terms (∞−∞) and
(0 ×∞). Since our semantics is parameterized, all procedures, theorems and lemmas
based on the semantics are also parameterized. We start by defining an environment to
map variables to values.

Definition 1 An environment for a universe τ of concrete values is a function φτ : V →
τ from the set of variables V to τ . For such a φτ , we denote by φτ [x 7→ a] the function
which maps x to a and any other variable y to φτ (y).

We define the semantics of arithmetic operations and relations for PAInf formally
in figure 6, denoted by JβKZ∞ . The subscript of JK denotes the domain of constants. Z∞
means Z∪ {∞,−∞}. By analogy, JβKZ means the domain is Z. With these definitions
one can compute every atomic term into a truth value with respect to an environment
φτ and domain of constants η as described in figure 7, and denoted by EVALηφτ

.
We define the satisfaction relation φτ |=sat

η π and dissatisfaction relation φτ |=dst
η π

(in figure 8) for each logical formula π over the environment φτ and domain of constants
η by structural induction on π. Sometimes, a formula π can neither be satisfied nor be
dissatisfied. In that case, we say π is undetermined, which can be presented as φτ |=udt

η

π. We define two distinct relations for satisfaction and dissatisfaction as we support
both two-valued and three-valued logic. In case of three-valued logic a formula can be
neither satisfied nor dissatisfied (undetermined).

Much of the semantics for PAInf is “as you might expect”. For example, when all the
values are finite, all of the operations and relations behave the same way they would in
PA. On the other hand, any finite value plus∞ equals∞ and any finite value plus −∞
equals −∞. It is trickier to figure out what to do with the sum of∞ and −∞; we treat
this as a meaningless value (much like the “value” of 0

0 in the reals) denoted by “⊥”.
If∞ and −∞ were actually inverses, we would need to admit the following whopper:

0 = ∞+−∞ = ∞+ (−∞+ 1) = (∞+−∞) + 1 = 1

In fact there is no perfect solution, since it is impossible to add a finite number of
symbols to Z while remaining a group. Lasaruk and Sturm [13] propose dodging part of
this problem by using only a single value for both positive and negative infinity, which
is both greater than and less than all finite values. This approach ensures that every
sum is defined, although ∞ still does not have an inverse and you lose antisymmetry
for ≤. We find the notion of a single infinity to be too restrictive as it prohibits us from
expressing some of the motivating examples from section 2.

Certified Reasoning with Infinity 7

[ADDITION]

Jk1 + k2KZ∞
def
=

⊥ k1 or k2 is ⊥
⊥ k1 =∞, k2 = −∞
⊥ k1 = −∞, k2 =∞
∞ k1 or k2 is∞, and neither is −∞
−∞ k2 or k2 is −∞, and neither is∞
Jk1 + k2KZ k1 and k2 are finite

[LESS−THAN−EQ]

Jk1 ≤ k2KZ∞
def
=

F/U k1 or k2 is ⊥
T k2 =∞
T k1 = −∞
T k1 = k2 =∞
T k1 = k2 = −∞
F k1 =∞, k2 6=∞
F k1 6= −∞, k2 = −∞
Jk1 ≤ k2KZ k1 and k2 are finite

[IDENTITY]

JkKZ∞
def
= k

[NEGATION]

J−kKZ∞
def
=

⊥ k = ⊥
∞ k = −∞
−∞ k =∞
J−kKZ k is finite

[OTHER−OPERATIONS−AND−RELATIONS]

J0× kKZ∞
def
=

{
0 k is finite
0/⊥/k k is not finite

Jc× kKZ∞
def
=

J0× kKZ∞ c = 0

k c = 1

Jk + (c− 1)× kKZ∞ c > 1

J−((−c)× k)KZ∞ c < 0

Jk1 ≥ k2KZ∞
def
= Jk2 ≤ k1KZ∞ Jk1 > k2KZ∞

def
= Jk1 ≥ k2KZ∞ ∧ Jk1 6= k2KZ∞

Jk1 6= k2KZ∞
def
= ¬Jk1 = k2KZ∞ Jk1 = k2KZ∞

def
= Jk1 ≤ k2KZ∞ ∧ Jk2 ≤ k1KZ∞

Jk1 − k2KZ∞
def
= Jk1 + (−k2)KZ∞ Jk1 < k2KZ∞

def
= Jk1 ≤ k2KZ∞ ∧ Jk1 6= k2KZ∞

Jmax=(k1, k2, k3)KZ∞
def
= (Jk1 = k2KZ∞ ∧ Jk3 ≤ k2KZ∞) ∨ (Jk1 = k3KZ∞ ∧ Jk2 ≤ k3KZ∞)

Jmin=(k1, k2, k3)KZ∞
def
= (Jk1 = k2KZ∞ ∧ Jk2 ≤ k3KZ∞) ∨ (Jk1 = k3KZ∞ ∧ Jk3 ≤ k2KZ∞)

Fig. 6. Operations and Relations in Z∞

In addition to the issues encountered while using a single infinity symbol, handling
comparisons with⊥ is another challenge. A possible solution is treating all comparisons
with ⊥ as false. This is reasonable but not perfect. For example, in this context, it is not
the case that x > y is equivalent to ¬(x ≤ y) when x or y are⊥. Interestingly, this is the
choice made by IEEE floating point standard [2]. Another possibility is to use a three-
valued logic and treat any comparison with ⊥ as the “third unknown value”. There are
several three-valued logics studied in the literature [3]. We use Kleene’s weak three-
valued logic which interprets the unknown value as “Error” and propagates it to the
entire formula. In three-valued logic, when x or y are ⊥, x > y and ¬(x ≤ y) are
equivalent. In Omega++, user can choose between a two-valued or three-valued logic,
which is indicated in [LESS−THAN−EQ] of figure 6. Note that in three-valued logic,
according to the relation definition in figure 8, formulae like ⊥ < 0 are neither satisfied
nor dissatisfied.

The definition of multiplication in the presence of infinities (0 × ∞) can also be
selected by the user as shown in figure 6. There are three possible choices for defining

8 Asankhaya Sharma et al.

[ARITH−EVAL]

EVALηφτ
(k)

def
= JkKη EVALηφτ

(v)
def
= Jφτ (v)Kη

EVALηφτ
(c× a) def

= JEVALηφτ
(c)× EVALηφτ

(a)Kη
EVALηφτ

(a1 + a2)
def
= JEVALηφτ

(a1) + EVALηφτ
(a2)Kη

EVALηφτ
(a1 − a2)

def
= JEVALηφτ

(a1)− EVALηφτ
(a2)Kη

EVALηφτ
(−a) def

= J−EVALηφτ
(a)Kη

[BOOLEAN−EVAL]

EVALηφτ
(true)

def
= T EVALηφτ

(false)
def
= F EVALηφτ

(undefined)
def
= U

EVALηφτ
(a1 ◦ a2)

def
= JEVALηφτ

(a1) ◦ EVALηφτ
(a2)Kη

EVALηφτ
(max=(a1, a2, a3))

def
= Jmax=(EVALηφτ

(a1), EVALηφτ
(a2), EVALηφτ

(a2))Kη
EVALηφτ

(min=(a1, a2, a3))
def
= Jmin=(EVALηφτ

(a1), EVALηφτ
(a2), EVALηφτ

(a2))Kη
where ◦ above means one of ≤,≥, <,>,=, 6=.

Fig. 7. Evaluations on atomic terms

0 ×∞ : 0, ⊥ and∞. For each of these options we can choose a two-valued or three-
valued logic, thus Omega++ supports six different customized semantics in total. As
described in section 6, for our experiments we use the semantics with three-valued
logic and 0 × ∞ def

= 0. However, in general any of the six customized semantics can
be used as the decision procedure is parameterized over these choices and our certified
proof guarantees that all choices are sound, complete and decidable.

In order to match the intuition of user, by design, most valid formulae in PA remain
so in our semantics for PAInf, just as most invalid formulae in PA are still invalid in
PAInf. Here are two short examples that are valid in both (if you drop the universe of
quantification as you move from PAInf to PA):

∀(x : Z∞) · ∃(y : Z∞) · x ≤ y ∀(x : Z∞) · ∀(y : Z∞) · x+ 1 = y + 1→ x = y

However, there are differences. This formula is valid in PA but invalid in PAInf:

∀(x : Z∞) · ∃(y : Z∞) · x+ y = 0

The previous formula is false in PAInf when x = ∞. More generally, although Z∞ is
not a group, it still has many useful algebraic properties, such as the following.

Lemma 1. + is Associative J(a + b) + cKZ∞ and Ja + (b + c)KZ∞ are equal or both
undefined.

Lemma 2. + is Commutative Ja+ bKZ∞ and Jb+ aKZ∞ are equal or both undefined.

Lemma 3. 0 is the Additive Identity Ja+ 0KZ∞ and a are equal for all defined a.

Lemma 4. + is Monotonic If Ja ≤ bKZ∞ is T and if both Ja+ cKZ∞ and Jb+ cKZ∞ are
defined, then Ja+ c ≤ b+ cKZ∞ is also T.

Certified Reasoning with Infinity 9

φτ |=sat
η β iff EVALηφτ

(β) is T.
φτ |=sat

η ¬π iff φτ |=dst
η π holds.

φτ |=sat
η π1 ∧ π2 iff both φτ |=sat

η π1 and φτ |=sat
η π2 holds.

φτ |=sat
η π1 ∨ π2 iff both φτ |=sat

η π1 and φτ |=sat
η π2 holds,

or both φτ |=dst
η π1 and φτ |=sat

η π2 holds,
or both φτ |=sat

η π1 and φτ |=dst
η π2 holds.

φτ |=sat
η π1 → π2 iff both φτ |=sat

η π1 and φτ |=sat
η π2 holds,

or both φτ |=dst
η π1 and φτ |=sat

η π2 holds,
or both φτ |=dst

η π1 and φτ |=sat
η π2 holds.

φτ |=sat
η ∃(w : τ) · π iff φτ [w 7→ k] |=sat

η π holds for some k ∈ τ,
and forall all k ∈ τ , either φτ [w 7→ k] |=sat

η π

or φτ [w 7→ k] |=dst
η π holds.

φτ |=sat
η ∀(w : τ) · π iff φτ [w 7→ k] |=sat

η π holds for all k ∈ τ

φτ |=dst
η β iff EVALηφτ

(β) is F.
φτ |=dst

η ¬π iff φτ |=sat
η π holds.

φτ |=dst
η π1 ∧ π2 iff both φτ |=dst

η π1 and φτ |=dst
η π2 holds,

or both φτ |=sat
η π1 and φτ |=dst

η π2 holds,
or both φτ |=dst

η π1 and φτ |=sat
η π2 holds.

φτ |=dst
η π1 ∨ π2 iff both φτ |=dst

η π1 and φτ |=dst
η π2 holds.

φτ |=dst
η π1 → π2 iff both φτ |=sat

η π1 and φτ |=dst
η π2 holds.

φτ |=dst
η ∃(w : τ) · π iff φτ [w 7→ k] |=dst

η π holds for all k ∈ τ
φτ |=dst

η ∀(w : τ) · π iff φτ [w 7→ k] |=dst
η π holds for some k ∈ τ,

and forall all k ∈ τ , either φτ [w 7→ k] |=sat
η π

or φτ [w 7→ k] |=dst
η π holds.

φτ |=udt
η π iff neither φτ |=sat

η π or φτ |=dst
η π holds.

Fig. 8. Definition of satisfaction relation

4 Reasoning with Infinity

For the following discussion we assume the existence of a solver for Presburger arith-
metic (such as Omega [9]). Our focus is to automate the reasoning of ghost infinities
by leveraging on existing solvers. Note that v ∈ Z∞, is the same as, v ∈ Z ∨ v =
∞ ∨ v = −∞. This fact can be used to give a quantifier elimination procedure for
PAInf as shown in figure 9. However, using this approach naively leads to an explosion
in the size of formulae to be checked. As an example, consider the following formula,

∀x, y, z · (z=∞∧ y=x+ z ∧ x<∞)

Using the [FORALL−INF] rule to eliminate the three quantified variables (x, y and z),
leads to 33 (= 27) constraints. To avoid this problem, we support both kinds of quanti-
fiers (∃(w : Z) and ∃(w : Z∞)) in the implementation. This allows for a more efficient
quantifier elimination as variables with finite domain do not give rise to new disjunc-
tions in formulae. Since, infinity is added as a ghost constant only in the specification
logic, all program variables are still in finite domain. Supporting two kinds of quantifiers
matches nicely with the distinction between the domain of specification variables (Z∞)

10 Asankhaya Sharma et al.

and program variables (Z). In section 6 we compare our system with an implementation
of PAI from [13] and demonstrate the effectiveness of using our procedure.

[EXISTS−INF]

∃(w : Z∞)·π ; ∃(w : Z)·π
∨[∞/w]π
∨[−∞/w]π

[FORALL−INF]

∀(w : Z∞)·π ; ∀(w : Z)·π
∧[∞/w]π
∧[−∞/w]π

Fig. 9. PAInf: Quantifier Elimination (INF-TRANS)

For checking satisfiability in the PAInf we use the algorithm shown in figure 10.
We denote the procedure for satisfiability checking as SAT (π). The algorithm has four
steps: (i) first we eliminate the quantifiers starting with the innermost quantifier, (ii) next
we apply a normalization which detects tautologies and contradictions in constraints
using infinity, (iii) then we eliminate min-max and constant constraints and (iv) finally
we solve the resulting formula using an existing PA solver Omega.

SAT(π)
=⇒ SAT(πF)
=⇒ SAT(πN)
=⇒ SAT(πG)

πF = INF-TRANS(π)
πN = INT-TRANS(πF)
πG = SIMP(πN)

(1) Quantifier Elimination
(2) Normalization
(3) Simplification
(4) Omega

Fig. 10. PAInf: SAT Checking

At a high level the intuition behind the SAT checking algorithm is as follows: after
quantifier elimination, the πF formula has quantifiers only on the finite domain vari-
ables. The normalization and simplification eliminate all the infinite constants from the
formula. The resulting formula (πG) is in PA and its satisfiability can be checked using
Omega. Next we describe the steps in the SAT checking algorithm in detail.

[EVAL−FIN]

v ; Z
c ; Z
−Z ; Z
Z + Z ; Z
Z − Z ; Z
c× Z ; Z

[EVAL−INF]

∞+∞;∞
−∞+(−∞) ; −∞
−∞+Z ; −∞
Z+(−∞) ; −∞
∞+Z ;∞
Z +∞;∞

[EVAL−BOT]

∞+(−∞) ; ⊥
−∞+∞; ⊥
⊥+Z ; ⊥
Z+⊥; ⊥
⊥+⊥; ⊥
−⊥; ⊥

Fig. 11. PAInf: Evaluation Check

4.1 Normalization and Simplification

We define a set of rewriting rules based on the semantics of formulae in PAInf. We work
only with closed-form formulae, thus after applying the quantifier elimination given in
figure 9, all the remaining variables are in the finite domain (Z). It is possible to compare
the variables with infinities by evaluating their values (as they are all finite) using the
semantics given in the section 3. This is performed by the Evaluation Check function
in figure 11 which reduces each expression to a finite value (denoted by Z). Thus, for
the normalization rules in figure 12 we only need to consider the integer values (Z) and

Certified Reasoning with Infinity 11

the infinity constants. Note that, the Evaluation Check is only applied for the purpose
of checking the finiteness and eliminating infinity, the actual formula is not evaluated.

The normalization process uses the rewriting rules given in figure 12 (rules for 6=
,≥, < and min= are similar and omitted for brevity). These rules detect the tautologies
and contradictions in the usage of ∞ and −∞, and the constraints involving ∞ and
−∞ are eliminated. After the application of these rules the given formula is reduced to
a form which can be solved by existing PA solvers like Omega.

[NORM−INF−EQ]

⊥ = ; error

= ⊥; error

Z =∞; false

∞ =∞; true

−∞ =∞; false

−∞ = Z ; false

−∞ = −∞; true

∞ = Z ; false

∞ = −∞; false

Z = −∞; false

[NORM−INF−LEQ]

⊥ ≤ ; error

≤ ⊥; error

Z ≤ ∞; true

∞ ≤∞; true

−∞ ≤ ∞; true

−∞ ≤ Z ; true

−∞ ≤ −∞; true

∞ ≤ Z ; false

∞ ≤ −∞; false

Z ≤ −∞; false

[NORM−INF−LT]

⊥ < ; error

< ⊥; error

Z <∞; true

∞ <∞; false

−∞ <∞; true

−∞ < Z ; true

−∞ < −∞; false

∞ < Z ; false

∞ < −∞; false

Z < −∞; false

[NORM−EQ−MAX]

max=(∞,∞,∞) ; true max=(−∞, Z, Z) ; false max=(, ,⊥) ; error

max=(−∞,−∞,−∞) ; true max=(∞, Z,−∞) ; false max=(∞, Z, Z) ; false

max=(−∞, Z,−∞) ; false max=(∞,−∞,∞) ; true max=(∞,∞, Z) ; true

max=(−∞,∞,−∞) ; false max=(−∞,∞, Z) ; false max=(Z,∞, Z) ; false

max=(∞,−∞,−∞) ; false max=(∞,−∞, Z) ; false max=(,⊥,) ; error

max=(−∞,−∞, Z) ; false max=(Z,∞,−∞) ; false max=(∞, Z,∞) ; true

max=(∞,∞,−∞) ; true max=(−∞, Z,∞) ; false max=(⊥, ,) ; error

max=(Z,−∞,−∞) ; false max=(Z,−∞,∞) ; false max=(Z,Z,∞) ; false

max=(−∞,−∞,∞) ; false max=(−∞,∞,∞) ; false max=(Z,∞,∞) ; false

[NORM−INF−ERR]

error ; false (two-valued logic)
error ; undefined (three-valued logic)
Fig. 12. PAInf: Normalization (INT-TRANS)

We also proved the following theorems and lemmas about quantifier elimination
INF-TRANS and normalization INT-TRANS. These theorems and lemmas hold for both
two-valued/three-valued logics and all choices of (0 × ∞). Hence, the Coq certified
proof of these theorems and lemmas is also parameterized. Note that for quantifier
elimination the universe of environment τ and the domain of constants η are both in-
stantiated to Z∞.

Lemma 5. Quantifier Elimination φZ∞ |=sat
Z∞

π if and only if φZ |=sat
Z∞

INF-TRANS(π),
φZ∞ |=dst

Z∞
π if and only if φZ |=dst

Z∞
INF-TRANS(π),

For infinity elimination τ is Z∞ and η is Z. This is due to the fact that after quantifier
elimination the domain of all the variables is finite.

12 Asankhaya Sharma et al.

Lemma 6. Infinity Elimination φZ |=sat
Z∞

π if and only if φZ |=sat
Z INT-TRANS(π),

φZ |=dst
Z∞

π if and only if φZ |=dst
Z INT-TRANS(π).

[ELIM]

max=(a1, a2, a3) ; (a1 = a2 ∧ a3 ≤ a2) ∨ (a1 = a3 ∧ a2 ≤ a3)
min=(a1, a2, a3) ; (a1 = a2 ∧ a2 ≤ a3) ∨ (a1 = a3 ∧ a3 ≤ a2)

[SIMP]

β ; ELIM(β) ¬undefined ; undefined

undefined ∧ π ; undefined π ∧ undefined ; undefined

true ∧ π ; π π ∧ true ; π
false ∧ π ; false π ∧ false ; false

undefined ∨ π ; undefined π ∨ undefined ; undefined

true ∨ π ; true π ∨ true ; true

false ∨ π ; π π ∨ false ; π
undefined→ π ; undefined π → undefined ; undefined

false→ π ; true π → true ; true

true→ π ; π π → false ; ¬π
¬true ; false ¬false ; true

∀(w : τ) · undefined ; undefined ∃(w : τ) · undefined ; undefined

∀(w : τ) · true ; true ∃(w : τ) · true ; true

∀(w : τ) · false ; false ∃(w : τ) · false ; false

Fig. 13. Definition of Simplification

So for the total transformation TRANS(π) = INT-TRANS(INF-TRANS(π)) used in
satisfiability checking, we have the following theorem:

Theorem 1. Satisfiability Checking φZ∞ |=sat
Z∞

π if and only if φZ |=sat
Z TRANS(π),

φZ∞ |=dst
Z∞

π if and only if φZ |=dst
Z TRANS(π),

Gallina, the internal functional language of Coq is strongly normalizing. Thus, all
functions written in Coq must terminate.

Theorem 2. Termination Satisfiability checking in PAInf (figure 10) terminates.

The quantifier elimination with infinity expands the logical formula π and the nor-
malization introduces many logical constants. We introduce a simplification function
SIMP which recursively eliminates logical constants according to the rules in figure 13
in order to reduce the length of a formula. As Omega doesn’t support max= or min=
we also include the elimination of max= and min= in SIMP. Note that for three-valued
logic, the logical constants contain a third value: undefined which is not supported by
Omega. Our SIMP function propagates undefined to the whole formula such that we
know if a formula is undetermined before calling Omega due of the following theorem:

Theorem 3. Decide Undetermined φZ |=udt
Z π if and only if SIMP(π)=undefined

Thus, we do not need to extend Omega to support undefined. SIMP also preserves
the validity of formulae:

Theorem 4. Simplification φZ |=sat
Z π if and only if φZ |=sat

Z SIMP(π), φZ |=dst
Z π if

and only if φZ |=dst
Z SIMP(π).

Certified Reasoning with Infinity 13

5 Implementation

We gain a number of benefits in exchange for implementing Omega++ in Coq. We get
proof of termination for free since Gallina (the extractable pure functional language of
Coq) is strongly normalizing. More importantly, we get full machine-checked formal
correctness proofs for our source code with respect to a well defined semantics for
Presburger arithmetic with infinity. Coq’s extraction facility then transforms the Gallina
program into OCaml (or Haskell or Scheme), which we then compile and run as normal.

The following table presents some statistics for our Coq development of Omega++.
The first column shows the file name, while the second and third columns are the num-
ber of lines in the file taken by the program and its soundness proof, respectively. Our
total development is a modest 3,988 lines and the ratio of proof to program is 2.35. The
fourth column gives the time taken by Coq to verify the file (i.e., proof/type checking),
using a 2.6 GHz Intel Core i7 with 16 GB of DDR3 RAM.

Coq File Program Proof Time (s) Description
Theory.v 585 737 20.68 Syntax and Semantics; SIMP

Transformation.v 350 1, 203 31.07 INF-TRANS, INT-TRANS
Simplification.v 0 856 338.96 Tactics/lemmas for SIMP
Extraction.v 257 0 1.27 Module to extract OCaml code

1, 192 2, 796 391.98 Total Coq

Note that type checking times have very little to do with file length. For example
Transformation.v has 1,553 lines (combined program and proof), but takes less
than 32 seconds to verify. On the other hand, verifying the 44 lines of the SIMP proce-
dure, whose code is contained in Theory.v, takes more than five minutes! We also
used one engineering trick to boost the performance of the extracted code. The code
uses strings to represent both variables and (arbitrary-sized) integers, but Coq’s encod-
ing of strings is less efficient than OCaml’s. We therefore usually treat strings as an
abstract type within Coq and manipulate them via an interface to OCaml’s string func-
tions, passed in using a functor.

We will next highlight the key optimizations we used to get good performance and
discuss how the program affected the proof—and vice versa. In the implementation we
directly handle all of the logical operators and min-max constraints of the constraint lan-
guage (figure 5), even though the “obvious” strategy would be to desugar aggressively.
Unfortunately, sugar-free formulae are actually quite a bit larger than their svelter sug-
ared cousins, resulting in a significant performance penalty. Working with fully-sugared
formulae has a significant impact on the proofs because we must handle more cases.

Similarly, we allow the input formulae to specify, for each quantifier, whether the
domain of quantification is over Z or over Z∞. Quantifier elimination is expensive, and
our “user”—the HIP/SLEEK verification toolset—often knows when a variable must
be finite: in particular, program variables must be finite, whereas specification variables
need not be. Communicating this fact to Omega++ resulted in significant performance
gains, but again increased the proof effort due to the necessity of handling more cases.

To enable min/max, reduce the length of the output, eliminate redundant clauses,
and propagate the undefined value, we implemented some basic simplifications (fig-
ure 13). The SIMP procedure was easy to implement but very painful to verify due to

14 Asankhaya Sharma et al.

the vast number of cases we need to consider. In the end we wrote some custom proof
tactics in Ltac (Coq’s proof tactic language) which crunched through the tedium.

The previous examples all trade one-time verification effort for a better-performing
algorithm. On the other hand, sometimes the proof improves the program. Before we
started on our Coq implementation, we did a OCaml prototype for the quantifier-free
fragment of the problem. That prototype’s version of normalization did additional case
analysis. Due to our careful treatment of quantifier elimination we were able to prove
that much of this case analysis was unnecessary in our Coq tool. Moreover, the Coq
development identified a soundness bug in the OCaml prototype, which allowed the
invalid transformation x≥y ; x+1>y, which is false when x = y =∞.

Overall, Omega++ is far better than our previous OCaml prototype. Consider:
Tool Sound Complete Termination Semantics Verified

OCaml Prototype No No Unclear Unclear No
Omega++ Yes Yes Guaranteed Precise in Coq

Of course, our OCaml prototype is a bit of a straw man, but we have been quite
convinced that the substantial effort that it took to write Omega++ in Coq was well-
rewarded. Moreover, as we will soon see, Omega++ has comparable performance to
our OCaml prototype, despite solving a trickier problem in a much more through way.

6 Experiments

To benchmark Omega++ we integrated it into the HIP/SLEEK verification toolset [5]
and developed a suite of tests (mostly searching and sorting programs) whose specifi-
cations use∞ in interesting ways. The source code for each of these programs can be
investigated in detail and tested with Omega++ [29] on our web site. In all the exper-
iments we selected three-valued logic in Omega++ and used 0 · ∞ def

= 0 as these are
the appropriate choices for program verification. We used a 3.20GHz Intel Core i7-960
processor with 16GB memory running Ubuntu Linux 10.04 for our benchmarks, the
first set of which are detailed in the table below.

Benchmark LOC Disjuncts (Z) Time (Ω) Disjuncts (Z∞) Time (Ω++)
Insertion Sort 30 4 0.14 2 0.15
Selection Sort 69 14 0.36 7 0.35

Binary Search Tree 105 12 0.43 6 0.35
Bubble Sort 110 12 0.29 9 0.50
Merge Sort 91 6 0.32 4 1.81

Priority Queue 207 16 0.84 10 2.73
Total Correctness 21 2 0.21

Sorting with Min and Max 79 7 1.82

The first column lists the test name and the second gives its lines of code. The
third and fifth columns show that Z∞ enables more readable and concise specifications.
Specifically, the third column gives the number of disjunctions required to express the
test’s specifications using Z, whereas the fifth column expresses the same properties
using Z∞. For each test in the first group (top six), Z∞ requires fewer disjunctions.

Certified Reasoning with Infinity 15

We do need to be a bit careful: although the specifications are informally for the same
property (e.g., “sortedness”), typically the specifications in Z∞ are formally stronger
since the embedded quantification occurs over larger sets. Note that we do not claim
that Omega++ eliminates the disjunctions from reasoning since the quantifiers over
infinities hide the disjunctions inside them. However, using infinities provides a useful
abstraction to express the same property as the given specification is more concise. The
difference in formal strength is the fundamental reason why the times given in columns
four and six differ. Column four gives the time (including all of HIP/SLEEK) using
Omega, whereas column six gives the time using Omega++. For the first four examples
Omega++ is comparable to Omega, but in the final two of the first group of tests we
believe the difference in the domain of quantification results in a significantly harder
theorem in Z∞, and thus, a noticeably longer runtime.

Comparison with similar tools. Lasaruk and Sturm [13] also propose extending
Presburger arithmetic with infinity. Their work differs from ours in several respects.
First, they only add a single infinity value, thus dodging any thorny—but in our view,
important—semantic issues involving ∞−∞. More importantly, Lasaruk and Sturm
describe an algorithm but do not provide an implementation. For benchmarking pur-
poses, we implemented their algorithm and tested it using the constraints generated
from our test suite. We also compared our previous OCaml prototype as shown below:

Benchmark Calls Time (PAI) Time (Proto) Time (Ω++)
Insertion Sort 100 4.58 0.78 0.39
Selection Sort 245 >600.00 0.62 0.78

Binary Search Tree 116 150.00 0.48 0.50
Bubble Sort 336 >600.00 1.25 1.34
Merge Sort 155 >600.00 1.05 1.92

Priority Queue 778 >600.00 FAIL 1.20
Total Correctness 120 >600.00 0.31 0.16

Sorting with Min and Max 376 >600.00 0.29 0.19
Entailment Examples 124 1.89 FAIL 1.42

Lemma Examples 35 1.88 1.27 1.65
Total (except PQ and EE) 1, 824 >3, 862.14 7.21 8.11

The second column gives the number of times the associated decision procedure
was called for each test. The third column gives the times for Lasaruk and Sturm’s
“PAI” algorithm; many of the tests timed out after 10 minutes. The fourth column gives
the times for our OCaml prototype “Proto”; notice that for two of the tests Proto failed
(completeness holes). The fifth column gives the times for Omega++.

It is obvious that PAI, at least when implemented directly as given by Lasaruk and
Sturm [13], is uncompetitive. Thus, Omega++ is always faster than PAI. When compar-
ing Proto to Omega++, recall that Proto is only trying to solve the simpler problem of
quantifier-free formulae. Despite this, for many of our tests the tools perform similarly.
For a few tests, some of Proto’s heuristics result in appreciably better times; we plan
to study these tests in more detail in the future to try to improve Omega++. Overall,
Omega++’s performance is competitive.

16 Asankhaya Sharma et al.

Inference. As described in section 2.5, quantifier elimination in Presburger arith-
metic with infinity can help with invariant generation of octagonal constraints. The table
below benchmarks using Omega++ for this analysis technique.

Method Pre Post Inferred Time (Omega++)
Create true ll〈res, m〉 m=n 0.13
Delete ll〈x, n〉 ll〈res, m〉 n−1≤m 0.17
Insert ll〈x, n〉∧x6=null ll〈x, m〉 n=m−1 0.13
Copy ll〈x, n〉 ∗ ll〈res, m〉 ll〈x, m〉 m=n 0.16

Remove ll〈x, n〉∧x6=null ll〈x, m〉 n−1≤m∧m≤n 0.19
Return ll〈x, n〉 ll〈x, m〉 m=n∧0≤m 0.07

Traverse ll〈x, n〉 ll〈x, m〉 m=n 0.12
Get ll〈x, n〉∧x6=null ll〈res, m〉 m=n−2∧2≤n 0.11

Head ll〈x, n〉∗ll〈y, m〉 ll〈res, n+m−1〉 1=min(n, m) 0.21

The first column gives the test name. The second and third columns give the user-
provided spatial pre- and postconditions in separation logic. The fourth column gives
the inferred pure specification, while the last column gives the time used by Omega++.
The final test is noteworthy because the inferred invariant uses min/max constraints.

7 Related Work and Conclusion

Reynolds demonstrated that ghost variables [26] were useful for verifying sequential
programs. Their importance is highlighted when proving program, object or loop invari-
ants [18], refining between two transition systems [17] or when considering program’s
security aspects [16]. Our work enriches specifications by extending the domain of
ghost values with the mathematical concepts of positive and negative infinity.

Presburger arithmetic [24] is one of the canonical examples of an important decid-
able problem. Kuncak et al. [11,12] presented a decision procedure for a quantifier-free
fragment of Boolean Algebra with Presburger arithmetic which can be used to prove
a mixed set-based constraint with symbolic cardinality and linear arithmetic. QFBAPA
was later extended to the more challenging case of multisets [22] and proved to be NP-
complete [23]. The VCDryad [21] framework combines separation logic with decision
procedures for sets and multi sets to verify programs with natural proofs. The combina-
tion of set/multi-sets with separation logic even though quite useful requires complex
provers that can reason over the domain of sets/muti-sets.

Lasaruk and Sturm [13] were the first to tackle the problem of extending PA with in-
finity, proving completeness and decidability. Our work differs from theirs as we allow
two distinct values for positive and negative infinities and provide a implementation.
Our decision procedure is built on top of Omega calculator [9], and certified in Coq [1].
The general problem of adding infinities to the set of reals was addressed by Weispfen-
ning [27]. This was later extended to mixed real and integer quantifier elimination in
[28]. Another interesting extension of decision procedures for real arithmetic is the
addition of infinitesimals. The proof assistant Isabelle/HOL [20] has support for in-
finitesimals. Loos and Weispfenning [15] first proposed a virtual substitution approach
for quantifier elimination of infinitesimals. We also use a similar virtual substitution to

Certified Reasoning with Infinity 17

eliminate infinities as part of the decision procedure. Chaieb and Nipkow [4] present a
reflective implementation of Cooper’s algorithm for quantifier elimination in PA. Their
work complements our approach as we reduce from PA extended with infinities to PA.

Conclusion. We presented Omega++, a decision procedure for Presburger arithmetic
with infinity Z∞. Infinity is a useful abstraction, increasing a program logic’s ability
to reason about termination and compose more elegantly. Moreover, specifications with
infinity are often more concise. Omega++ has been Coq-certified to respect a precise
formal semantics for Z∞. We integrated Omega++ into an existing verifier and eval-
uated it on a benchmark of small programs, demonstrating that it can perform well
in practice. Omega++ demonstrates that we can develop useful, efficient, and certified
programs for program verification and analysis.

Acknowlegement. This work is supported by MoE Tier-1 NUS research project R-252-
000-525-112 and Yale-NUS College R-607-265-045-121.

References

1. The Coq Proof Assistant. http://coq.inria.fr/.
2. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages 1–70, Aug 2008.
3. Merrie Bergmann. An introduction to many-valued and fuzzy logic: semantics, algebras, and

derivation systems. Cambridge University Press, 2008.
4. Amine Chaieb and Tobias Nipkow. Verifying and reflecting quantifier elimination for pres-

burger arithmetic. In Logic for Programming, Artificial Intelligence, and Reasoning, 12th
International Conference, LPAR 2005, Montego Bay, Jamaica, December 2-6, 2005, Pro-
ceedings, pages 367–380, 2005.

5. Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Automated verifi-
cation of shape, size and bag properties via user-defined predicates in separation logic. Sci.
Comput. Program., 77(9):1006–1036, 2012.

6. S. Ishtiaq and P.W. O’Hearn. BI as an assertion language for mutable data structures. In
ACM POPL, January 2001.

7. D. Kapur, Z. Zhang, M. Horbach, H. Zhao, Q. Lu, and T.V. Nguyen. Automated reasoning
and mathematics. chapter Geometric Quantifier Elimination Heuristics for Automatically
Generating Octagonal and Max-plus Invariants, pages 189–228. Springer-Verlag, 2013.

8. Deepak Kapur. Automatically generating loop invariants using quantifier elimination. In In
Deduction and Applications, 2005.

9. P. Kelly, V. Maslov, and W. Pugh. The Omega Library Version 1.1.0 Interface Guide, 1996.
10. N.A. Kolmogorov. ”Infinity.” Encyclopaedia of Mathematics: An Updated and Annotated

Translation of the Soviet ”Mathematical Encyclopaedia,”, volume 3. Reidel, 1995.
11. V. Kuncak, H. H. Nguyen, and M. Rinard. An algorithm for deciding BAPA: Boolean algebra

with Presburger arithmetic. In CADE, 2005.
12. Viktor Kuncak and Martin Rinard. Towards efficient satisfiability checking for boolean al-

gebra with Presburger arithmetic. In CADE. 2007.
13. A. Lasaruk and T. Sturm. Effective quantifier elimination for Presburger arithmetic with

infinity. In CASC. 2009.
14. Ton Chanh Le, Cristian Gherghina, Aquinas Hobor, and Wei-Ngan Chin. A Resource-Based

Logic for Termination and Non-Termination Proofs. In ICFEM, 2014.

http://coq.inria.fr/

18 Asankhaya Sharma et al.

15. Rüdiger Loos and Volker Weispfenning. Applying linear quantifier elimination. Comput. J.,
36(5):450–462, 1993.

16. Haohui Mai, Edgar Pek, Hui Xue, Samuel Talmadge King, and Parthasarathy Madhusudan.
Verifying security invariants in expressos. In ASPLOS, 2013.

17. M. Marcus and A. Pnueli. Using ghost variables to prove refinement. In AMST. 1996.
18. S. McPeak and G. Necula. Data structure specifications via local equality axioms. In CAV,

2005.
19. Edward James McShane. Unified integration, volume 107. Academic Press, 1983.
20. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-

Order Logic, volume 2283 of LNCS. Springer, 2002.
21. Edgar Pek, Xiaokang Qiu, and P Madhusudan. Natural proofs for data structure manipula-

tion in c using separation logic. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, page 46. ACM, 2014.

22. Ruzica Piskac and Viktor Kuncak. Decision procedures for multisets with cardinality con-
straints. In VMCAI. 2008.

23. Ruzica Piskac and Viktor Kuncak. Linear arithmetic with stars. In CAV. 2008.
24. Mojzesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer

Zahlen, in welchen die Addition als einzige Operation hervortritt. 1929.
25. J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In LICS, 2002.
26. John C. Reynolds. The craft of programming. Prentice Hall International series in computer

science. Prentice Hall, 1981.
27. Volker Weispfenning. Quantifier elimination for real algebra - the quadratic case and beyond.

Appl. Algebra Eng. Commun. Comput., 8(2):85–101, 1997.
28. Volker Weispfenning. Mixed real-integer linear quantifier elimination. In Proceedings of

the 1999 International Symposium on Symbolic and Algebraic Computation, ISSAC ’99,
Vancouver, B.C., Canada, July 29-31, 1999, pages 129–136, 1999.

29. Omega++ with HIP/SLEEK. Source and binaries available at http://loris-7.ddns.comp.

nus.edu.sg/˜project/SLPAInf/ . October 2014.

http://loris-7.ddns.comp.nus.edu.sg/~project/SLPAInf/
http://loris-7.ddns.comp.nus.edu.sg/~project/SLPAInf/

	Certified Reasoning with Infinity

